1
|
Zhang K, Li S, Li J, Zhou X, Qin Y, Wu L, Ling J. Ultra-pH-sensitive nanoplatform for precise tumor therapy. Biomaterials 2025; 314:122858. [PMID: 39366182 DOI: 10.1016/j.biomaterials.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
The emergence of precision cancer treatment has triggered a paradigm shift in the field of oncology, facilitating the implementation of more effective and personalized therapeutic approaches that enhance patient outcomes. The pH of the tumor microenvironment (TME) plays a pivotal role in both the initiation and progression of cancer, thus emerging as a promising focal point for precision cancer treatment. By specifically targeting the acidic conditions inherent to the tumor microenvironment, innovative therapeutic interventions have been proposed, exhibiting significant potential in augmenting treatment efficacy and ameliorating patient prognosis. The concept of ultra-pH-sensitive (UPS) nanoplatform was proposed several years ago, demonstrating exceptional pH sensitivity and an adjustable pH transition point. Subsequently, diverse UPS nanoplatforms have been actively explored for biomedical applications, enabling the loading of fluorophores, therapeutic drugs, and photosensitizers. This review aims to elucidate the design strategy and response mechanism of the UPS nanoplatform, with a specific emphasis on its applications in surgical therapy, immunotherapy, drug delivery, photodynamic therapy, and photothermal therapy. The potential and challenges of translating in the clinic on UPS nanoplatforms are finally explored. Thanks to its responsive and easily modifiable nature, the integration of multiple functional units within a UPS nanoplatform holds great promise for future advancements in tumor precision theranositcs.
Collapse
Affiliation(s)
- Ke Zhang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Shijie Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Jiaying Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Xiaobo Zhou
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China; School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Jue Ling
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
2
|
da Silva HC, das Chagas Lima Pinto F, Silva Marinho E, Alencar de Menezes JES, Kueirislene Amâncio Ferreira M, da Silva AW, Machado Marinho E, Marinho MM, Pessoa Bezerra de Menezes RRP, Washington Cavalcante J, Silva Dos Santos H, Pessoa ODL, Santiago GMP. Anxiolytic and Anticonvulsant Effects of Fisetin Isolated from Bauhinia pentandra on Adult Zebrafish (Danio rerio). Chem Biodivers 2024; 21:e202401207. [PMID: 39088251 DOI: 10.1002/cbdv.202401207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/02/2024]
Abstract
Anxiety and epilepsy are common worldwide and represent a primary global health concern. Fisetin, a flavonoid isolated from Bauhinia pentandra, has a wide range of biological activities may be a promising alternative to combat diseases related to the central nervous system (CNS). The present study aimed to investigate the anxiolytic and anticonvulsant effects of fisetin on adult zebrafish. Furthermore, molecular docking simulations were performed to improve the results. Fisetin did not present toxicity and caused anxiolytic behavior and delayed seizures in animals. This effect may occur through serotonin neurotransmission at 5-HT3A and/or 5-HT3B receptors. Molecular docking simulations showed that fisetin interacts with the orthosteric site of the 5-HT3A receptor with strong H-bond interactions with the Trp156 residue, with a strong contribution from the catechol ring, a behavior similar to that of the antagonist co-crystallized inhibitor granisetron (CWB). Fisetin may be a promising alternative to combat diseases related to the central nervous system.
Collapse
Affiliation(s)
- Horlando Carlota da Silva
- Programa de Pós-Graduação em Química, Universidade Federal do Ceará, Campus do Pici, 60021-940, Fortaleza, CE, Brazil
| | | | - Emmanuel Silva Marinho
- Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual de Ceará, Campus do Itaperi, 60714-242, Fortaleza, CE, Brazil
| | | | | | - Antonio Wlisses da Silva
- Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual de Ceará, Campus do Itaperi, 60714-242, Fortaleza, CE, Brazil
| | - Emanuelle Machado Marinho
- Programa de Pós-Graduação em Química, Universidade Federal do Ceará, Campus do Pici, 60021-940, Fortaleza, CE, Brazil
| | - Márcia Machado Marinho
- Curso de Química, Centro de Ciências e Tecnologia, Universidade Estadual do Vale do Acaraú, 62.040-370, Sobral, CE, Brazil
| | | | - John Washington Cavalcante
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Ceará, Rua Pastor Samuel Munguba 1210, Campus do Porangabussu, 60430-370, Fortaleza, CE, Brazil
| | - Hélcio Silva Dos Santos
- Curso de Química, Centro de Ciências e Tecnologia, Universidade Estadual do Vale do Acaraú, 62.040-370, Sobral, CE, Brazil
| | | | - Gilvandete Maria Pinheiro Santiago
- Programa de Pós-Graduação em Química, Universidade Federal do Ceará, Campus do Pici, 60021-940, Fortaleza, CE, Brazil
- Departamento de Farmácia, Universidade Federal do Ceará, Rua Pastor Samuel Munguba 1210, Campus do Porangabussu, 60430-370, Fortaleza, CE, Brazil
| |
Collapse
|
3
|
Peverini L, Shi S, Medjebeur K, Corringer PJ. Mapping the molecular motions of 5-HT 3 serotonin-gated channel by voltage-clamp fluorometry. eLife 2024; 12:RP93174. [PMID: 38913422 PMCID: PMC11196107 DOI: 10.7554/elife.93174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
The serotonin-gated ion channel (5-HT3R) mediates excitatory neuronal communication in the gut and the brain. It is the target for setrons, a class of competitive antagonists widely used as antiemetics, and is involved in several neurological diseases. Cryo-electron microscopy (cryo-EM) of the 5-HT3R in complex with serotonin or setrons revealed that the protein has access to a wide conformational landscape. However, assigning known high-resolution structures to actual states contributing to the physiological response remains a challenge. In the present study, we used voltage-clamp fluorometry (VCF) to measure simultaneously, for 5-HT3R expressed at a cell membrane, conformational changes by fluorescence and channel opening by electrophysiology. Four positions identified by mutational screening report motions around and outside the serotonin-binding site through incorporation of cysteine-tethered rhodamine dyes with or without a nearby quenching tryptophan. VCF recordings show that the 5-HT3R has access to four families of conformations endowed with distinct fluorescence signatures: 'resting-like' without ligand, 'inhibited-like' with setrons, 'pre-active-like' with partial agonists, and 'active-like' (open channel) with partial and strong agonists. Data are remarkably consistent with cryo-EM structures, the fluorescence partners matching respectively apo, setron-bound, 5-HT bound-closed, and 5-HT-bound-open conformations. Data show that strong agonists promote a concerted motion of all fluorescently labeled sensors during activation, while partial agonists, especially when loss-of-function mutations are engineered, stabilize both active and pre-active conformations. In conclusion, VCF, though the monitoring of electrophysiologically silent conformational changes, illuminates allosteric mechanisms contributing to signal transduction and their differential regulation by important classes of physiological and clinical effectors.
Collapse
Affiliation(s)
- Laurie Peverini
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors UnitParisFrance
| | - Sophie Shi
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors UnitParisFrance
| | - Karima Medjebeur
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors UnitParisFrance
| | - Pierre-Jean Corringer
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors UnitParisFrance
| |
Collapse
|
4
|
Hall A, Chatzopoulou M, Frost J. Bioisoteres for carboxylic acids: From ionized isosteres to novel unionized replacements. Bioorg Med Chem 2024; 104:117653. [PMID: 38579492 DOI: 10.1016/j.bmc.2024.117653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 04/07/2024]
Abstract
Carboxylic acids are key pharmacophoric elements in many molecules. They can be seen as a problem by some, due to perceived permeability challenges, potential for high plasma protein binding and the risk of forming reactive metabolites due to acyl-glucuronidation. By others they are viewed more favorably as they can decrease lipophilicity by adding an ionizable center which can be beneficial for solubility, and can add enthalpic interactions with the target protein. However, there are many instances where the replacement of a carboxylic acid with a bioisosteric group is required. This has led to the development of a number of ionizable groups which sufficiently mimic the carboxylic acid functionality whilst improving, for example, the metabolic profile of the molecule in question. An alternative strategy involves replacement of the carboxylate by neutral functional groups. This review initially details carefully selected examples whereby tetrazoles, acyl sulfonamides or isoxazolols have been beneficially utilized as carboxylic acid bioisosteres altering physicohemical properties, interactions with the target and metabolism and/or pharmacokinetics, before delving further into the binding mode of carboxylic acid derivatives with their target proteins. This analysis highlights new ways to consider the replacement of carboxylic acids by neutral bioisosteric groups which either rely on hydrogen bonds or cation-π interactions. It should serve as a useful guide for scientists working in drug discovery.
Collapse
Affiliation(s)
- Adrian Hall
- UCB, Chemin du Foriest, Braine l'Alleud, Belgium, 1420 UCB, 216 Bath Road, Slough SL1 3WE, UK.
| | - Maria Chatzopoulou
- UCB, Chemin du Foriest, Braine l'Alleud, Belgium, 1420 UCB, 216 Bath Road, Slough SL1 3WE, UK
| | - James Frost
- UCB, Chemin du Foriest, Braine l'Alleud, Belgium, 1420 UCB, 216 Bath Road, Slough SL1 3WE, UK
| |
Collapse
|
5
|
Rahman MH, Hegazy L. Mechanism of antagonist ligand binding to REV-ERBα. Sci Rep 2024; 14:8401. [PMID: 38600172 PMCID: PMC11006950 DOI: 10.1038/s41598-024-58945-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
REV-ERBα, a therapeutically promising nuclear hormone receptor, plays a crucial role in regulating various physiological processes such as the circadian clock, inflammation, and metabolism. However, the availability of chemical probes to investigate the pharmacology of this receptor is limited, with SR8278 being the only identified synthetic antagonist. Moreover, no X-ray crystal structures are currently available that demonstrate the binding of REV-ERBα to antagonist ligands. This lack of structural information impedes the development of targeted therapeutics. To address this issue, we employed Gaussian accelerated molecular dynamics (GaMD) simulations to investigate the binding pathway of SR8278 to REV-ERBα. For comparison, we also used GaMD to observe the ligand binding process of STL1267, for which an X-ray structure is available. GaMD simulations successfully captured the binding of both ligands to the receptor's orthosteric site and predicted the ligand binding pathway and important amino acid residues involved in the antagonist SR8278 binding. This study highlights the effectiveness of GaMD in investigating protein-ligand interactions, particularly in the context of drug recognition for nuclear hormone receptors.
Collapse
Affiliation(s)
- Mohammad Homaidur Rahman
- Center for Clinical Pharmacology, Washington University School of Medicine, University of Health Sciences and Pharmacy, St. Louis, MO, USA
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, MO, USA
| | - Lamees Hegazy
- Center for Clinical Pharmacology, Washington University School of Medicine, University of Health Sciences and Pharmacy, St. Louis, MO, USA.
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, MO, USA.
| |
Collapse
|
6
|
Felt K, Stauffer M, Salas-Estrada L, Guzzo PR, Xie D, Huang J, Filizola M, Chakrapani S. Structural basis for partial agonism in 5-HT 3A receptors. Nat Struct Mol Biol 2024; 31:598-609. [PMID: 38177669 DOI: 10.1038/s41594-023-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/26/2023] [Indexed: 01/06/2024]
Abstract
Hyperactivity of serotonin 3 receptors (5-HT3R) underlies pathologies associated with irritable bowel syndrome and chemotherapy-induced nausea and vomiting. Setrons, a class of high-affinity competitive antagonists, are used in the treatment of these conditions. Although generally effective for chemotherapy-induced nausea and vomiting, the use of setrons for treating irritable bowel syndrome has been impaired by adverse side effects. Partial agonists are now being considered as an alternative strategy, with potentially less severe side effects than full antagonists. However, a structural understanding of how these ligands work is lacking. Here, we present high-resolution cryogenic electron microscopy structures of the mouse 5-HT3AR in complex with partial agonists (SMP-100 and ALB-148471) captured in pre-activated and open-like conformational states. Molecular dynamics simulations were used to assess the stability of drug-binding poses and interactions with the receptor over time. Together, these studies reveal mechanisms for the functional differences between orthosteric partial agonists, full agonists and antagonists of the 5-HT3AR.
Collapse
Affiliation(s)
- Kevin Felt
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Madeleine Stauffer
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Leslie Salas-Estrada
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter R Guzzo
- SciMount Therapeutics (Shenzhen) Co. Ltd., Shenzhen, China
| | - Dejian Xie
- SciMount Therapeutics (Shenzhen) Co. Ltd., Shenzhen, China
| | - Jinkun Huang
- SciMount Therapeutics (Shenzhen) Co. Ltd., Shenzhen, China
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
de Menezes JFS, Sá Pires Silva AM, Aparecida Faria de Almeida E, da Silva AF, Morais Bomfim De Lima J, da Silva AW, Ferreira MKA, de Menezes JESA, Dos Santos HS, Marinho ES, Marinho GS, Marques da Fonseca A. Synthesis and anxiolytic effect of europium metallic complex containing lapachol [Eu(DBM) 3. LAP] in adult zebrafish through serotonergic neurotransmission: in vivo and in silico approach. J Biomol Struct Dyn 2024; 42:1280-1292. [PMID: 37029769 DOI: 10.1080/07391102.2023.2199087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/29/2023] [Indexed: 04/09/2023]
Abstract
Anxiety-related mental health problems are estimated at 3.6% globally, benzodiazepines (BZDs) are the class of drugs indicated for the treatment of anxiety, including lorazepam and diazepam. However, concerns have been raised about the short- and long-term risks associated with BZDs. Therefore, despite anxiolytic and antidepressant drugs, there is a need to develop more effective pharmacotherapies with fewer side effects than existing drugs. The present work reported the synthesis, anxiolytic activity, mechanism of action in Adult Zebrafish (Danio rerio) and in silico study of a europium metallic complex with Lapachol, [Eu(DBM)3. LAP]. Each animal (n = 6/group) was treated intraperitoneally (i.p.; 20 µL) with the synthesized complex (4, 20 and 40 mg/Kg) and with the vehicle (DMSO 3%; 20 µL), being submitted to the tests of locomotor activity and 96h acute toxicity. The light/dark test was also performed, and the serotonergic mechanism (5-HT) was evaluated through the antagonists of the 5-HTR1, 5-HTR2A/2C and 5-HTR3A/3B receptors. The complex was characterized using spectrometric techniques, and the anxiolytic effect of complex may be involved the neuromodulation of receptors 5-HT3A/3B, since the pre-treatment with pizotifen and cyproheptadine did not block the anxiolytic effect of [Eu(DBM)3. LAP], unlike fluoxetine had its anxiolytic effect reversed. In addition, molecular docking showed interaction between the [Eu(DBM)3. LAP] and 5HT3A receptor with binding energy -7.8 kcal/mol and the ADMET study showed that complex has low toxic risk. It is expected that the beginning of this study will allow the application of the new anxiolytic drugs, given the pharmacological potential of the lapachol complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jorge Fernando Silva de Menezes
- Center for Teacher Training, Federal University of Recôncavo da Bahia, Amargosa, Bahia, Brazil
- INCT - Energia e Meio Ambiente, UFBA, Rua Barão de Jeremoabo, Salvador, Bahia, Brazil
| | | | | | - Ananias Freire da Silva
- Postgraduate Program in Energy and Environment - PGEA, Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusofonia, Acarape, Ceará, Brazil
| | | | | | | | | | - Hélcio Silva Dos Santos
- State University of Ceará, Graduate Program in Natural Sciences, Fortaleza, Ceará, Brazil
- State University of Vale do Acaraú, Chemistry Course, Sobral, Ceará, Brazil
| | - Emmanuel Silva Marinho
- State University of Ceará, Graduate Program in Natural Sciences, Fortaleza, Ceará, Brazil
- Degree Course in Computer Science, Ceará State University, Fortaleza, Ceará, Brazil
| | | | - Aluísio Marques da Fonseca
- Postgraduate Program in Energy and Environment - PGEA, Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusofonia, Acarape, Ceará, Brazil
| |
Collapse
|
8
|
Cesário HPSDF, Silva FCO, Ferreira MKA, de Menezes JESA, Dos Santos HS, Marques da Fonseca A, Nogueira CES, Marinho MM, Marinho ES, Teixeira AMR, Silveira ER, Pessoa ODL. Anxiolytic effects of N-(4,5-dihydro-5-oxo-1,2-dithiolo-[4,3,b]-pyrrole-6-yl)- N-methylformamide, a pyrroloformamide isolated from a marine Streptomyces sp., in adult zebrafish by the 5-HT system. J Biomol Struct Dyn 2024; 42:445-460. [PMID: 37038661 DOI: 10.1080/07391102.2023.2193988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/15/2023] [Indexed: 04/12/2023]
Abstract
General anxiety disorders are among the most prevalent mental health problems worldwide. The emergence and development of anxiety disorders can be due to genetic (30-50%) or non-genetic (50-70%) factors. Despite medical progress, available pharmacotherapies are sometimes ineffective or can cause undesirable side effects. Thus, it becomes necessary to discover new safe and effective drugs against anxiety. This study evaluated the anxiolytic effect in adult zebrafish (Danio rerio) of a natural pyrroloformamide (PFD), N-(4,5-dihydro-5-oxo-1,2-dithiolo-[4,3,b]-pyrrole-6-yl)-N-methylformamide, isolated from a Streptomyces sp. bacterium strain recovered from the ascidian Eudistoma vannamei. The complete structure of PFD was determined by a detailed NMR analysis, including 1H-13C and 1H-15N-HBMC data. In addition, conformational and DFT computational studies also were performed. A group of fishes (n = 6) was treated orally with PFD (0.1, 0.5 and 1.0 mg/mL; 20 μL) and subjected to locomotor activity and light/dark tests, as well as, acute toxicity 96 h. The involvement of the GABAergic and serotonergic (5-HT) systems was investigated using flumazenil (a silent modulator of GABA receptor) and 5-HT1, 5-HT2A/2C and 5-HTR3A/3B receptors antagonists, known as pizotifen, granisetron and cyproheptadine, respectively. PFD was nontoxic, reduced locomotor activity and promoted the anxiolytic effect in zebrafish. Flumazenil did not inhibit the anxiolytic effect of the PFD via the GABAergic system. This effect was reduced by a pretreatment with pizotifen and granisetron, and was not reversed after treatment with cyproheptadine. Molecular docking and dynamics studies confirmed the interaction of PFD with the 5-HT receptor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | | | | | - Hélcio S Dos Santos
- Laboratory of Chemistry of Natural Products, Synthesis and Biocatalysis of Organic Compounds, Vale do Acaraú University, Sobral, CE, Brazil
| | - Aluísio Marques da Fonseca
- Academic Master in Sociobiodiversity and Sustainable Technologies - MASTS, Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusofonia, Acarape, CE, Brazil
| | - Carlos Emídio S Nogueira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
- Department of Physics, Regional University of Cariri, Crato, CE, Brazil
| | - Marcia M Marinho
- Laboratory of Chemistry of Natural Products, Synthesis and Biocatalysis of Organic Compounds, Vale do Acaraú University, Sobral, CE, Brazil
| | | | - Alexandre Magno R Teixeira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
- Course of Physics, State University of Ceará, Fortaleza, CE, Brazil
| | - Edilberto R Silveira
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Otília Deusdênia L Pessoa
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
9
|
Rao STRB, Turek I, Ratcliffe J, Beckham S, Cianciarulo C, Adil SSBMY, Kettle C, Whelan DR, Irving HR. 5-HT 3 Receptors on Mitochondria Influence Mitochondrial Function. Int J Mol Sci 2023; 24:ijms24098301. [PMID: 37176009 PMCID: PMC10179570 DOI: 10.3390/ijms24098301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
The 5-hydroxytryptamine 3 (5-HT3) receptor belongs to the pentameric ligand-gated cation channel superfamily. Humans have five different 5-HT3 receptor subunits: A to E. The 5-HT3 receptors are located on the cell membrane, but a previous study suggested that mitochondria could also contain A subunits. In this article, we explored the distribution of 5-HT3 receptor subunits in intracellular and cell-free mitochondria. Organelle prediction software supported the localization of the A and E subunits on the inner membrane of the mitochondria. We transiently transfected HEK293T cells that do not natively express the 5-HT3 receptor with an epitope and fluorescent protein-tagged 5HT3A and 5HT3E subunits. Fluorescence microscopy and cell fractionation indicated that both subunits, A and E, localized to the mitochondria, while transmission electron microscopy revealed the location of the subunits on the mitochondrial inner membrane, where they could form heteromeric complexes. Cell-free mitochondria isolated from cell culture media colocalized with the fluorescent signal for A subunits. The presence of A and E subunits influenced changes in the membrane potential and mitochondrial oxygen consumption rates upon exposure to serotonin; this was inhibited by pre-treatment with ondansetron. Therefore, it is likely that the 5-HT3 receptors present on mitochondria directly impact mitochondrial function and that this may have therapeutic implications.
Collapse
Affiliation(s)
- Santosh T R B Rao
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Ilona Turek
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Julian Ratcliffe
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Bio Imaging Platform, La Trobe University, Kingsbury Dr, Bundoora, VIC 3086, Australia
| | - Simone Beckham
- Regional Science Operations, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Cassandra Cianciarulo
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Siti S B M Y Adil
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Christine Kettle
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Donna R Whelan
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Helen R Irving
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| |
Collapse
|
10
|
Phylogenetic analyses of 5-hydroxytryptamine 3 (5-HT3) receptors in Metazoa. PLoS One 2023; 18:e0281507. [PMID: 36857360 PMCID: PMC9977066 DOI: 10.1371/journal.pone.0281507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/24/2023] [Indexed: 03/02/2023] Open
Abstract
The 5-hydroxytrptamine 3 (5-HT3) receptor is a member of the 'Cys-loop' family and the only pentameric ligand gated ion channel among the serotonin receptors. 5-HT3 receptors play an important role in controlling growth, development, and behaviour in animals. Several 5-HT3 receptor antagonists are used to treat diseases (e.g., irritable bowel syndrome, nausea and emesis). Humans express five different subunits (A-E) enabling a variety of heteromeric receptors to form but all contain 5HT3A subunits. However, the information available about the 5-HT3 receptor subunit occurrence among the metazoan lineages is minimal. In the present article we searched for 5-HT3 receptor subunit homologs from different phyla in Metazoa. We identified more than 1000 5-HT3 receptor subunits in Metazoa in different phyla and undertook simultaneous phylogenetic analysis of 526 5HT3A, 358 5HT3B, 239 5HT3C, 70 5HT3D, and 173 5HT3E sequences. 5-HT3 receptor subunits were present in species belonging to 11 phyla: Annelida, Arthropoda, Chordata, Cnidaria, Echinodermata, Mollusca, Nematoda, Orthonectida, Platyhelminthes, Rotifera and Tardigrada. All subunits were most often identified in Chordata phylum which was strongly represented in searches. Using multiple sequence alignment, we investigated variations in the ligand binding region of the 5HT3A subunit protein sequences in the metazoan lineage. Several critical amino acid residues important for ligand binding (common structural features) are commonly present in species from Nematoda and Platyhelminth gut parasites through to Chordata. Collectively, this better understanding of the 5-HT3 receptor evolutionary patterns raises possibilities of future pharmacological challenges facing Metazoa including effects on parasitic and other species in ecosystems that contain 5-HT3 receptor ligands.
Collapse
|
11
|
Li Z, Chan KC, Nickels JD, Cheng X. Molecular Dynamics Refinement of Open State Serotonin 5-HT 3A Receptor Structures. J Chem Inf Model 2023; 63:1196-1207. [PMID: 36757760 DOI: 10.1021/acs.jcim.2c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Pentameric ligand-gated ion channels play an important role in mediating fast neurotransmissions. As a member of this receptor family, cation-selective 5-HT3 receptors are a clinical target for treating nausea and vomiting associated with chemotherapy and radiation therapy (Thompson and Lummis, 2006). Multiple cryo-electron microscopy (cryo-EM) structures of 5-HT3 receptors have been determined in distinct functional states (e.g., open, closed, etc.) (Basak et al., 2018; Basak et al., 2018; Polovinkin et al., 2018; Zhang et al., 2015). However, recent work has shown that the transmembrane pores of the open 5-HT3 receptor structures rapidly collapse and become artificially asymmetric in molecular dynamics (MD) simulations. To avoid this hydrophobic collapse, Dämgen and Biggin developed an equilibration protocol that led to a stable open state structure of the glycine receptor in MD simulations (Dämgen and Biggin, 2020). However, the protocol failed to yield open-like structures of the 5-HT3 receptor in our simulations. Here, we present a refined equilibration protocol that involves the rearrangement of the transmembrane helices to achieve stable open state structures of the 5-HT3 receptor that allow both water and ion permeation through the channel. Notably, channel gating is mediated through collective movement of the transmembrane helices, involving not only pore lining M2 helices but also their cross-talk with the adjacent M1 and M3 helices. Thus, the successful application of our refined equilibration protocol underscores the importance of the conformational coupling between the transmembrane helices in stabilizing open-like structures of the 5-HT3 receptor.
Collapse
Affiliation(s)
- Zoe Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy at The Ohio State University, Columbus, Ohio 43210, United States
| | - Kevin C Chan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy at The Ohio State University, Columbus, Ohio 43210, United States
| | - Jonathan D Nickels
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy at The Ohio State University, Columbus, Ohio 43210, United States.,Translational Data Analytics Institute (TDAI) at The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Mendes FRS, da Silva AW, Ferreira MKA, Rebouças EDL, Moura Barbosa I, da Rocha MN, Henrique Ferreira Ribeiro W, Menezes RRPPBD, Magalhães EP, Marinho EM, Marinho MM, Bandeira PN, de Menezes JESA, Marinho ES, Dos Santos HS. GABA A and serotonergic receptors participation in anxiolytic effect of chalcones in adult zebrafish. J Biomol Struct Dyn 2023; 41:12426-12444. [PMID: 36644862 DOI: 10.1080/07391102.2023.2167116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
The prevalence of anxiety is a significant public health problem, being the 24th leading cause of disability in individuals affected by this disorder. In this context, chalcones, a flavonoid subclass obtained from natural or synthetic sources, interact with central nervous system (CNS) receptors at the same binding site as benzodiazepines, the primary drugs used in the treatment of anxiety. Thus, our study investigates the anxiolytic effect of synthetic chalcones derived from the natural product 2-hydroxy-3,4,6-trimethoxyacetophenone isolated from Croton anisodontus Müll.Arg. in modulating anxiolytic activity via GABAergic and serotoninergic neurotransmission in an adult zebrafish model. Chalcones 1 and 2 were non-toxic to adult zebrafish and showed anxiolytic activity via GABAA receptors. Chalcone 2 also had its anxiolytic action reversed by the antagonist granisetron, indicating the participation of serotonergic receptors 5HTR3A/3B in the anxiolytic effect. In addition, molecular docking results showed that chalcones have a higher affinity for the GABAA receptor than DZP and binding in the same region of the DZP binding site, indicating a similar effect to the drug. Furthermore, the interaction of chalcones with GABAA and 5-HT3A receptors demonstrates the anxiolytic effect potential of these molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | | | | | - Italo Moura Barbosa
- Graduate Program in Natural Sciences, State University of Ceara, Fortaleza, Ceará, Brazil
| | - Matheus Nunes da Rocha
- Department of Chemistry, Limoeiro do Norte, State University of Ceara, Limoeiro do Norte, Ceará, Brazil
| | | | | | - Emanuel Paula Magalhães
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Emanuelle Machado Marinho
- Department of Analytical and Physical Chemistry, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | | | | | | | - Emmanuel Silva Marinho
- Graduate Program in Natural Sciences, State University of Ceara, Fortaleza, Ceará, Brazil
- Department of Chemistry, Limoeiro do Norte, State University of Ceara, Limoeiro do Norte, Ceará, Brazil
| | - Hélcio Silva Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
- Graduate Program of Biotechnology, State University of Ceara, Fortaleza, Ceará, Brazil
- Graduate Program in Natural Sciences, State University of Ceara, Fortaleza, Ceará, Brazil
- Chemistry Course, State University of Vale do Acaraú, Sobral, Ceará, Brazil
| |
Collapse
|
13
|
Slobodyanyuk M, Banda-Vázquez JA, Thompson MJ, Dean RA, Baenziger JE, Chica RA, daCosta CJB. Origin of acetylcholine antagonism in ELIC, a bacterial pentameric ligand-gated ion channel. Commun Biol 2022; 5:1264. [PMID: 36400839 PMCID: PMC9674596 DOI: 10.1038/s42003-022-04227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/04/2022] [Indexed: 11/20/2022] Open
Abstract
ELIC is a prokaryotic homopentameric ligand-gated ion channel that is homologous to vertebrate nicotinic acetylcholine receptors. Acetylcholine binds to ELIC but fails to activate it, despite bringing about conformational changes indicative of activation. Instead, acetylcholine competitively inhibits agonist-activated ELIC currents. What makes acetylcholine an agonist in an acetylcholine receptor context, and an antagonist in an ELIC context, is not known. Here we use available structures and statistical coupling analysis to identify residues in the ELIC agonist-binding site that contribute to agonism. Substitution of these ELIC residues for their acetylcholine receptor counterparts does not convert acetylcholine into an ELIC agonist, but in some cases reduces the sensitivity of ELIC to acetylcholine antagonism. Acetylcholine antagonism can be abolished by combining two substitutions that together appear to knock out acetylcholine binding. Thus, making the ELIC agonist-binding site more acetylcholine receptor-like, paradoxically reduces the apparent affinity for acetylcholine, demonstrating that residues important for agonist binding in one context can be deleterious in another. These findings reinforce the notion that although agonism originates from local interactions within the agonist-binding site, it is a global property with cryptic contributions from distant residues. Finally, our results highlight an underappreciated mechanism of antagonism, where agonists with appreciable affinity, but negligible efficacy, present as competitive antagonists. A structural and functional study of the prokaryotic ligand-gated ion channel, ELIC, provides insight into the origin of agonism and antagonism at nicotinic acetylcholine receptors.
Collapse
|
14
|
Zhou J, Qi F, Chen Y, Zhang S, Zheng X, He W, Guo Z. Aggregation-Induced Emission Luminogens for Enhanced Photodynamic Therapy: From Organelle Targeting to Tumor Targeting. BIOSENSORS 2022; 12:1027. [PMID: 36421144 PMCID: PMC9688568 DOI: 10.3390/bios12111027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Photodynamic therapy (PDT) has attracted much attention in the field of anticancer treatment. However, PDT has to face challenges, such as aggregation caused by quenching of reactive oxygen species (ROS), and short 1O2 lifetime, which lead to unsatisfactory therapeutic effect. Aggregation-induced emission luminogen (AIEgens)-based photosensitizers (PSs) showed enhanced ROS generation upon aggregation, which showed great potential for hypoxic tumor treatment with enhanced PDT effect. In this review, we summarized the design strategies and applications of AIEgen-based PSs with improved PDT efficacy since 2019. Firstly, we introduce the research background and some basic knowledge in the related field. Secondly, the recent approaches of AIEgen-based PSs for enhanced PDT are summarized in two categories: (1) organelle-targeting PSs that could cause direct damage to organelles to enhance PDT effects, and (2) PSs with tumor-targeting abilities to selectively suppress tumor growth and reduce side effects. Finally, current challenges and future opportunities are discussed. We hope this review can offer new insights and inspirations for the development of AIEgen-based PSs for better PDT effect.
Collapse
Affiliation(s)
- Jiahe Zhou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fen Qi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoxue Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China
| |
Collapse
|
15
|
Aplin C, Milano SK, Zielinski KA, Pollack L, Cerione RA. Evolving Experimental Techniques for Structure-Based Drug Design. J Phys Chem B 2022; 126:6599-6607. [PMID: 36029222 PMCID: PMC10161966 DOI: 10.1021/acs.jpcb.2c04344] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structure-based drug design (SBDD) is a prominent method in rational drug development and has traditionally benefitted from the atomic models of protein targets obtained using X-ray crystallography at cryogenic temperatures. In this perspective, we highlight recent advances in the development of structural techniques that are capable of probing dynamic information about protein targets. First, we discuss advances in the field of X-ray crystallography including serial room-temperature crystallography as a method for obtaining high-resolution conformational dynamics of protein-inhibitor complexes. Next, we look at cryogenic electron microscopy (cryoEM), another high-resolution technique that has recently been used to study proteins and protein complexes that are too difficult to crystallize. Finally, we present small-angle X-ray scattering (SAXS) as a potential high-throughput screening tool to identify inhibitors that target protein complexes and protein oligomerization.
Collapse
Affiliation(s)
- Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Shawn K Milano
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kara A Zielinski
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
16
|
Zhu Z, Deng Z, Wang Q, Wang Y, Zhang D, Xu R, Guo L, Wen H. Simulation and Machine Learning Methods for Ion-Channel Structure Determination, Mechanistic Studies and Drug Design. Front Pharmacol 2022; 13:939555. [PMID: 35837274 PMCID: PMC9275593 DOI: 10.3389/fphar.2022.939555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Ion channels are expressed in almost all living cells, controlling the in-and-out communications, making them ideal drug targets, especially for central nervous system diseases. However, owing to their dynamic nature and the presence of a membrane environment, ion channels remain difficult targets for the past decades. Recent advancement in cryo-electron microscopy and computational methods has shed light on this issue. An explosion in high-resolution ion channel structures paved way for structure-based rational drug design and the state-of-the-art simulation and machine learning techniques dramatically improved the efficiency and effectiveness of computer-aided drug design. Here we present an overview of how simulation and machine learning-based methods fundamentally changed the ion channel-related drug design at different levels, as well as the emerging trends in the field.
Collapse
Affiliation(s)
- Zhengdan Zhu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Institute of Big Data Research, Beijing, China
| | - Zhenfeng Deng
- DP Technology, Beijing, China
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | | | | | - Duo Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- DP Technology, Beijing, China
| | - Ruihan Xu
- DP Technology, Beijing, China
- National Engineering Research Center of Visual Technology, Peking University, Beijing, China
| | | | - Han Wen
- DP Technology, Beijing, China
| |
Collapse
|
17
|
Recent Insight into Lipid Binding and Lipid Modulation of Pentameric Ligand-Gated Ion Channels. Biomolecules 2022; 12:biom12060814. [PMID: 35740939 PMCID: PMC9221113 DOI: 10.3390/biom12060814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) play a leading role in synaptic communication, are implicated in a variety of neurological processes, and are important targets for the treatment of neurological and neuromuscular disorders. Endogenous lipids and lipophilic compounds are potent modulators of pLGIC function and may help shape synaptic communication. Increasing structural and biophysical data reveal sites for lipid binding to pLGICs. Here, we update our evolving understanding of pLGIC–lipid interactions highlighting newly identified modes of lipid binding along with the mechanistic understanding derived from the new structural data.
Collapse
|
18
|
Lopes LT, Canto-de-Souza L, Baptista-de-Souza D, de Souza RR, Nunes-de-Souza RL, Canto-de-Souza A. The interplay between 5-HT 2C and 5-HT 3A receptors in the dorsal periaqueductal gray mediates anxiety-like behavior in mice. Behav Brain Res 2022; 417:113588. [PMID: 34547341 DOI: 10.1016/j.bbr.2021.113588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/17/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
The monoamine neurotransmitter serotonin (5-HT) modulates anxiety by its activity on 5-HT2C receptors (5-HT2CR) expressed in the dorsal periaqueductal gray (dPAG). Here, we investigated the presence of 5-HT3A receptors (5-HT3AR) in the dPAG, and the interplay between 5-HT2CR and 5-HT3AR in the dPAG in mediating anxiety-like behavior in mice. We found that 5-HT3AR is expressed in the dPAG and the blockade of these receptors using intra-dPAG infusion of ondansetron (5-HT3AR antagonist; 3.0 nmol) induced an anxiogenic-like effect. The activation of 5-HT3ABR by the infusion of mCPBG [1-(m-Chlorophenyl)-biguanide; 5-HT3R agonist] did not alter anxiety-like behaviors. In addition, blockade of 5-HT3AR (1.0 nmol) prevented the anxiolytic-like effect induced by the infusion of the 5-HT2CR agonist mCPP (1-(3-chlorophenyl) piperazine; 0.03 nmol). None of the treatment effects on anxiety-like behaviors altered the locomotor activity levels. The present results suggest that the anxiolytic-like effect exerted by serotonin activity on 5-HT2CR in the dPAG is modulated by 5-HT3AR expressed in same region.
Collapse
Affiliation(s)
- Luana Tenorio Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada.
| | - Lucas Canto-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista, UNESP, Araraquara, SP 14801-902, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| | - Daniela Baptista-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista, UNESP, Araraquara, SP 14801-902, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| | - Rimenez Rodrigues de Souza
- The University of Texas at Dallas, School of Behavior and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States.
| | - Ricardo L Nunes-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil; Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista, UNESP, Araraquara, SP 14801-902, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| | - Azair Canto-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil; Graduate Program in Psychology UFSCar, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
19
|
Eom S, Lee BB, Lee S, Park Y, Yeom HD, Kim TH, Nam SH, Lee JH. Antioxidative and Analgesic Effects of Naringin through Selective Inhibition of Transient Receptor Potential Vanilloid Member 1. Antioxidants (Basel) 2021; 11:64. [PMID: 35052566 PMCID: PMC8773328 DOI: 10.3390/antiox11010064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 01/02/2023] Open
Abstract
Transient receptor potential vanilloid member 1 (TRPV1) is activated in response to capsaicin, protons, temperature, and free reactive oxygen species (ROS) released from inflammatory molecules after exposure to harmful stimuli. The expression level of TRPV1 is elevated in the dorsal root ganglion, and its activation through capsaicin and ROS mediates neuropathic pain in mice. Its expression is high in peripheral and central nervous systems. Although pain is a response evolved for survival, many studies have been conducted to develop analgesics, but no clear results have been reported. Here, we found that naringin selectively inhibited capsaicin-stimulated inward currents in Xenopus oocytes using a two-electrode voltage clamp. The results of this study showed that naringin has an IC50 value of 33.3 μM on TRPV1. The amino acid residues D471 and N628 of TRPV1 were involved in its binding to naringin. Our study bridged the gap between the pain suppression effect of TRPV1 and the preventive effect of naringin on neuropathic pain and oxidation. Naringin had the same characteristics as a model selective antagonist, which is claimed to be ideal for the development of analgesics targeting TRPV1. Thus, this study suggests the applicability of naringin as a novel analgesic candidate through antioxidative and analgesic effects of naringin.
Collapse
Affiliation(s)
- Sanung Eom
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.E.); (S.L.); (Y.P.); (H.D.Y.)
| | - Bo-Bae Lee
- Fruit Research Institute of Jeollanamdo Agricultural Research and Extension Services, Haenam, Naju 59021, Korea;
| | - Shinhui Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.E.); (S.L.); (Y.P.); (H.D.Y.)
| | - Youngseo Park
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.E.); (S.L.); (Y.P.); (H.D.Y.)
| | - Hye Duck Yeom
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.E.); (S.L.); (Y.P.); (H.D.Y.)
| | - Tae-Hwan Kim
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea;
| | - Seung-Hee Nam
- Institute of Agricultural Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Junho H. Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.E.); (S.L.); (Y.P.); (H.D.Y.)
| |
Collapse
|
20
|
Irving H, Turek I, Kettle C, Yaakob N. Tapping into 5-HT 3 Receptors to Modify Metabolic and Immune Responses. Int J Mol Sci 2021; 22:ijms222111910. [PMID: 34769340 PMCID: PMC8584345 DOI: 10.3390/ijms222111910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
5-hydroxytryptamine type 3 (5-HT3) receptors are ligand gated ion channels, which clearly distinguish their mode of action from the other G-protein coupled 5-HT or serotonin receptors. 5-HT3 receptors are well established targets for emesis and gastrointestinal mobility and are used as adjunct targets in treating schizophrenia. However, the distribution of these receptors is wider than the nervous system and there is potential that these additional sites can be targeted to modulate inflammatory and/or metabolic conditions. Recent progress in structural biology and pharmacology of 5-HT3 receptors have provided profound insights into mechanisms of their action. These advances, combined with insights into clinical relevance of mutations in genes encoding 5-HT3 subunits and increasing understanding of their implications in patient's predisposition to diseases and response to the treatment, open new avenues for personalized precision medicine. In this review, we recap on the current status of 5-HT3 receptor-based therapies using a biochemical and physiological perspective. We assess the potential for targeting 5-HT3 receptors in conditions involving metabolic or inflammatory disorders based on recent findings, underscoring the challenges and limitations of this approach.
Collapse
Affiliation(s)
- Helen Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia; (I.T.); (C.K.)
- Correspondence:
| | - Ilona Turek
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia; (I.T.); (C.K.)
| | - Christine Kettle
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3550, Australia; (I.T.); (C.K.)
| | - Nor Yaakob
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
21
|
Verma R, Hoda F, Arshad M, Iqubal A, Siddiqui AN, Khan MA, Haque SE, Akhtar M, Najmi AK. Cannabis, a Miracle Drug with Polyvalent Therapeutic Utility: Preclinical and Clinical-Based Evidence. Med Cannabis Cannabinoids 2021; 4:43-60. [PMID: 34676349 DOI: 10.1159/000515042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/04/2021] [Indexed: 12/25/2022] Open
Abstract
Cannabis sativa L. is an annual herbaceous dioecious plant which was first cultivated by agricultural human societies in Asia. Over the period of time, various parts of the plant like leaf, flower, and seed were used for recreational as well as therapeutic purposes. The main chemical components of Cannabis sativa are termed as cannabinoids, among them the key psychoactive constituent is Δ-9-tetrahydrocannabinol and cannabidiol (CBD) as active nonpsychotic constituent. Upon doing extensive literature review, it was found that cannabis has been widely studied for a number of disorders. Very recently, a pure CBD formulation, named Epidiolex, got a green flag from both United States Food and Drug Administration and Drug Enforcement Administration for 2 rare types of epilepsies. This laid a milestone in medical cannabis research. This review intends to give a basic and extensive assessment, from past till present, of the ethnological, plant, chemical, pharmacological, and legal aspects of C. sativa. Further, this review contemplates the evidence the studies obtained of cannabis components on Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, multiple sclerosis, emesis, epilepsy, chronic pain, and cancer as a cytotoxic agent as well as a palliative therapy. The assessment in this study was done by reviewing in extensive details from studies on historical importance, ethnopharmacological aspects, and legal grounds of C. sativa from extensive literature available on the scientific databases, with a vision for elevating further pharmaceutical research to investigate its total potential as a therapeutic agent.
Collapse
Affiliation(s)
- Rishabh Verma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Farazul Hoda
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mawrah Arshad
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Asif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ali Nasir Siddiqui
- Department of Pharmaceutical Medicine, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
22
|
Zajdel P, Grychowska K, Mogilski S, Kurczab R, Satała G, Bugno R, Kos T, Gołębiowska J, Malikowska-Racia N, Nikiforuk A, Chaumont-Dubel S, Bantreil X, Pawłowski M, Martinez J, Subra G, Lamaty F, Marin P, Bojarski AJ, Popik P. Structure-Based Design and Optimization of FPPQ, a Dual-Acting 5-HT 3 and 5-HT 6 Receptor Antagonist with Antipsychotic and Procognitive Properties. J Med Chem 2021; 64:13279-13298. [PMID: 34467765 PMCID: PMC8474115 DOI: 10.1021/acs.jmedchem.1c00224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In line with recent clinical trials demonstrating that ondansetron, a 5-HT3 receptor (5-HT3R) antagonist, ameliorates cognitive deficits of schizophrenia and the known procognitive effects of 5-HT6 receptor (5-HT6R) antagonists, we applied the hybridization strategy to design dual-acting 5-HT3/5-HT6R antagonists. We identified the first-in-class compound FPPQ, which behaves as a 5-HT3R antagonist and a neutral antagonist 5-HT6R of the Gs pathway. FPPQ shows selectivity over 87 targets and decent brain penetration. Likewise, FPPQ inhibits phencyclidine (PCP)-induced hyperactivity and displays procognitive properties in the novel object recognition task. In contrast to FPPQ, neither 5-HT6R inverse agonist SB399885 nor neutral 5-HT6R antagonist CPPQ reversed (PCP)-induced hyperactivity. Thus, combination of 5-HT3R antagonism and 5-HT6R antagonism, exemplified by FPPQ, contributes to alleviating the positive-like symptoms. Present findings reveal critical structural features useful in a rational polypharmacological approach to target 5-HT3/5-HT6 receptors and encourage further studies on dual-acting 5-HT3/5-HT6R antagonists for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Paweł Zajdel
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Katarzyna Grychowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Szczepan Mogilski
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Rafał Kurczab
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Ryszard Bugno
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Tomasz Kos
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Joanna Gołębiowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Natalia Malikowska-Racia
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Agnieszka Nikiforuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Xavier Bantreil
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Maciej Pawłowski
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Jean Martinez
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Gilles Subra
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Frédéric Lamaty
- IBMM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Piotr Popik
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| |
Collapse
|
23
|
Multiscale simulations of large complexes in conjunction with cryo-EM analysis. Curr Opin Struct Biol 2021; 72:27-32. [PMID: 34399155 DOI: 10.1016/j.sbi.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022]
Abstract
The cellular environment is highly crowded with most proteins and RNA/DNA forming homomeric and heteromeric complexes. Essential questions regarding how these complexes switch between functional, rest, and abnormal states with regulators or modifications remain challenging and complicated. Here, we review the recent progress integrating cryoelectron microscopy and multiscale molecular modeling to understand the dynamics and function-related mechanism in protein-RNA/DNA complexes, protein-protein complexes/assemblies, and membrane protein complexes. One future direction of multiscale simulations will be to interpret the large complex multibody regulation in assembly-induced function enhancement in conjunction with advanced atomic resolution structural-biology techniques and specialized computing architectures.
Collapse
|
24
|
Elephants in the Dark: Insights and Incongruities in Pentameric Ligand-gated Ion Channel Models. J Mol Biol 2021; 433:167128. [PMID: 34224751 DOI: 10.1016/j.jmb.2021.167128] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
The superfamily of pentameric ligand-gated ion channels (pLGICs) comprises key players in electrochemical signal transduction across evolution, including historic model systems for receptor allostery and targets for drug development. Accordingly, structural studies of these channels have steadily increased, and now approach 250 depositions in the protein data bank. This review contextualizes currently available structures in the pLGIC family, focusing on morphology, ligand binding, and gating in three model subfamilies: the prokaryotic channel GLIC, the cation-selective nicotinic acetylcholine receptor, and the anion-selective glycine receptor. Common themes include the challenging process of capturing and annotating channels in distinct functional states; partially conserved gating mechanisms, including remodeling at the extracellular/transmembrane-domain interface; and diversity beyond the protein level, arising from posttranslational modifications, ligands, lipids, and signaling partners. Interpreting pLGIC structures can be compared to describing an elephant in the dark, relying on touch alone to comprehend the many parts of a monumental beast: each structure represents a snapshot in time under specific experimental conditions, which must be integrated with further structure, function, and simulations data to build a comprehensive model, and understand how one channel may fundamentally differ from another.
Collapse
|
25
|
Amphipathic environments for determining the structure of membrane proteins by single-particle electron cryo-microscopy. Q Rev Biophys 2021; 54:e6. [PMID: 33785082 DOI: 10.1017/s0033583521000044] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, the structural biology of membrane proteins (MPs) has taken a new turn thanks to epoch-making technical progress in single-particle electron cryo-microscopy (cryo-EM) as well as to improvements in sample preparation. The present analysis provides an overview of the extent and modes of usage of the various types of surfactants for cryo-EM studies. Digitonin, dodecylmaltoside, protein-based nanodiscs, lauryl maltoside-neopentyl glycol, glyco-diosgenin, and amphipols (APols) are the most popular surfactants at the vitrification step. Surfactant exchange is frequently used between MP purification and grid preparation, requiring extensive optimization each time the study of a new MP is undertaken. The variety of both the surfactants and experimental approaches used over the past few years bears witness to the need to continue developing innovative surfactants and optimizing conditions for sample preparation. The possibilities offered by novel APols for EM applications are discussed.
Collapse
|
26
|
Structure and gating mechanism of the α7 nicotinic acetylcholine receptor. Cell 2021; 184:2121-2134.e13. [PMID: 33735609 DOI: 10.1016/j.cell.2021.02.049] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
The α7 nicotinic acetylcholine receptor plays critical roles in the central nervous system and in the cholinergic inflammatory pathway. This ligand-gated ion channel assembles as a homopentamer, is exceptionally permeable to Ca2+, and desensitizes faster than any other Cys-loop receptor. The α7 receptor has served as a prototype for the Cys-loop superfamily yet has proven refractory to structural analysis. We present cryo-EM structures of the human α7 nicotinic receptor in a lipidic environment in resting, activated, and desensitized states, illuminating the principal steps in the gating cycle. The structures also reveal elements that contribute to its function, including a C-terminal latch that is permissive for channel opening, and an anionic ring in the extracellular vestibule that contributes to its high conductance and calcium permeability. Comparisons among the α7 structures provide a foundation for mapping the gating cycle and reveal divergence in gating mechanisms in the Cys-loop receptor superfamily.
Collapse
|
27
|
Kumar A, Basak S, Chakrapani S. Recombinant expression and purification of pentameric ligand-gated ion channels for Cryo-EM structural studies. Methods Enzymol 2021; 652:81-103. [PMID: 34059291 DOI: 10.1016/bs.mie.2021.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Pentameric ligand-gated ion channels (pLGICs) are central players in synaptic neurotransmission and are targets to a range of drugs used to treat neurological disorders and pain. pLGICs are intrinsically dynamic membrane proteins that upon stimulation by neurotransmitters, undergo global conformational changes across multiple domains spanning a distance of over 165Å. The inter-domain flexibility, a feature crucial for their function as signal transducers in chemical synapses, has been problematic in the efforts toward determining high-resolution structures. Earlier structural studies tackled this issue with a variety of strategies that included partial truncation of flexible domains and the use of antibodies and small-molecule inhibitors to restrict domain movement. With the recent advances in cryo-electron microscopy and single-particle analysis, many of these limitations have been overcome. Here, we describe the methods used in the recombinant expression and purification of full-length constructs of two members of the pentameric ligand-gated ion channel family and the approaches used for capturing multiple conformations in cryo-EM imaging.
Collapse
Affiliation(s)
- Arvind Kumar
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
| | - Sandip Basak
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States; Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH, United States; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
28
|
Gibbs E, Chakrapani S. Structure, Function and Physiology of 5-Hydroxytryptamine Receptors Subtype 3. Subcell Biochem 2021; 96:373-408. [PMID: 33252737 DOI: 10.1007/978-3-030-58971-4_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
5-hydroxytryptamine receptor subtype 3 (5-HT3R) is a pentameric ligand-gated ion channel (pLGIC) involved in neuronal signaling. It is best known for its prominent role in gut-CNS signaling though there is growing interest in its other functions, particularly in modulating non-serotonergic synaptic activity. Recent advances in structural biology have provided mechanistic understanding of 5-HT3R function and present new opportunities for the field. This chapter gives a broad overview of 5-HT3R from a physiological and structural perspective and then discusses the specific details of ion permeation, ligand binding and allosteric coupling between these two events. Biochemical evidence is summarized and placed within a physiological context. This perspective underscores the progress that has been made as well as outstanding challenges and opportunities for future 5-HT3R research.
Collapse
Affiliation(s)
- Eric Gibbs
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA. .,Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
| |
Collapse
|
29
|
Abstract
Molecular dynamics (MD) simulations have become increasingly useful in the modern drug development process. In this review, we give a broad overview of the current application possibilities of MD in drug discovery and pharmaceutical development. Starting from the target validation step of the drug development process, we give several examples of how MD studies can give important insights into the dynamics and function of identified drug targets such as sirtuins, RAS proteins, or intrinsically disordered proteins. The role of MD in antibody design is also reviewed. In the lead discovery and lead optimization phases, MD facilitates the evaluation of the binding energetics and kinetics of the ligand-receptor interactions, therefore guiding the choice of the best candidate molecules for further development. The importance of considering the biological lipid bilayer environment in the MD simulations of membrane proteins is also discussed, using G-protein coupled receptors and ion channels as well as the drug-metabolizing cytochrome P450 enzymes as relevant examples. Lastly, we discuss the emerging role of MD simulations in facilitating the pharmaceutical formulation development of drugs and candidate drugs. Specifically, we look at how MD can be used in studying the crystalline and amorphous solids, the stability of amorphous drug or drug-polymer formulations, and drug solubility. Moreover, since nanoparticle drug formulations are of great interest in the field of drug delivery research, different applications of nano-particle simulations are also briefly summarized using multiple recent studies as examples. In the future, the role of MD simulations in facilitating the drug development process is likely to grow substantially with the increasing computer power and advancements in the development of force fields and enhanced MD methodologies.
Collapse
|
30
|
Van Drie JH, Tong L. Cryo-EM as a powerful tool for drug discovery. Bioorg Med Chem Lett 2020; 30:127524. [PMID: 32890683 PMCID: PMC7467112 DOI: 10.1016/j.bmcl.2020.127524] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
The recent revolution in cryo-EM has produced an explosion of structures at near-atomic or better resolution. This has allowed cryo-EM structures to provide visualization of bound small-molecule ligands in the macromolecules, and these new structures have provided unprecedented insights into the molecular mechanisms of complex biochemical processes. They have also had a profound impact on drug discovery, defining the binding modes and mechanisms of action of well-known drugs as well as driving the design and development of new compounds. This review will summarize and highlight some of these structures. Most excitingly, the latest cryo-EM technology has produced structures at 1.2 Å resolution, further solidifying cryo-EM as a powerful tool for drug discovery. Therefore, cryo-EM will play an ever-increasing role in drug discovery in the coming years.
Collapse
Affiliation(s)
- John H Van Drie
- Van Drie Research LLC, 109 Millpond, North Andover, MA 01845, USA.
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
31
|
Sarkar P, Mozumder S, Bej A, Mukherjee S, Sengupta J, Chattopadhyay A. Structure, dynamics and lipid interactions of serotonin receptors: excitements and challenges. Biophys Rev 2020; 13:10.1007/s12551-020-00772-8. [PMID: 33188638 PMCID: PMC7930197 DOI: 10.1007/s12551-020-00772-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is an intrinsically fluorescent neurotransmitter found in organisms spanning a wide evolutionary range. Serotonin exerts its diverse actions by binding to distinct cell membrane receptors which are classified into many groups. Serotonin receptors are involved in regulating a diverse array of physiological signaling pathways and belong to the family of either G protein-coupled receptors (GPCRs) or ligand-gated ion channels. Serotonergic signaling appears to play a key role in the generation and modulation of various cognitive and behavioral functions such as sleep, mood, pain, anxiety, depression, aggression, and learning. Serotonin receptors act as drug targets for a number of diseases, particularly neuropsychiatric disorders. The signaling mechanism and efficiency of serotonin receptors depend on their amazing ability to rapidly access multiple conformational states. This conformational plasticity, necessary for the wide variety of functions displayed by serotonin receptors, is regulated by binding to various ligands. In this review, we provide a succinct overview of recent developments in generating and analyzing high-resolution structures of serotonin receptors obtained using crystallography and cryo-electron microscopy. Capturing structures of distinct conformational states is crucial for understanding the mechanism of action of these receptors, which could provide important insight for rational drug design targeting serotonin receptors. We further provide emerging information and insight from studies on interactions of membrane lipids (such as cholesterol) with serotonin receptors. We envision that a judicious combination of analysis of high-resolution structures and receptor-lipid interaction would allow a comprehensive understanding of GPCR structure, function and dynamics, thereby leading to efficient drug discovery.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Sukanya Mozumder
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | - Aritra Bej
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Sujoy Mukherjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | | |
Collapse
|
32
|
Basak S, Kumar A, Ramsey S, Gibbs E, Kapoor A, Filizola M, Chakrapani S. High-resolution structures of multiple 5-HT 3AR-setron complexes reveal a novel mechanism of competitive inhibition. eLife 2020; 9:e57870. [PMID: 33063666 PMCID: PMC7655109 DOI: 10.7554/elife.57870] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Serotonin receptors (5-HT3AR) play a crucial role in regulating gut movement, and are the principal target of setrons, a class of high-affinity competitive antagonists, used in the management of nausea and vomiting associated with radiation and chemotherapies. Structural insights into setron-binding poses and their inhibitory mechanisms are just beginning to emerge. Here, we present high-resolution cryo-EM structures of full-length 5-HT3AR in complex with palonosetron, ondansetron, and alosetron. Molecular dynamic simulations of these structures embedded in a fully-hydrated lipid environment assessed the stability of ligand-binding poses and drug-target interactions over time. Together with simulation results of apo- and serotonin-bound 5-HT3AR, the study reveals a distinct interaction fingerprint between the various setrons and binding-pocket residues that may underlie their diverse affinities. In addition, varying degrees of conformational change in the setron-5-HT3AR structures, throughout the channel and particularly along the channel activation pathway, suggests a novel mechanism of competitive inhibition.
Collapse
Affiliation(s)
- Sandip Basak
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve UniversityClevelandUnited States
| | - Arvind Kumar
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve UniversityClevelandUnited States
| | - Steven Ramsey
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Eric Gibbs
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve UniversityClevelandUnited States
| | - Abhijeet Kapoor
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve UniversityClevelandUnited States
- Department of Neuroscience, School of Medicine, Case Western Reserve UniversityClevelandUnited States
| |
Collapse
|
33
|
Zarkadas E, Zhang H, Cai W, Effantin G, Perot J, Neyton J, Chipot C, Schoehn G, Dehez F, Nury H. The Binding of Palonosetron and Other Antiemetic Drugs to the Serotonin 5-HT3 Receptor. Structure 2020; 28:1131-1140.e4. [DOI: 10.1016/j.str.2020.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022]
|
34
|
Thompson MJ, Baenziger JE. Structural basis for the modulation of pentameric ligand-gated ion channel function by lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183304. [DOI: 10.1016/j.bbamem.2020.183304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 04/05/2020] [Indexed: 10/24/2022]
|
35
|
|
36
|
Cerdan AH, Sisquellas M, Pereira G, Barreto Gomes DE, Changeux JP, Cecchini M. The Glycine Receptor Allosteric Ligands Library (GRALL). Bioinformatics 2020; 36:3379-3384. [PMID: 32163115 PMCID: PMC7267813 DOI: 10.1093/bioinformatics/btaa170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023] Open
Abstract
MOTIVATION Glycine receptors (GlyRs) mediate fast inhibitory neurotransmission in the brain and have been recognized as key pharmacological targets for pain. A large number of chemically diverse compounds that are able to modulate GlyR function both positively and negatively have been reported, which provides useful information for the development of pharmacological strategies and models for the allosteric modulation of these ion channels. RESULTS Based on existing literature, we have collected 218 unique chemical entities with documented modulatory activities at homomeric GlyR-α1 and -α3 and built a database named GRALL. This collection includes agonists, antagonists, positive and negative allosteric modulators and a number of experimentally inactive compounds. Most importantly, for a large fraction of them a structural annotation based on their putative binding site on the receptor is provided. This type of annotation, which is currently missing in other drug banks, along with the availability of cooperativity factors from radioligand displacement experiments are expected to improve the predictivity of in silico methodologies for allosteric drug discovery and boost the development of conformation-based pharmacological approaches. AVAILABILITY AND IMPLEMENTATION The GRALL library is distributed as a web-accessible database at the following link: https://ifm.chimie.unistra.fr/grall. For each molecular entry, it provides information on the chemical structure, the ligand-binding site, the direction of modulation, the potency, the 3D molecular structure and quantum-mechanical charges as determined by our in-house pipeline. CONTACT mcecchini@unistra.fr. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Adrien H Cerdan
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
- Channel-Receptors Unit, Institut Pasteur, 75015 Paris, France
| | - Marion Sisquellas
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| | - Gilberto Pereira
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| | - Diego E Barreto Gomes
- Diretoria de Metrologia Aplicada às Ciências da Vida-Instituto Nacional de Metrologia, Qualidade e Tecnologia, Duque de Caxias 25.250-020, Brazil
| | - Jean-Pierre Changeux
- CNRS, URA 2182, F-75015, Collège de France, F-75005 Paris, France
- Kavli Institute for Brain & Mind, University of California San Diego, La Jolla, CA 92093, USA
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| |
Collapse
|
37
|
Rahman MM, Teng J, Worrell BT, Noviello CM, Lee M, Karlin A, Stowell MHB, Hibbs RE. Structure of the Native Muscle-type Nicotinic Receptor and Inhibition by Snake Venom Toxins. Neuron 2020; 106:952-962.e5. [PMID: 32275860 DOI: 10.1016/j.neuron.2020.03.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/13/2020] [Accepted: 03/15/2020] [Indexed: 12/28/2022]
Abstract
The nicotinic acetylcholine receptor, a pentameric ligand-gated ion channel, converts the free energy of binding of the neurotransmitter acetylcholine into opening of its central pore. Here we present the first high-resolution structure of the receptor type found in muscle-endplate membrane and in the muscle-derived electric tissues of fish. The native receptor was purified from Torpedo electric tissue and functionally reconstituted in lipids optimal for cryo-electron microscopy. The receptor was stabilized in a closed state by the binding of α-bungarotoxin. The structure reveals the binding of a toxin molecule at each of two subunit interfaces in a manner that would block the binding of acetylcholine. It also reveals a closed gate in the ion-conducting pore, formed by hydrophobic amino acid side chains, located ∼60 Å from the toxin binding sites. The structure provides a framework for understanding gating in ligand-gated channels and how mutations in the acetylcholine receptor cause congenital myasthenic syndromes.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinfeng Teng
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brady T Worrell
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Colleen M Noviello
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Myeongseon Lee
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Arthur Karlin
- Center for Molecular Recognition & Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
38
|
Gulsevin A, Papke RL, Horenstein N. In Silico Modeling of the α7 Nicotinic Acetylcholine Receptor: New Pharmacological Challenges Associated with Multiple Modes of Signaling. Mini Rev Med Chem 2020; 20:841-864. [PMID: 32000651 PMCID: PMC8719523 DOI: 10.2174/1389557520666200130105256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
The α7 nicotinic acetylcholine receptor is a homopentameric ion-channel of the Cys-loop superfamily characterized by its low probability of opening, high calcium permeability, and rapid desensitization. The α7 receptor has been targeted for the treatment of the cognitive symptoms of schizophrenia, depression, and Alzheimer's disease, but it is also involved in inflammatory modulation as a part of the cholinergic anti-inflammatory pathway. Despite its functional importance, in silico studies of the α7 receptor cannot produce a general model explaining the structural features of receptor activation, nor predict the mode of action for various ligand classes. Two particular problems in modeling the α7 nAChR are the absence of a high-resolution structure and the presence of five potentially nonequivalent orthosteric ligand binding sites. There is wide variability regarding the templates used for homology modeling, types of ligands investigated, simulation methods, and simulation times. However, a systematic survey focusing on the methodological similarities and differences in modeling α7 has not been done. In this work, we make a critical analysis of the modeling literature of α7 nAChR by comparing the findings of computational studies with each other and with experimental studies under the main topics of structural studies, ligand binding studies, and comparisons with other nAChR. In light of our findings, we also summarize current problems in the field and make suggestions for future studies concerning modeling of the α7 receptor.
Collapse
Affiliation(s)
- Alican Gulsevin
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, United States
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL 32610, United States
| | - Nicole Horenstein
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, United States
| |
Collapse
|
39
|
Munro L, Ladefoged LK, Padmanathan V, Andersen S, Schiøtt B, Kristensen AS. Conformational Changes in the 5-HT 3A Receptor Extracellular Domain Measured by Voltage-Clamp Fluorometry. Mol Pharmacol 2019; 96:720-734. [PMID: 31582575 DOI: 10.1124/mol.119.116657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/28/2019] [Indexed: 01/13/2023] Open
Abstract
The 5-hydroxytryptamine (5-HT) type 3 receptor is a member of the cysteine (Cys)-loop receptor super family of ligand-gated ion channels in the nervous system and is a clinical target in a range of diseases. The 5-HT3 receptor mediates fast serotonergic neurotransmission by undergoing a series of conformational changes initiated by ligand binding that lead to the rapid opening of an intrinsic cation-selective channel. However, despite the availability of high-resolution structures of a mouse 5-HT3 receptor, many important aspects of the mechanistic basis of 5-HT3 receptor function and modulation by drugs remain poorly understood. In particular, there is little direct evidence for the specific conformational changes predicted to occur during ligand-gated channel activation and desensitization. In the present study, we used voltage-clamp fluorometry (VCF) to measure conformational changes in regions surrounding the orthosteric binding site of the human 5-HT3A (h5-HT3A) receptor during binding of 5-HT and different classes of 5-HT3 receptor ligands. VCF utilizes parallel measurements of receptor currents with photon emission from fluorescent reporter groups covalently attached to specific positions in the receptor structure. Reporter groups that are highly sensitive to the local molecular environment can, in real time, report conformational changes as changes in fluorescence that can be correlated with changes in receptor currents reporting the functional states of the channel. Within the loop C, D, and E regions that surround the orthosteric binding site in the h5-HT3A receptor, we identify positions that are amenable to tagging with an environmentally sensitive reporter group that reports robust fluorescence changes upon 5-HT binding and receptor activation. We use these reporter positions to characterize the effect of ligand binding on the local structure of the orthosteric binding site by agonists, competitive antagonists, and allosterically acting channel activators. We observed that loop C appears to show distinct fluorescence changes for ligands of the same class, while loop D reports similar fluorescence changes for all ligands binding at the orthosteric site. In contrast, the loop E reporter position shows distinct changes for agonists, antagonists, and allosteric compounds, suggesting the conformational changes in this region are specific to ligand function. Interpretation of these results within the framework of current models of 5-HT3 and Cys-loop mechanisms are used to expand the understanding of how ligand binding in Cys-loop receptors relates to channel gating. SIGNIFICANCE STATEMENT: The 5-HT3 receptor is an important ligand-gated ion channel and drug target in the central and peripheral nervous system. Determining how ligand binding induced conformational changes in the receptor is central for understanding the structural mechanisms underlying 5-HT3 receptor function. Here, we employ voltage-gated fluorometry to characterize conformational changes in the extracellular domain of the human 5-HT3 receptor to identify intrareceptor motions during binding of a range of 5-HT3 receptor agonists and antagonists.
Collapse
Affiliation(s)
- Lachlan Munro
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., V.P., S.A., A.S.K.); and Department of Chemistry (L.K.L., B.S.) and Interdisciplinary Nanoscience Center (B.S.), Aarhus University, Aarhus, Denmark
| | - Lucy Kate Ladefoged
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., V.P., S.A., A.S.K.); and Department of Chemistry (L.K.L., B.S.) and Interdisciplinary Nanoscience Center (B.S.), Aarhus University, Aarhus, Denmark
| | - Vithushan Padmanathan
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., V.P., S.A., A.S.K.); and Department of Chemistry (L.K.L., B.S.) and Interdisciplinary Nanoscience Center (B.S.), Aarhus University, Aarhus, Denmark
| | - Signe Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., V.P., S.A., A.S.K.); and Department of Chemistry (L.K.L., B.S.) and Interdisciplinary Nanoscience Center (B.S.), Aarhus University, Aarhus, Denmark
| | - Birgit Schiøtt
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., V.P., S.A., A.S.K.); and Department of Chemistry (L.K.L., B.S.) and Interdisciplinary Nanoscience Center (B.S.), Aarhus University, Aarhus, Denmark
| | - Anders S Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (L.M., V.P., S.A., A.S.K.); and Department of Chemistry (L.K.L., B.S.) and Interdisciplinary Nanoscience Center (B.S.), Aarhus University, Aarhus, Denmark
| |
Collapse
|