1
|
Gou S, Zhang X, Xu Y, Tang J, Ji Y, Imran M, Pan L, Li J, Liu BT. Inhibiting dissolution strategy achieving high-performance sodium titanium phosphate hybrid anode in seawater-based dual-ion battery. J Colloid Interface Sci 2024; 675:429-437. [PMID: 38981252 DOI: 10.1016/j.jcis.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Aqueous sodium-ion batteries (ASIBs) show great promise as candidates for large-scale energy storage. However, the potential of ASIB is impeded by the limited availability of suitable anode types and the occurrence of dissolution side reactions linked to hydrogen evolution. In this study, we addressed these challenges by developing a Bi-coating modified anode based on a sodium titanium phosphate (NTP)-carbon fibers (CFs) hybrid electrode (NTP-CFs/Bi). The Bi-coating effectively mitigates the localized enrichment of hydroxyl anion (OH-) near the NTP surface, thus addressing the dissolution issue. Notably, the Bi-coating not only restricts the local abundance of OH- to inhibit dissolution but also ensures a higher capacity compared with other NTP-based anodes. Consequently, the NTP-CFs/Bi anode demonstrates an impressive specific capacity of 216.8 mAh/g at 0.2 mV/s and maintains a 90.7 % capacity retention after 1000 cycles at 6.3 A/g. This achievement sets a new capacity record among NTP-based anodes for sodium storage. Furthermore, when paired with a cathode composed of hydroxy nickel oxide directly grown on Ni foam, we assembled a seawater-based cell exhibiting high energy and power densities, surpassing the most recently reported ASIBs. This groundbreaking work lays the foundation for a potential method to develop long-life NTP-based anodes.
Collapse
Affiliation(s)
- Siying Gou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guangxi Key Laboratory of surface and interface electrochemistry, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xueying Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guangxi Key Laboratory of surface and interface electrochemistry, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yuanhu Xu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guangxi Key Laboratory of surface and interface electrochemistry, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jiahao Tang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guangxi Key Laboratory of surface and interface electrochemistry, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yingying Ji
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Jinliang Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guangxi Key Laboratory of surface and interface electrochemistry, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China; Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, Jinan University, Guangzhou 510632, China.
| | - Bo-Tian Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guangxi Key Laboratory of surface and interface electrochemistry, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
2
|
Meng H, Ran Q, Zhu MH, Zhao QZ, Han GF, Wang TH, Wen Z, Lang XY, Jiang Q. Benzoquinone-Lubricated Intercalation in Manganese Oxide for High-Capacity and High-Rate Aqueous Aluminum-Ion Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310722. [PMID: 38229525 DOI: 10.1002/smll.202310722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/30/2023] [Indexed: 01/18/2024]
Abstract
Aqueous aluminum-ion batteries are attractive post-lithium battery technologies for large-scale energy storage in virtue of abundant and low-cost Al metal anode offering ultrahigh capacity via a three-electron redox reaction. However, state-of-the-art cathode materials are of low practical capacity, poor rate capability, and inadequate cycle life, substantially impeding their practical use. Here layered manganese oxide that is pre-intercalated with benzoquinone-coordinated aluminum ions (BQ-AlxMnO2) as a high-performance cathode material of rechargeable aqueous aluminum-ion batteries is reported. The coordination of benzoquinone with aluminum ions not only extends interlayer spacing of layered MnO2 framework but reduces the effective charge of trivalent aluminum ions to diminish their electrostatic interactions, substantially boosting intercalation/deintercalation kinetics of guest aluminum ions and improving structural reversibility and stability. When coupled with Zn50Al50 alloy anode in 2 m Al(OTf)3 aqueous electrolyte, the BQ-AlxMnO2 exhibits superior rate capability and cycling stability. At 1 A g-1, the specific capacity of BQ-AlxMnO2 reaches ≈300 mAh g-1 and retains ≈90% of the initial value for more than 800 cycles, along with the Coulombic efficiency of as high as ≈99%, outperforming the AlxMnO2 without BQ co-incorporation.
Collapse
Affiliation(s)
- Huan Meng
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Qing Ran
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Mei-Hua Zhu
- School of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiang-Zuo Zhao
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Gao-Feng Han
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Tong-Hui Wang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Zi Wen
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Xing-You Lang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
3
|
Qiu J, Duan Y, Li S, Zhao H, Ma W, Shi W, Lei Y. Insights into Nano- and Micro-Structured Scaffolds for Advanced Electrochemical Energy Storage. NANO-MICRO LETTERS 2024; 16:130. [PMID: 38393483 PMCID: PMC10891041 DOI: 10.1007/s40820-024-01341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/30/2023] [Indexed: 02/25/2024]
Abstract
Adopting a nano- and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy storage devices at all technology readiness levels. Due to various challenging issues, especially limited stability, nano- and micro-structured (NMS) electrodes undergo fast electrochemical performance degradation. The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement, even though it only occupies complementary and facilitating components for the main mechanism. However, extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies. This review will aim at highlighting these NMS scaffold design strategies, summarizing their corresponding strengths and challenges, and thereby outlining the potential solutions to resolve these challenges, design principles, and key perspectives for future research in this field. Therefore, this review will be one of the earliest reviews from this viewpoint.
Collapse
Affiliation(s)
- Jiajia Qiu
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
- Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China
| | - Yu Duan
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Shaoyuan Li
- Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China
| | - Huaping Zhao
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Wenhui Ma
- Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China.
- School of Science and Technology, Pu'er University, Pu'er, 665000, People's Republic of China.
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Yong Lei
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany.
| |
Collapse
|
4
|
Lan H, Wang J, Cheng L, Yu D, Wang H, Guo L. The synthesis and application of crystalline-amorphous hybrid materials. Chem Soc Rev 2024; 53:684-713. [PMID: 38116613 DOI: 10.1039/d3cs00860f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Crystalline-amorphous hybrid materials (CA-HMs) possess the merits of both pure crystalline and amorphous phases. Abundant dangling bonds, unsaturated coordination atoms, and isotropic structural features in the amorphous phase, as well as relatively high electronic conductivity and thermodynamic structural stability of the crystalline phase simultaneously take effect in CA-HMs. Furthermore, the atomic and bandgap mismatch at the CA-HM interface can introduce more defects as extra active sites, reservoirs for promoted catalytic and electrochemical performance, and induce built-in electric field for facile charge carrier transport. Motivated by these intriguing features, herein, we provide a comprehensive overview of CA-HMs on various aspects-from synthetic methods to multiple applications. Typical characteristics of CA-HMs are discussed at the beginning, followed by representative synthetic strategies of CA-HMs, including hydrothermal/solvothermal methods, deposition techniques, thermal adjustment, and templating methods. Diverse applications of CA-HMs, such as electrocatalysis, batteries, supercapacitors, mechanics, optoelectronics, and thermoelectrics along with underlying structure-property mechanisms are carefully elucidated. Finally, challenges and perspectives of CA-HMs are proposed with an aim to provide insights into the future development of CA-HMs.
Collapse
Affiliation(s)
- Hao Lan
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, China.
| | - Jiawei Wang
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, China.
| | - Liwei Cheng
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, China.
| | - Dandan Yu
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, China.
| | - Hua Wang
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, China.
| | - Lin Guo
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, China.
| |
Collapse
|
5
|
Ding H, Feng Y, Zhou J, Yu X, Fan L, Lu B. Superstable potassium metal batteries with a controllable internal electric field. FUNDAMENTAL RESEARCH 2023; 3:813-821. [PMID: 38933301 PMCID: PMC11197696 DOI: 10.1016/j.fmre.2022.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 03/06/2022] [Indexed: 11/30/2022] Open
Abstract
Stable potassium metal batteries (PMBs) are promising candidates for electrical energy storage due to their ability to reversibly store electrical energy at a low cost. However, dendritic growth and large volume changes hinder their practical application. Here, referring to the morphology and structure of a virus, a bionic virus-like-carbon microsphere (BVC) was designed as the anode host for a PMB. A BVC with a three-dimensional structure can not only control the electric field, which can suppress dendrite formation, but can also provide a larger space to accommodate the volume change during the cycle progress. The designed potassium (K) metal anode exhibits excellent cycle life and stability (during 1800 h of repeated plating/stripping of K at a current density of 0.1 mA cm-2, K-BVC can realize a very stable K metal anode with low voltage hysteresis). Stable cyclability and improved rate capability can be realized in a full cell using Prussian blue over 400 cycles. This research provides a new idea for the development of stable K metal anodes and may pave the way for the practical application of next-generation metal batteries.
Collapse
Affiliation(s)
- Hongbo Ding
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| | - Yanhong Feng
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| | - Jiang Zhou
- School of Materials Science and Engineering and Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China
| | - Xinzhi Yu
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| | - Ling Fan
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| | - Bingan Lu
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Wang Z, Song Y, Wang J, Lin Y, Meng J, Cui W, Liu XX. Vanadium Oxides with Amorphous-Crystalline Heterointerface Network for Aqueous Zinc-Ion Batteries. Angew Chem Int Ed Engl 2023; 62:e202216290. [PMID: 36725680 DOI: 10.1002/anie.202216290] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023]
Abstract
Rechargeable aqueous Zn-VOx batteries are attracting attention in large scale energy storage applications. Yet, the sluggish Zn2+ diffusion kinetics and ambiguous structure-property relationship are always challenging to fulfil the great potential of the batteries. Here we electrodeposit vanadium oxide nanobelts (VO-E) with highly disordered structure. The electrode achieves high capacities (e.g., ≈5 mAh cm-2 , 516 mAh g-1 ), good rate and cycling performances. Detailed structure analysis indicates VO-E is composed of integrated amorphous-crystalline nanoscale domains, forming an efficient heterointerface network in the bulk electrode, which accounts for the good electrochemical properties. Theoretical calculations indicate that the amorphous-crystalline heterostructure exhibits the favorable cation adsorption and lower ion diffusion energy barriers compared to the amorphous and crystalline counterparts, thus accelerating charge carrier mobility and electrochemical activity of the electrode.
Collapse
Affiliation(s)
- Zhihui Wang
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Yu Song
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Jing Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemistry Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Yulai Lin
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Jianming Meng
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Weibin Cui
- Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, China
| | - Xiao-Xia Liu
- Department of Chemistry, Northeastern University, Shenyang, 110819, China.,National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, 110819, China.,Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
7
|
Wu Y, Xu Z, Ren R, Lv N, Yang J, Zhang J, Ren H, Dong S, Dong X. Flexible Ammonium-Ion Pouch Cells Based on a Tunneled Manganese Dioxide Cathode. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12434-12442. [PMID: 36812169 DOI: 10.1021/acsami.3c00146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aqueous ammonium-ion (NH4+) batteries are becoming the competitive energy storage candidate on account of their safety, affordability, sustainability, and intrinsically peculiar properties. Herein, an aqueous NH4+-ion pouch cell is investigated based on a tunneled manganese dioxide (α-MnO2) cathode and a 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) anode. The MnO2 electrode possesses a high specific capacity of ∼190 mA h g-1 at 0.1 A g-1 and displays excellent long cycling performance after 50,000 cycles in 1 M (NH4)2SO4, which outperforms the most reported ammonium-ion host materials. Besides, a solid-solution behavior is revealed about the migration of NH4+ in the tunnel-like α-MnO2. The battery displays a splendid rate capacity of 83.2 mA h g-1 even at 10 A g-1. It also exhibits a high energy density of ∼78 W h kg-1 as well as a high power density of ∼8212 W kg-1 (based on the mass of MnO2). What is more, the flexible MnO2//PTCDA pouch cell based on the hydrogel electrolyte shows excellent flexibility and good electrochemical properties. The topochemistry results of MnO2//PTCDA point to the potential practicability of ammonium-ion energy storage.
Collapse
Affiliation(s)
- Yulin Wu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zikang Xu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ruiqi Ren
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Nan Lv
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jinyao Yang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jingyuan Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hang Ren
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Shengyang Dong
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
8
|
Zhu M, Ran Q, Huang H, Xie Y, Zhong M, Lu G, Bai FQ, Lang XY, Jia X, Chao D. Interface Reversible Electric Field Regulated by Amphoteric Charged Protein-Based Coating Toward High-Rate and Robust Zn Anode. NANO-MICRO LETTERS 2022; 14:219. [PMID: 36355311 PMCID: PMC9649586 DOI: 10.1007/s40820-022-00969-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/03/2022] [Indexed: 05/10/2023]
Abstract
Metallic interface engineering is a promising strategy to stabilize Zn anode via promoting Zn2+ uniform deposition. However, strong interactions between the coating and Zn2+ and sluggish transport of Zn2+ lead to high anodic polarization. Here, we present a bio-inspired silk fibroin (SF) coating with amphoteric charges to construct an interface reversible electric field, which manipulates the transfer kinetics of Zn2+ and reduces anodic polarization. The alternating positively and negatively charged surface as a build-in driving force can expedite and homogenize Zn2+ flux via the interplay between the charged coating and adsorbed ions, endowing the Zn-SF anode with low polarization voltage and stable plating/stripping. Experimental analyses with theoretical calculations suggest that SF can facilitate the desolvation of [Zn(H2O)6]2+ and provide nucleation sites for uniform deposition. Consequently, the Zn-SF anode delivers a high-rate performance with low voltage polarization (83 mV at 20 mA cm-2) and excellent stability (1500 h at 1 mA cm-2; 500 h at 10 mA cm-2), realizing exceptional cumulative capacity of 2.5 Ah cm-2. The full cell coupled with ZnxV2O5·nH2O (ZnVO) cathode achieves specific energy of ~ 270.5/150.6 Wh kg-1 (at 0.5/10 A g-1) with ~ 99.8% Coulombic efficiency and retains ~ 80.3% (at 5.0 A g-1) after 3000 cycles.
Collapse
Affiliation(s)
- Meihua Zhu
- College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Qing Ran
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, People's Republic of China
| | - Houhou Huang
- College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Yunfei Xie
- College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Mengxiao Zhong
- College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China
| | - Fu-Quan Bai
- College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| | - Xing-You Lang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, People's Republic of China.
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China.
| | - Danming Chao
- College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
9
|
Wu Y, Dong S, Lv N, Xu Z, Ren R, Zhu G, Huang B, Zhang Y, Dong X. Unlocking the High Capacity Ammonium-Ion Storage in Defective Vanadium Dioxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204888. [PMID: 36228091 DOI: 10.1002/smll.202204888] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Aqueous ammonium-ion storage has been considered a promising energy storage competitor to meet the requirements of safety, affordability, and sustainability. However, ammonium-ion storage is still in its infancy in the absence of reliable electrode materials. Here, defective VO2 (d-VO) is employed as an anode material for ammonium-ion batteries with a moderate transport pathway and high reversible capacity of ≈200 mAh g-1 . Notably, an anisotropic or anisotropic behavior of structural change of d-VO between c-axis and ab planes depends on the state of charge (SOC). Compared with potassium-ion storage, ammonium-ion storage delivers a higher diffusion coefficient and better electrochemical performance. A full cell is further fabricated by d-VO anode and MnO2 cathode, which delivers a high energy density of 96 Wh kg-1 (based on the mass of VO2 ), and a peak energy density of 3254 W kg-1 . In addition, capacity retention of 70% can be obtained after 10 000 cycles at a current density of 1 A g-1 . What's more, the resultant quasi-solid-state MnO2 //d-VO full cell based on hydrogel electrolyte also delivers high safety and decent electrochemical performance. This work will broaden the potential applications of the ammonium-ion battery for sustainable energy storage.
Collapse
Affiliation(s)
- Yulin Wu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Shengyang Dong
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Nan Lv
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zikang Xu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Ruiqi Ren
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Guoyin Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Baoling Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
10
|
Jin X, Song L, Dai C, Xiao Y, Han Y, Li X, Wang Y, Zhang J, Zhao Y, Zhang Z, Chen N, Jiang L, Qu L. A Flexible Aqueous Zinc-Iodine Microbattery with Unprecedented Energy Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109450. [PMID: 35139262 DOI: 10.1002/adma.202109450] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Currently, reported aqueous microbatteries (MBs) only show unsatisfactory electrochemical performance (≤120 mWh cm-3 volumetric energy density and <1000 μWh cm-2 areal energy density) and it remains challenging to develop durable aqueous MBs that can simultaneously offer both high volumetric and areal energy density. Herein, an in situ electrodeposition strategy is adopted to construct a flexible aqueous zinc-iodine MB (ZIDMB). Notably, the fabrication process well avoids the use of common additives (such as binders, conductive agents, and toxic solvent) and also bypasses subsequent time-consuming procedures such as grinding, coating, drying, etc., thus greatly simplifying the manufacture of the ZIDMB. Meanwhile, owing to the suppression of the shuttle effect of triiodide ions and the high ionic conductivity of the polyelectrolyte, the ZIDMB can simultaneously deliver record-high volumetric and areal energy densities of 1647.3 mWh cm-3 and 2339.1 μWh cm-2 , thus achieving values at least 13.5- and 2.3-fold better than those of best available aqueous MBs, respectively. This work affords an innovative strategy to construct an ideal micro-power-source for future miniaturized and integrated electronics.
Collapse
Affiliation(s)
- Xuting Jin
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Li Song
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chunlong Dai
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yukun Xiao
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuyang Han
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiangyang Li
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ying Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jiatao Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yang Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhipan Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Nan Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lan Jiang
- Laser Micro-/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Liangti Qu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
11
|
Huang M, Wang X, Liu X, Mai L. Fast Ionic Storage in Aqueous Rechargeable Batteries: From Fundamentals to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105611. [PMID: 34845772 DOI: 10.1002/adma.202105611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The highly dynamic nature of grid-scale energy systems necessitates fast kinetics in energy storage and conversion systems. Rechargeable aqueous batteries are a promising energy-storage solution for renewable-energy grids as the ionic diffusivity in aqueous electrolytes can be up to 1-2 orders of magnitude higher than in organic systems, in addition to being highly safe and low cost. Recent research in this regard has focussed on developing suitable electrode materials for fast ionic storage in aqueous electrolytes. In this review, breakthroughs in the field of fast ionic storage in aqueous battery materials, and 1D/2D/3D and over-3D-tunnel materials are summarized, and tunnels in over-3D materials are not oriented in any direction in particular. Various materials with different tunnel sizes are developed to be suitable for the different ionic radii of Li+ , Na+ , K+ , H+ , NH4 + , and Zn2+ , which show significant differences in the reaction kinetics of ionic storage. New topochemical paths for ion insertion/extraction, which provide superfast ionic storage, are also discussed.
Collapse
Affiliation(s)
- Meng Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xuanpeng Wang
- Department of Physical Science and Technology, School of Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200, P. R. China
| | - Xiong Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200, P. R. China
| |
Collapse
|
12
|
Choi CS, Whang GJ, McNeil PE, Dunn BS. Photopatternable Porous Separators for Micro-Electrochemical Energy Storage Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108792. [PMID: 34957613 DOI: 10.1002/adma.202108792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The miniaturization of electrochemical energy storage (EES) systems, one of the key challenges facing the rapid expansion of the Internet-of-Things, has been limited by poor performance of the various energy-storage components at the micrometer scale. Here, the development of a unique photopatternable porous separator that overcomes the electrolyte difficulties involving resistive losses at small dimensions is reported. The separator is based on modifying the chemistry of SU-8, an epoxy-derived photoresist, through the addition of a miscible ionic liquid. The ionic liquid serves as a templating agent, which is selectively removed by solution methods, leaving the SU-8 scaffold whose interconnected porosity provides ion transport from the confined liquid electrolyte. The photopatternable separator exhibits good electrochemical, chemical, thermal, and mechanical stability during the operation of electrochemical devices in both 2D and 3D formats. For the latter, the separator demonstrates the ability to form conformal coatings over 3D structures. The development of the photopatternable separator overcomes the electrolyte issues, which have limited progress in the field of micro-EES.
Collapse
Affiliation(s)
- Christopher S Choi
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Grace J Whang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Patricia E McNeil
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bruce S Dunn
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
13
|
Zhu M, Zhao L, Ran Q, Zhang Y, Peng R, Lu G, Jia X, Chao D, Wang C. Bioinspired Catechol-Grafting PEDOT Cathode for an All-Polymer Aqueous Proton Battery with High Voltage and Outstanding Rate Capacity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103896. [PMID: 34914857 PMCID: PMC8811804 DOI: 10.1002/advs.202103896] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/11/2021] [Indexed: 05/27/2023]
Abstract
Aqueous all-polymer proton batteries (APPBs) consisting of redox-active polymer electrodes are considered safe and clean renewable energy storage sources. However, there remain formidable challenges for APPBs to withstand a high current rate while maximizing high cell output voltage within a narrow electrochemical window of aqueous electrolytes. Here, a capacitive-type polymer cathode material is designed by grafting poly(3,4-ethylenedioxythiophene) (PEDOT) with bioinspired redox-active catechol pendants, which delivers high redox potential (0.60 V vs Ag/AgCl) and remarkable rate capability. The pseudocapacitive-dominated proton storage mechanism illustrated by the density functional theory (DFT) calculation and electrochemical kinetics analysis is favorable for delivering fast charge/discharge rates. Coupled with a diffusion-type anthraquinone-based polymer anode, the APPB offers a high cell voltage of 0.72 V, outstanding rate capability (64.8% capacity retention from 0.5 to 25 A g-1 ), and cycling stability (80% capacity retention over 1000 cycles at 2 A g-1 ), which is superior to the state-of-the-art all-organic proton batteries. This strategy and insight provided by DFT and ex situ characterizations offer a new perspective on the delicate design of polymer electrode patterns for high-performance APPBs.
Collapse
Affiliation(s)
- Meihua Zhu
- College of ChemistryJilin UniversityChangchun130012China
| | - Li Zhao
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin UniversityChangchun130012China
| | - Qing Ran
- Key Laboratory of Automobile MaterialsMinistry of EducationSchool of Materials Science and EngineeringJilin UniversityChangchun130022China
| | - Yingchao Zhang
- College of ChemistryJilin UniversityChangchun130012China
| | - Runchang Peng
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin UniversityChangchun130012China
| | - Geyu Lu
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin UniversityChangchun130012China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin UniversityChangchun130012China
| | - Danming Chao
- College of ChemistryJilin UniversityChangchun130012China
| | - Caiyun Wang
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongWollongongNSW2522Australia
| |
Collapse
|
14
|
Zhao C, Kisslinger K, Huang X, Bai J, Liu X, Lin CH, Yu LC, Lu M, Tong X, Zhong H, Pattammattel A, Yan H, Chu Y, Ghose S, Liu M, Chen-Wiegart YCK. Design nanoporous metal thin films via solid state interfacial dealloying. NANOSCALE 2021; 13:17725-17736. [PMID: 34515717 DOI: 10.1039/d1nr03709a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thin-film solid-state interfacial dealloying (thin-film SSID) is an emerging technique to design nanoarchitecture thin films. The resulting controllable 3D bicontinuous nanostructure is promising for a range of applications including catalysis, sensing, and energy storage. Using a multiscale microscopy approach, we combine X-ray and electron nano-tomography to demonstrate that besides dense bicontinuous nanocomposites, thin-film SSID can create a very fine (5-15 nm) nanoporous structure. Not only is such a fine feature among one of the finest fabrications by metal-agent dealloying, but a multilayer thin-film design enables creating nanoporous films on a wider range of substrates for functional applications. Through multimodal synchrotron diffraction and spectroscopy analysis with which the materials' chemical and structural evolution in this novel approach is characterized in details, we further deduce that the contribution of change in entropy should be considered to explain the phase evolution in metal-agent dealloying, in addition to the commonly used enthalpy term in prior studies. The discussion is an important step leading towards better explaining the underlying design principles for controllable 3D nanoarchitecture, as well as exploring a wider range of elemental and substrate selections for new applications.
Collapse
Affiliation(s)
- Chonghang Zhao
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Xiaojing Huang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jianming Bai
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Xiaoyang Liu
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Cheng-Hung Lin
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Lin-Chieh Yu
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Ming Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Hui Zhong
- Department of Joint Photon Science Institute, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ajith Pattammattel
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Hanfei Yan
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yong Chu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sanjit Ghose
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Mingzhao Liu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yu-Chen Karen Chen-Wiegart
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
15
|
Liu S, Kang L, Jun SC. Challenges and Strategies toward Cathode Materials for Rechargeable Potassium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004689. [PMID: 33448099 DOI: 10.1002/adma.202004689] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/22/2020] [Indexed: 06/12/2023]
Abstract
With increasing demand for grid-scale energy storage, potassium-ion batteries (PIBs) have emerged as promising complements or alternatives to commercial lithium-ion batteries owing to the low cost, natural abundance of potassium resources, the low standard reduction potential of potassium, and fascinating K+ transport kinetics in the electrolyte. However, the low energy density and unstable cycle life of cathode materials hamper their practical application. Therefore, cathode materials with high capacities, high redox potentials, and good structural stability are required with the advancement toward next-generation PIBs. To this end, understanding the structure-dependent intercalation electrochemistry and recognizing the existing issues relating to cathode materials are indispensable prerequisites. This review summarizes the recent advances of PIB cathode materials, including metal hexacyanometalates, layered metal oxides, polyanionic frameworks, and organic compounds, with an emphasis on the structural advantages of the K+ intercalation reaction. Moreover, major current challenges with corresponding strategies for each category of cathode materials are highlighted. Finally, future research directions and perspectives are presented to accelerate the development of PIBs and facilitate commercial applications. It is believed that this review will provide practical guidance for researchers engaged in developing next-generation advanced PIB cathode materials.
Collapse
Affiliation(s)
- Shude Liu
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Ling Kang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| |
Collapse
|
16
|
|
17
|
Zhu Z, Kan R, Wu P, Ma Y, Wang Z, Yu R, Liao X, Wu J, He L, Hu S, Mai L. A Durable Ni-Zn Microbattery with Ultrahigh-Rate Capability Enabled by In Situ Reconstructed Nanoporous Nickel with Epitaxial Phase. SMALL 2021; 17:e2103136. [PMID: 34523802 DOI: 10.1002/smll.202103136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/11/2021] [Indexed: 02/05/2023]
Abstract
Powering device for miniaturized electronics is highly desired with well-maintained capacity and high-rate performance. Though Ni-Zn microbattery can meet the demand to some extent with intrinsic fast kinetic, it still suffers irreversible structure degradation due to the repeated lattice strain. Herein, a stable Ni-Zn microbattery with ultrahigh-rate performance is rationally constructed through in situ electrochemical approaches, including the reconstruction of nanoporous nickel and the introduction of epitaxial Zn(OH)2 nanophase. With the enhanced ionic adsorption effect, the superior reactivity of the superficial nickel-based nanostructure is well stabilized. Based on facile miniaturization and electrochemical techniques, the fabricated nickel microelectrode exhibits 63.8% capacity retention when the current density is 500 times folded, and the modified hydroxides contribute to the great stability of the porous structure (92% capacity retention after 10 000 cycles). Furthermore, when the constructed Ni-Zn microbattery is measured in a practical metric, excellent power density (320.17 mW cm-2 ) and stable fast-charging performance (over 90% capacity retention in 3500 cycles) are obtained. This surface reconstruction strategy for nanostructure provides a new direction for the optimization of electrode structure and enriches high-performance output units for integrated microelectronics.
Collapse
Affiliation(s)
- Zhe Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ruyu Kan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Peijie Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yao Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhaoyang Wang
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaobin Liao
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.,Nanostructure Research Centre (NRC), Wuhan University of Technology, Wuhan, 430070, China
| | - Liang He
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.,Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China.,School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Song Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528200, China
| |
Collapse
|
18
|
Hong X, Ma X, He L, Dai Y, Pan X, Zhu J, Luo W, Su Y, Mai L. Regulating Lattice-Water-Adsorbed Ions to Optimize Intercalation Potential in 3D Prussian Blue Based Multi-Ion Microbattery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007791. [PMID: 33749128 DOI: 10.1002/smll.202007791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Miniaturized energy storage device (MESD) is the core module in microscale electronic equipment, yet its electrochemical performance is far away from the actual requirements. The extensive research efforts have improved the performance of MESD via the fabrication techniques and material construction, while ignoring the expansion of optimization strategy in the combination of energy storage mechanism. Herein, the Prussian blue/Zn microbattery is reported with the regulation of lattice-water-adsorbed intercalated ion. The optimal charge transport of cathode is achieved via the optimization of 3D structure of microelectrode to maximize the electrochemical performance. Also, lattice-water-adsorbed ion storage mechanism is further investigated to guide the design of differential energy storage for cathode and anode. The Cu3 (Fe(CN)6 )2 /Zn microbattery, with K+ inter/deintercalation in the cathode and Zn2+ deplating/plating in the anode, displays high capacity (0.281 mAh cm-2 at 2.5 mA cm-2 ), rate performance (0.181 mAh cm-2 at 25 mA cm-2 ), and cycling stability (77.6% capacity retention after 1500 cycles) enhanced by Cu2+ in the electrolyte. This highly efficient combination of fabrication process, active material, and multi-ion storage for microelectrode shows a high tolerance for optimization strategies, expanding the compatibility of optimization path for high-performance MESD.
Collapse
Affiliation(s)
- Xufeng Hong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Xinyu Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Liang He
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuhang Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Xuelei Pan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Wen Luo
- School of Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Yaqiong Su
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
19
|
Huang X, Sun J, Wang L, Tong X, Dou SX, Wang ZM. Advanced High-Performance Potassium-Chalcogen (S, Se, Te) Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004369. [PMID: 33448135 DOI: 10.1002/smll.202004369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Current great progress on potassium-chalcogen (S, Se, Te) batteries within much potential to become promising energy storage systems opens a new avenue for the rapid development of potassium batteries as a complementary option to lithium ion batteries. The discussion mainly concentrates on recent research advances of potassium-chalcogen (S, Se, Te) batteries and their corresponding cathode materials in this review. Initially, the development of cathode materials for four types of batteries is introduced, including: potassium-sulfur (K-S), potassium-selenium (K-Se), potassium-selenium sulfide (K-Sex Sy ), and potassium-tellurium (K-Te) batteries. Next, critical challenges for chalcogen-based electrodes in devices operation are summarized. In addition, some pragmatic strategies are proposed as well to relieve the low electronic conductivity, large volumetric expansion, shuttle effect, and potassium dendrite growth. At last, the perspectives on designing advanced cathode materials for potassium-chalcogen batteries are provided with the goal of developing high-performance potassium storage devices.
Collapse
Affiliation(s)
- Xianglong Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jiachen Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Liping Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Xin Tong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, 2500, Australia
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
20
|
Yuan J, Hu X, Liu Y, Zhong G, Yu B, Wen Z. Recent progress in sodium/potassium hybrid capacitors. Chem Commun (Camb) 2020; 56:13933-13949. [PMID: 33111735 DOI: 10.1039/d0cc05476c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metal ion hybrid capacitors (MIHCs) have been recognized as one of the most promising power sources owing to their combined merits of high energy density in batteries and high power output in supercapacitors. The kinetics mismatch between the capacitor-type cathode and battery-type anode yet must be well addressed before implementing their practical feasibility. Here, we overview the recent progress in sodium and potassium ion hybrid capacitors (SIHCs and PIHCs) and discuss the major challenges and give an outlook on the future directions in this field. The fundamental knowledge and the history will be firstly introduced, and special emphasis is then laid on the development of a variety of electrode materials in recent years. The prospects of future research of MIHCs are finally proposed towards their practical applications. We wish that this feature article can not only educate newcomers starting their reasearch in this field, but also inspire experieced researchers to contribute to the development of high-performance MIHC devices.
Collapse
Affiliation(s)
- Jun Yuan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | | | | | | | | | | |
Collapse
|
21
|
Advanced architecture designs towards high-performance 3D microbatteries. NANO MATERIALS SCIENCE 2020. [DOI: 10.1016/j.nanoms.2020.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Zhu Z, Kan R, Hu S, He L, Hong X, Tang H, Luo W. Recent Advances in High-Performance Microbatteries: Construction, Application, and Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003251. [PMID: 32870600 DOI: 10.1002/smll.202003251] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/29/2020] [Indexed: 06/11/2023]
Abstract
High-performance miniaturized energy storage devices have developed rapidly in recent years. Different from conventional energy storage devices, microbatteries assume the main responsibility for micropower supply, functionalization, and characterization platforms. Evolving from the essential goals for battery design of high power density, high energy density, and long lifetime, further practical demands for microbatteries (MBs) have been raised for the microfabrication technique and device design. Numerous studies have generally focused on specific aspects of the microelectrode structures or certain microfabrication techniques, while the connection from techniques to functional applications is rarely involved. This Review generally fills such blanks from an application-oriented perspective. First, some basic micromachining techniques with different compatible features are summarized. Afterward, device designs including diversified battery reaction types, configuration, and assembly are highlighted, as well as microbatteries serving powering resources or further complicated functional systems. Finally, through providing the overall design concept based on requirements in application, this Review offers innovative insights for further development of microbatteries.
Collapse
Affiliation(s)
- Zhe Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Ruyu Kan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Song Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Liang He
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Xufeng Hong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Hui Tang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| | - Wen Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
- Department of Physics, School of Science, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| |
Collapse
|
23
|
Tian Z, Wei C, Sun J. Recent advances in the template-confined synthesis of two-dimensional materials for aqueous energy storage devices. NANOSCALE ADVANCES 2020; 2:2220-2233. [PMID: 36133388 PMCID: PMC9417973 DOI: 10.1039/d0na00257g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 05/14/2023]
Abstract
The template-confined synthesis strategy is a simple and effective methodology to prepare two-dimensional nanomaterials. It has multiple advantages including green process, controllable morphology and adjustable crystal structure, and therefore, it is promising in the energy storage realm to synthesize high-performance electrode materials. In this review, we summarize the recent advances in the template-confined synthesis of two-dimensional nanostructures for aqueous energy storage applications. The material design is discussed in detail to accommodate target usage in aqueous supercapacitors and zinc metal batteries. The remaining challenges and future prospective are also covered.
Collapse
Affiliation(s)
- Zhengnan Tian
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University Suzhou 215006 P. R. China
| | - Chaohui Wei
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University Suzhou 215006 P. R. China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University Suzhou 215006 P. R. China
- Beijing Graphene Institute Beijing 100095 P. R. China
| |
Collapse
|
24
|
Xie M, Zhao W, Mao Y, Huang F. K 0.38(H 2O) 0.82MoS 2 as a universal host for rechargeable aqueous cation (K +, Na +, Li +, NH 4+, Mg 2+, Al 3+) batteries. Dalton Trans 2020; 49:3488-3494. [PMID: 32104851 DOI: 10.1039/d0dt00471e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rechargeable aqueous batteries have been widely investigated for large-scale energy storage in view of their high safety and low cost. While tremendous efforts have been devoted to the development of cathode materials, few have focused on the development of anode materials and only limited candidates such as V-based oxides and Ti-based polyanionic compounds have been explored. In this study, for the first time, we discover a hydrated compound of molybdenum based ternary sulfide K0.38(H2O)0.82MoS2 as a universal host for reversible intercalation of various hydrated cations (K+, Na+, Li+, NH4+, Mg2+, Al3+, etc.). It undergoes a two-phase reaction during the electrochemical process, showing a stable redox potential of around -0.1 V vs. Ag/AgCl to serve as an anode material and a specific capacity of over 50 mA h g-1 at a current density of 0.5 A g-1. The intercalation of larger hydrated cations during the discharge process results in a lower operation potential and wider interlayer spacing, which has been explained theoretically by Gibbs free energy analysis and valence bond theory. In particular, taking hydrated K+ insertion and extraction of K0.38(H2O)0.82MoS2 as an example, the ex situ XRD and XPS results demonstrate a reversible change in the phase structure and Mo3+/Mo4+ redox couple during the charge-discharge process. Our study provides a promising anode for aqueous batteries using K0.38(H2O)0.82MoS2 as a universal host.
Collapse
Affiliation(s)
- Miao Xie
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Yuanlv Mao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China. and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|