1
|
Yamazaki H, Sugawara R, Takayama Y. Development of label-free light-controlled gene expression technologies using mid-IR and terahertz light. Front Bioeng Biotechnol 2024; 12:1324757. [PMID: 39465004 PMCID: PMC11502365 DOI: 10.3389/fbioe.2024.1324757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Gene expression is a fundamental process that regulates diverse biological activities across all life stages. Given its vital role, there is an urgent need to develop innovative methodologies to effectively control gene expression. Light-controlled gene expression is considered a favorable approach because of its ability to provide precise spatiotemporal control. However, current light-controlled technologies rely on photosensitive molecular tags, making their practical use challenging. In this study, we review current technologies for light-controlled gene expression and propose the development of label-free light-controlled technologies using mid-infrared (mid-IR) and terahertz light.
Collapse
Affiliation(s)
- Hirohito Yamazaki
- Top Runner Incubation Center for Academia-Industry Fusion, Nagaoka University of Technology, Nagaoka, Japan
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Ryusei Sugawara
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yurito Takayama
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
2
|
Liu Y, Meng JQ, Sun Z, Shu CC. Unveiling Ultrafast-Weak-Field Coherent Control of Indirect Dissociation Reactions. J Phys Chem Lett 2024; 15:8393-8401. [PMID: 39115552 DOI: 10.1021/acs.jpclett.4c01901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Coherent control of molecular photodissociation through one-photon transitions has become a topic of interest in physical chemistry. Previous studies have shown that modulating the spectral phase of a single ultrafast laser pulse while keeping its spectral amplitude constant does not affect the dissociation yield of reactions originating from a pure eigenstate of the ground electronic state. Here, we explore the indirect photodissociation reaction of NaI molecules using theoretical and numerical methods. Our findings show that, in contrast to the outcomes achieved with negatively chirped pulses, time-dependent population of the eigenstates of the excited adiabatic potential induced by positively chirped laser pulses, acting as intermediates in the reaction, cannot be periodically restored to that caused by the unchirped pulse. This gives rise to an intriguing phenomenon: the sign of the pulse's chirp rate influences the distribution of dissociation fragments in coordinate and momentum space over extended periods. This work highlights the potential of using spectral-phase modulated pulses to manipulate indirect photodissociation reactions, offering a way to modify the transient photofragment distributions by controlling reaction intermediates.
Collapse
Affiliation(s)
- Yong Liu
- School of Physics, Dalian University of Technology, Dalian 116024, China
- Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Jian-Qiao Meng
- Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chuan-Cun Shu
- Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| |
Collapse
|
3
|
Zheng X, Pei Q, Tan J, Bai S, Luo Y, Ye S. Local electric field in nanocavities dictates the vibrational relaxation dynamics of interfacial molecules. Chem Sci 2024; 15:11507-11514. [PMID: 39055024 PMCID: PMC11268483 DOI: 10.1039/d4sc02463j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024] Open
Abstract
Plasmonic nanocavities enable the generation of strong light-matter coupling and exhibit great potential in plasmon-mediated chemical reactions (PMCRs). Although an electric field generated by nanocavities (E n) has recently been reported, its effect on the vibrational energy relaxation (VER) of the molecules in the nanocavities has not been explored. In this study, we reveal the impact of an electric field sensed by molecules (para-substituted thiophenol derivatives) in a nanocavity (E f) on VER processes by employing advanced time-resolved femtosecond sum frequency generation vibrational spectroscopy (SFG-VS) supplemented by electrochemical measurements. The magnitude of E n is almost identical (1.0 ± 0.2 V nm-1) beyond the experimental deviation while E f varies from 0.3 V nm-1 to 1.7 V nm-1 depending on the substituent. An exponential correlation between E f and the complete recovery time of the ground vibrational C[double bond, length as m-dash]C state (T 2) of the phenyl ring is observed. Substances with a smaller T 2 are strongly correlated with the reported macroscopic chemical reactivity. This finding may aid in enriching the current understanding of PMCRs and highlights the possibility of regulating vibrational energy flow into desired reaction coordinates by using a local electric field.
Collapse
Affiliation(s)
- Xiaoxuan Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China Hefei Anhui 230088 China
| | - Shiyu Bai
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
- Hefei National Laboratory, University of Science and Technology of China Hefei Anhui 230088 China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
- Hefei National Laboratory, University of Science and Technology of China Hefei Anhui 230088 China
| |
Collapse
|
4
|
Pei Q, Zheng X, Tan J, Luo Y, Ye S. Probing the Local Near-Field Intensity of Plasmonic Nanoparticles in the Mid-infrared Spectral Region. J Phys Chem Lett 2024; 15:5390-5396. [PMID: 38739421 DOI: 10.1021/acs.jpclett.4c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The enhanced local field of gold nanoparticles (AuNPs) in mid-infrared spectral regions is essential for improving the detection sensitivity of vibrational spectroscopy and mediating photochemical reactions. However, it is still challenging to measure its intensity at subnanometer scales. Here, using the NO2 symmetric stretching mode (νNO2) of self-assembled 4-nitrothiophenol (4-NTP) monolayers on AuNPs as a model, we demonstrated that the percentage of excited νNO2 mode, determined by femtosecond time-resolved sum-frequency generation vibrational spectroscopy, allows us to directly detect the local field intensity of the AuNP surface in subnanometer ranges. The local-field intensity is tuned by AuNP diameters. An approximate 17-fold enhancement was observed for the local field on 80 nm AuNPs compared to the Au film. Additionally, the local field can regulate the anharmonicity of the νNO2 mode by synergistic effect with molecular orientation. This work offers a promising approach to probe the local field intensity distribution around plasmonic NP surfaces at subnanometer scales.
Collapse
Affiliation(s)
- Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoxuan Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
5
|
Morichika I, Tsusaka H, Ashihara S. Generation of High-Lying Vibrational States in Carbon Dioxide through Coherent Ladder Climbing. J Phys Chem Lett 2024; 15:4662-4668. [PMID: 38647557 PMCID: PMC11073050 DOI: 10.1021/acs.jpclett.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Mid-infrared laser excitation of molecules into high-lying vibrational states offers a novel route to realize controlled ground-state chemistry. Here we successfully demonstrate vibrational ladder climbing in the antisymmetric stretch of CO2 in the condensed phase by using intense down-chirped mid-infrared pulses. Spectrally resolved pump-probe measurements directly observe excited-state absorptions attributed to vibrational populations up to the v = 9 state, whose corresponding energy of 2.5 eV is 46% of the dissociation energy. By the use of global fitting analysis, important spectroscopic parameters in the high-lying vibrational states, such as transition frequencies and relaxation times, are quantitatively characterized. Remarkably, our analysis shows that 40% of the molecules are excited above the typical activation barriers in the metal-catalyzed CO2 conversions. These results not only demonstrate the promising ability of infrared excitation to produce elevated vibrational states but also represent a significant step toward accelerating CO2 conversions and other chemical processes via mode-specific vibrational excitation.
Collapse
Affiliation(s)
- Ikki Morichika
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hiroki Tsusaka
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Satoshi Ashihara
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
6
|
Jing WQ, Sun ZP, Zhao SF, Shu CC. Unveiling Coherent Control of Halomethane Dissociation Induced by a Single Strong Ultraviolet Pulse. J Phys Chem Lett 2023; 14:11305-11312. [PMID: 38064196 DOI: 10.1021/acs.jpclett.3c03143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
We present a theoretical investigation into the coherent control of photodissociation reactions in halomethanes, specifically focusing on CH2BrCl by manipulating the spectral phase of a single femtosecond laser pulse. We examine the photodissociation of CH2BrCl under an ultrashort pulse with a quadratic spectral phase and reveal the sensitivity of both the total dissociation probability and the resulting radical products (Br+CH2Cl and Cl+CH2Br) to chirp rates. To gain insights into the underlying mechanism, we calculate the population distributions of excited vibrational states in the ground electronic state, demonstrating the occurrence of resonance Raman scattering (RRS) in the strong-field limit regime. By utilizing chirped pulses, we show that this RRS phenomenon can be suppressed and even eliminated through quantum destructive interference. This highlights the high sensitivity of photodissociation into Cl+CH2Br to the spectral phase, showcasing a phenomenon that goes beyond the traditional one-photon photodissociation of isolated molecules in the weak-field limit regime. These findings emphasize the importance of coherent control in the exploration and utilization of photodissociation in polyatomic molecules, paving the way for new advancements in chemical physics and femtochemistry.
Collapse
Affiliation(s)
- Wen-Quan Jing
- College of Physics and Electronic Engineering, Northwest Normal University, Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, Lanzhou 730070, China
- Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Zhao-Peng Sun
- Institute of Theoretical Physics, School of Physics and Optoelectric Engineering, Ludong University, Yantai 264025, China
| | - Song-Feng Zhao
- College of Physics and Electronic Engineering, Northwest Normal University, Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, Lanzhou 730070, China
| | - Chuan-Cun Shu
- Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| |
Collapse
|
7
|
Moiseyev N, Landau A. QED Theory for Controlling the Molecule-Cavity Interaction: From Solvable Analytical Models to Realistic Ones. J Chem Theory Comput 2023; 19:5465-5480. [PMID: 37494598 DOI: 10.1021/acs.jctc.3c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The study of the interactions of chemical systems in a cavity and the ability to control the reactions inside the cavities become an evolving and hot field of research. Despite that, there is still a significant gap between experiment and theory. Herein, we aim to bridge this gap by starting with the analysis of solvable analytical models for reactions inside a cavity, then continuing to realistic models for many molecules inside a single mode and in a multimode cavity. In addition, we investigate different ways to control the strength of the molecule-cavity coupling term, which in turn allows controlling chemical reactions. Our analysis can benefit the development of ab initio computational methods to simulate molecular systems in polariton cavities; in addition, we show how to parameterize the model Hamiltonians in order to simulate a specific molecular system. Finally, we demonstrate the possibility of achieving isomerization, in case it is prohibited out of the cavity, by placing the reaction inside a cavity.
Collapse
|
8
|
Jakob LA, Deacon WM, Zhang Y, de Nijs B, Pavlenko E, Hu S, Carnegie C, Neuman T, Esteban R, Aizpurua J, Baumberg JJ. Giant optomechanical spring effect in plasmonic nano- and picocavities probed by surface-enhanced Raman scattering. Nat Commun 2023; 14:3291. [PMID: 37280203 DOI: 10.1038/s41467-023-38124-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 04/17/2023] [Indexed: 06/08/2023] Open
Abstract
Molecular vibrations couple to visible light only weakly, have small mutual interactions, and hence are often ignored for non-linear optics. Here we show the extreme confinement provided by plasmonic nano- and pico-cavities can sufficiently enhance optomechanical coupling so that intense laser illumination drastically softens the molecular bonds. This optomechanical pumping regime produces strong distortions of the Raman vibrational spectrum related to giant vibrational frequency shifts from an optical spring effect which is hundred-fold larger than in traditional cavities. The theoretical simulations accounting for the multimodal nanocavity response and near-field-induced collective phonon interactions are consistent with the experimentally-observed non-linear behavior exhibited in the Raman spectra of nanoparticle-on-mirror constructs illuminated by ultrafast laser pulses. Further, we show indications that plasmonic picocavities allow us to access the optical spring effect in single molecules with continuous illumination. Driving the collective phonon in the nanocavity paves the way to control reversible bond softening, as well as irreversible chemistry.
Collapse
Affiliation(s)
- Lukas A Jakob
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - William M Deacon
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Yuan Zhang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China.
| | - Bart de Nijs
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Elena Pavlenko
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Shu Hu
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Cloudy Carnegie
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Tomas Neuman
- Center for Material Physics (CSIC-UPV/EHU and DIPC), Paseo Manuel de Lardizabal 5, Donostia-San Sebastian Gipuzkoa, 20018, Spain
| | - Ruben Esteban
- Center for Material Physics (CSIC-UPV/EHU and DIPC), Paseo Manuel de Lardizabal 5, Donostia-San Sebastian Gipuzkoa, 20018, Spain
| | - Javier Aizpurua
- Center for Material Physics (CSIC-UPV/EHU and DIPC), Paseo Manuel de Lardizabal 5, Donostia-San Sebastian Gipuzkoa, 20018, Spain.
| | - Jeremy J Baumberg
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.
| |
Collapse
|
9
|
Okazaki D, Song W, Morichika I, Ashihara S. Mode-locked laser oscillation with spectral peaks at molecular rovibrational transition lines. OPTICS LETTERS 2022; 47:6077-6080. [PMID: 37219176 DOI: 10.1364/ol.477555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 05/24/2023]
Abstract
We demonstrate spectral peak formation in a mode-locked solid-state laser that contains a gas cell inside the cavity. Symmetric spectral peaks appear in the course of sequential spectral shaping through resonant interaction with molecular rovibrational transitions and nonlinear phase modulation in the gain medium. The spectral peak formation is explained as that narrowband molecular emissions triggered by an impulsive rovibrational excitation are superposed on the broadband spectrum of the soliton pulse by constructive interference. The demonstrated laser, which exhibits comb-like spectral peaks at molecular resonances, potentially provides novel tools for ultrasensitive molecular detection, vibration-mediated chemical reaction control, and infrared frequency standards.
Collapse
|
10
|
Takase K, Kawasaki A, Jeong BK, Kashiwazaki T, Kazama T, Enbutsu K, Watanabe K, Umeki T, Miki S, Terai H, Yabuno M, China F, Asavanant W, Endo M, Yoshikawa JI, Furusawa A. Quantum arbitrary waveform generator. SCIENCE ADVANCES 2022; 8:eadd4019. [PMID: 36306354 PMCID: PMC9616494 DOI: 10.1126/sciadv.add4019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/08/2022] [Indexed: 05/25/2023]
Abstract
Controlling the temporal waveform of light is the key to a versatile light source in classical and quantum electronics. Although pulse shaping of classical light is mature and has been used in various fields, more advanced applications would be realized by a light source that generates arbitrary quantum light with arbitrary temporal waveforms. We call such a device a quantum arbitrary waveform generator (Q-AWG). The Q-AWG must be able to handle various quantum states of light, which are fragile. Thus, the Q-AWG requires a radically different methodology from classical pulse shaping. Here, we invent an architecture of Q-AWGs that can operate semi-deterministically at a repetition rate over gigahertz in principle. We demonstrate its core technology via generating highly nonclassical states with temporal waveforms that have never been realized before. This result would lead to powerful quantum technologies based on Q-AWGs such as practical optical quantum computing.
Collapse
Affiliation(s)
- Kan Takase
- Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Optical Quantum Computing Research Team, RIKEN Center for Quantum Computing, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akito Kawasaki
- Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Byung Kyu Jeong
- Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takahiro Kashiwazaki
- NTT Device Technology Labs, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Takushi Kazama
- NTT Device Technology Labs, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Koji Enbutsu
- NTT Device Technology Labs, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Kei Watanabe
- NTT Device Technology Labs, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Takeshi Umeki
- NTT Device Technology Labs, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Shigehito Miki
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe, Hyogo 651-2492, Japan
- Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-0013, Japan
| | - Hirotaka Terai
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Masahiro Yabuno
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Fumihiro China
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Warit Asavanant
- Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Optical Quantum Computing Research Team, RIKEN Center for Quantum Computing, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mamoru Endo
- Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Optical Quantum Computing Research Team, RIKEN Center for Quantum Computing, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jun-ichi Yoshikawa
- Optical Quantum Computing Research Team, RIKEN Center for Quantum Computing, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akira Furusawa
- Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Optical Quantum Computing Research Team, RIKEN Center for Quantum Computing, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
11
|
Nishijima Y, Juodkazis S. Control of vibration-metasurface coupling at the mid-infrared spectral window for inorganic thermal emitters. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yoshiaki Nishijima
- Department of Electrical and Computer Engineering, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-Ku, Yokohama, 240-8501, Japan
- Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Saulius Juodkazis
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Tokyo Tech World Research Hub (WRH), School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-Ku, Tokyo 152-8550, Japan
| |
Collapse
|
12
|
Nishijima Y, Juodkazis S. The tunable coupling between metasurface and molecular vibration towards the platform of spectral analysis. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yoshiaki Nishijima
- Department of Electrical and Computer Engineering, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-Ku, Yokohama, 240-8501, Japan
- Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Saulius Juodkazis
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Tokyo Tech World Research Hub (WRH), School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-Ku, Tokyo 152-8550, Japan
| |
Collapse
|
13
|
Cohn B, Sufrin S, Chuntonov L. Ultrafast vibrational excitation transfer on resonant antenna lattices revealed by two-dimensional infrared spectroscopy. J Chem Phys 2022; 156:121101. [DOI: 10.1063/5.0082161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
High-quality lattice resonances in arrays of infrared antennas operating in an open-cavity regime form polariton states by means of strong coupling to molecular vibrations. We studied polaritons formed by carbonyl stretching modes of (poly)methyl methacrylate on resonant antenna arrays using femtosecond 2DIR spectroscopy. At a normal incidence of excitation light, doubly degenerate antenna-lattice resonances (ALRs) form two polariton states: a lower polariton and an upper polariton. At an off-normal incidence geometry of 2DIR experiments, the ALR degeneracy is lifted and, consequently, the polariton energies are split. We spectrally resolved and tracked the time-dependent evolution of a cross-peak signal associated with the excitation of reservoir states and the unidirectional transfer of the excess energy to lower polaritons. Bi-exponential decay of the cross-peak suggests that a reversible energy exchange between the bright and dark lower polaritons occurs with a characteristic transfer time of ∼200 fs. The cross-peak signal further decays within ∼800 fs, which is consistent with the relaxation time of the carbonyl stretching vibration and with the dephasing time of the ALR. An increase in the excitation pulse intensity leads to saturation of the cross-peak amplitude and a modification of the relaxation dynamics. Using quantum-mechanical modeling, we found that the kinetic scheme that captures all the experimental observations implies that only the bright lower polariton accepts the energy from the reservoir, suggesting that transfer occurs via a mechanism involving dipole–dipole interaction. An efficient reservoir-to-polariton transfer can play an important role in developing novel room-temperature quantum optical devices in the mid-infrared wavelength region.
Collapse
Affiliation(s)
- Bar Cohn
- Schulich Faculty of Chemistry, Technion – Israel Institute of Technology, Haifa 3200003, Israel
- Solid State Institute, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Shmuel Sufrin
- Solid State Institute, Technion – Israel Institute of Technology, Haifa 3200003, Israel
- Faculty of Mechanical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry, Technion – Israel Institute of Technology, Haifa 3200003, Israel
- Solid State Institute, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
14
|
Kugel T, Okazaki D, Arai K, Ashihara S. Direct electric-field reconstruction of few-cycle mid-infrared pulses in the nanojoule energy range. APPLIED OPTICS 2022; 61:1076-1081. [PMID: 35201081 DOI: 10.1364/ao.446473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Amid the increasing potential of ultrafast mid-infrared (mid-IR) laser sources based on transition metal doped chalcogenides such as Cr:ZnS, Cr:ZnSe, and Fe:ZnSe lasers, there is a need for direct and sensitive characterization of mid-IR mode-locked laser pulses that work in the nanojoule energy range. We developed a two-dimensional spectral shearing interferometry (2DSI) setup to successfully demonstrate the direct electric-field reconstruction of Cr:ZnS mode-locked laser pulses with a central wavelength of 2.3 µm, temporal duration of 30.3 fs, and energies of 3 nJ. The reconstructed electric field is in reasonable agreement with an independently measured intensity autocorrelation trace, and the quantitative reliability of the 2DSI measurement is verified from a material dispersion evaluation. The presented implementation of 2DSI, including a choice of nonlinear crystal as well as the use of high-throughput dispersive elements and a high signal-to-noise ratio near-IR spectrometer, would benefit future development of ultrafast mid-IR lasers and their applications.
Collapse
|
15
|
Honda Y, Adachi M, Eguchi S, Fukuda M, Higashi N, Kato R, Miura T, Miyajima T, Nagahashi S, Nakamura N, Nigorikawa K, Nogami T, Obina T, Sagehashi H, Sakai H, Shimada M, Shioya T, Takai R, Tanaka O, Tanimoto Y, Tsuchiya K, Uchiyama T, Ueda A, Yamamoto M, Zhou D, Kakehata M, Sato T, Yashiro H, Hajima R. Construction and commissioning of mid-infrared self-amplified spontaneous emission free-electron laser at compact energy recovery linac. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:113101. [PMID: 34852565 DOI: 10.1063/5.0072511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
The mid-infrared range is an important spectrum range where materials exhibit a characteristic response corresponding to their molecular structure. A free-electron laser (FEL) is a promising candidate for a high-power light source with wavelength tunability to investigate the nonlinear response of materials. Although the self-amplification spontaneous emission (SASE) scheme is not usually adopted in the mid-infrared wavelength range, it may have advantages such as layout simplicity, the possibility of producing a single pulse, and scalability to a short-wavelength facility. To demonstrate the operation of a mid-infrared SASE FEL system in an energy recovery linac (ERL) layout, we constructed an SASE FEL setup in cERL, a test facility of the superconducting linac with the ERL configuration. Despite the adverse circumstance of space charge effects due to the given boundary condition of the facility, we successfully established the beam condition at the undulators and observed FEL emission at a wavelength of 20 μm. The results show that the layout of cERL has the potential for serving as a mid-infrared light source.
Collapse
Affiliation(s)
- Yosuke Honda
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Masahiro Adachi
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Shu Eguchi
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Masafumi Fukuda
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Nao Higashi
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Ryukou Kato
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Takako Miura
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Tsukasa Miyajima
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Shinya Nagahashi
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Norio Nakamura
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Kazuyuki Nigorikawa
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Takashi Nogami
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Takashi Obina
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Hidenori Sagehashi
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Hiroshi Sakai
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Miho Shimada
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Tatsuro Shioya
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Ryota Takai
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Olga Tanaka
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Yasunori Tanimoto
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Kimichika Tsuchiya
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Takashi Uchiyama
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Akira Ueda
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Masahiro Yamamoto
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Demin Zhou
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Masayuki Kakehata
- National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba 305-8568, Japan
| | - Tadatake Sato
- National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba 305-8568, Japan
| | - Hidehiko Yashiro
- National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba 305-8568, Japan
| | - Ryoichi Hajima
- National Institutes for Quantum and Radiological Science and Technology (QST), Tokai, Ibaraki 3191106, Japan
| |
Collapse
|
16
|
Crippa G, Faccialà D, Prasannan Geetha P, Pusala A, Musheghyan M, Assion A, Bonanomi M, Cinquanta E, Ciriolo AG, Devetta M, Fazzi D, Gatto L, De Silvestri S, Vozzi C, Stagira S. Time-domain spectroscopy of methane excited by resonant high-energy mid-IR pulses. JPHYS PHOTONICS 2021. [DOI: 10.1088/2515-7647/ac0d0e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
We describe the implementation of nonlinear time-domain spectroscopy of rotovibrational IR-active modes in methane through broadband Four-Wave Mixing driven by resonant high-energy mid infrared laser pulses. At high driving pulse intensities we observe an efficient vibrational ladder climbing triggered in the molecules. This study opens the possibility to impulsively and selectively excite molecules of biological interest to high-lying vibrational states and to characterize their dynamics.
Collapse
|
17
|
Lin D, Hsieh CL, Hsu KC, Liao PH, Qiu S, Gong T, Yong KT, Feng S, Kong KV. Geometrically encoded SERS nanobarcodes for the logical detection of nasopharyngeal carcinoma-related progression biomarkers. Nat Commun 2021; 12:3430. [PMID: 34078895 PMCID: PMC8173014 DOI: 10.1038/s41467-021-23789-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/12/2021] [Indexed: 02/08/2023] Open
Abstract
The limited availability of nasopharyngeal carcinoma-related progression biomarker array kits that offer physicians comprehensive information is disadvantageous for monitoring cancer progression. To develop a biomarker array kit, systematic identification and differentiation of a large number of distinct molecular surface-enhanced Raman scattering (SERS) reporters with high spectral temporal resolution is a major challenge. To address this unmet need, we use the chemistry of metal carbonyls to construct a series of unique SERS reporters with the potential to provide logical and highly multiplex information during testing. In this study, we report that geometric control over metal carbonyls on nanotags can produce 14 distinct barcodes that can be decoded unambiguously using commercial Raman spectroscopy. These metal carbonyl nanobarcodes are tested on human blood samples and show strong sensitivity (0.07 ng/mL limit of detection, average CV of 6.1% and >92% degree of recovery) and multiplexing capabilities for MMPs.
Collapse
Affiliation(s)
- Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Chang-Lin Hsieh
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Keng-Chia Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Pei-Hsuan Liao
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Sufang Qiu
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Tianxun Gong
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Kien Voon Kong
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
18
|
Dayal G, Morichika I, Ashihara S. Vibrational Strong Coupling in Subwavelength Nanogap Patch Antenna at the Single Resonator Level. J Phys Chem Lett 2021; 12:3171-3175. [PMID: 33755489 DOI: 10.1021/acs.jpclett.1c00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Vibrational strong coupling (VSC) between a vacuum field and molecules in a cavity offers promising applications in cavity-modified chemical reactions and ultrasensitive vibrational spectroscopy. At present, in order to realize VSC, bulky microcavities with large mode volume are utilized, which limits their potential applications at the nanoscale. Here, we report on the experimental realization of strong coupling between molecular vibrations and infrared photons confined within a deeply subwavelength nanogap patch antenna cavity. Our system exhibits a characteristic anticrossing dispersion, indicating a Rabi splitting of 108 cm-1 at the single resonator level with excellent angular insensitivity. The numerical simulations and theoretical analyses quantitatively reveal that the strength of coupling depends on the cavity field-molecule overlap integral and the image charge effect. VSC at the single nanogap patch antenna level paves the way for molecular-scale chemistry, ultrasensitive biosensors, and the development of ultralow-power all-optical devices in the mid-infrared spectral range.
Collapse
Affiliation(s)
- Govind Dayal
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| | - Ikki Morichika
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| | - Satoshi Ashihara
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| |
Collapse
|
19
|
Chuntonov L, Rubtsov IV. Surface-enhanced ultrafast two-dimensional vibrational spectroscopy with engineered plasmonic nano-antennas. J Chem Phys 2020; 153:050902. [DOI: 10.1063/5.0013956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lev Chuntonov
- Schulich Faculty of Chemistry and Solid State Institute, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Igor V. Rubtsov
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA
| |
Collapse
|
20
|
Okazaki D, Morichika I, Arai H, Kauppinen E, Zhang Q, Anisimov A, Varjos I, Chiashi S, Maruyama S, Ashihara S. Ultrafast saturable absorption of large-diameter single-walled carbon nanotubes for passive mode locking in the mid-infrared. OPTICS EXPRESS 2020; 28:19997-20006. [PMID: 32680068 DOI: 10.1364/oe.395962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
We study the saturable absorption properties of single-walled carbon nanotubes (SWCNTs) with a large diameter of 2.2 nm and the corresponding exciton resonance at a wavelength of 2.4 µm. At resonant excitation, a large modulation depth of approximately 30 % and a small saturation fluence of a few tens of µJ/cm2 are evaluated. The temporal response is characterized by an instantaneous rise and a subpicosecond recovery. We also utilize the SWCNTs to realize sub-50 fs, self-start mode locking in a Cr:ZnS laser, revealing that the film thickness is an important parameter that affects the possible pulse energy and duration. The results prove that semiconductor SWCNTs with tailored diameters exceeding 2 nm are useful for passive mode locking in the mid-infrared range.
Collapse
|