1
|
Chaudhri A, Lizee G, Hwu P, Rai K. Chromatin Remodelers Are Regulators of the Tumor Immune Microenvironment. Cancer Res 2024; 84:965-976. [PMID: 38266066 DOI: 10.1158/0008-5472.can-23-2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/24/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Immune checkpoint inhibitors show remarkable responses in a wide range of cancers, yet patients develop adaptive resistance. This necessitates the identification of alternate therapies that synergize with immunotherapies. Epigenetic modifiers are potent mediators of tumor-intrinsic mechanisms and have been shown to regulate immune response genes, making them prime targets for therapeutic combinations with immune checkpoint inhibitors. Some success has been observed in early clinical studies that combined immunotherapy with agents targeting DNA methylation and histone modification; however, less is known about chromatin remodeler-targeted therapies. Here, we provide a discussion on the regulation of tumor immunogenicity by the chromatin remodeling SWI/SNF complex through multiple mechanisms associated with immunotherapy response that broadly include IFN signaling, DNA damage, mismatch repair, regulation of oncogenic programs, and polycomb-repressive complex antagonism. Context-dependent targeting of SWI/SNF subunits can elicit opportunities for synthetic lethality and reduce T-cell exhaustion. In summary, alongside the significance of SWI/SNF subunits in predicting immunotherapy outcomes, their ability to modulate the tumor immune landscape offers opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Gregory Lizee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MDACC Epigenomics Therapy Initiative, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2
|
Sevinç K, Sevinç GG, Cavga AD, Philpott M, Kelekçi S, Can H, Cribbs AP, Yıldız AB, Yılmaz A, Ayar ES, Arabacı DH, Dunford JE, Ata D, Sigua LH, Qi J, Oppermann U, Onder TT. BRD9-containing non-canonical BAF complex maintains somatic cell transcriptome and acts as a barrier to human reprogramming. Stem Cell Reports 2022; 17:2629-2642. [PMID: 36332631 PMCID: PMC9768578 DOI: 10.1016/j.stemcr.2022.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Epigenetic reprogramming to pluripotency requires extensive remodeling of chromatin landscapes to silence existing cell-type-specific genes and activate pluripotency genes. ATP-dependent chromatin remodeling complexes are important regulators of chromatin structure and gene expression; however, the role of recently identified Bromodomain-containing protein 9 (BRD9) and the associated non-canonical BRG1-associated factors (ncBAF) complex in reprogramming remains unknown. Here, we show that genetic or chemical inhibition of BRD9, as well as ncBAF complex subunit GLTSCR1, but not the closely related BRD7, increase human somatic cell reprogramming efficiency and can replace KLF4 and c-MYC. We find that BRD9 is dispensable for human induced pluripotent stem cells under primed but not under naive conditions. Mechanistically, BRD9 inhibition downregulates fibroblast-related genes and decreases chromatin accessibility at somatic enhancers. BRD9 maintains the expression of transcriptional regulators MN1 and ZBTB38, both of which impede reprogramming. Collectively, these results establish BRD9 as an important safeguarding factor for somatic cell identity whose inhibition lowers chromatin-based barriers to reprogramming.
Collapse
Affiliation(s)
- Kenan Sevinç
- School of Medicine, Koç University, Istanbul, Turkey
| | | | - Ayşe Derya Cavga
- School of Medicine, Koç University, Istanbul, Turkey; Biostatistics, Bioinformatics and Data Management Core, KUTTAM, Koç University, Istanbul, Turkey
| | - Martin Philpott
- Botnar Research Centre, Oxford NIHR BRU, University of Oxford, Oxford, UK
| | - Simge Kelekçi
- School of Medicine, Koç University, Istanbul, Turkey
| | - Hazal Can
- School of Medicine, Koç University, Istanbul, Turkey
| | - Adam P Cribbs
- Botnar Research Centre, Oxford NIHR BRU, University of Oxford, Oxford, UK
| | | | | | | | | | - James E Dunford
- Botnar Research Centre, Oxford NIHR BRU, University of Oxford, Oxford, UK
| | - Deniz Ata
- School of Medicine, Koç University, Istanbul, Turkey
| | - Logan H Sigua
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Jun Qi
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Udo Oppermann
- Botnar Research Centre, Oxford NIHR BRU, University of Oxford, Oxford, UK; Centre for Medicine Discovery, University of Oxford, Oxford, UK; Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford OX3 7LD, UK
| | - Tamer T Onder
- School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
3
|
Yu Y, Fu W, Xu J, Lei Y, Song X, Liang Z, Zhu T, Liang Y, Hao Y, Yuan L, Li C. Bromodomain-containing proteins BRD1, BRD2, and BRD13 are core subunits of SWI/SNF complexes and vital for their genomic targeting in Arabidopsis. MOLECULAR PLANT 2021; 14:888-904. [PMID: 33771698 DOI: 10.1016/j.molp.2021.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 05/26/2023]
Abstract
Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes are multi-subunit machines that play vital roles in the regulation of chromatin structure and gene expression. However, the mechanisms by which SWI/SNF complexes recognize their target loci in plants are not fully understood. Here, we show that the Arabidopsis thaliana bromodomain-containing proteins BRD1, BRD2, and BRD13 are core subunits of SWI/SNF complexes and critical for SWI/SNF genomic targeting. These three BRDs interact directly with multiple SWI/SNF subunits, including the BRAHMA (BRM) catalytic subunit. Phenotypic and transcriptomic analyses of the brd1 brd2 brd13 triple mutant revealed that these BRDs act largely redundantly to control gene expression and developmental processes that are also regulated by BRM. Genome-wide occupancy profiling demonstrated that these three BRDs extensively colocalize with BRM on chromatin. Simultaneous loss of function of three BRD genes results in reduced BRM protein levels and decreased occupancy of BRM on chromatin across the genome. Furthermore, we demonstrated that the bromodomains of BRDs are essential for genomic targeting of the BRD subunits of SWI/SNF complexes to their target sites. Collectively, these results demonstrate that BRD1, BRD2, and BRD13 are core subunits of SWI/SNF complexes and reveal their biological roles in facilitating genomic targeting of BRM-containing SWI/SNF complexes in plants.
Collapse
Affiliation(s)
- Yaoguang Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wei Fu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jianqu Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yawen Lei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xin Song
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhenwei Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Tao Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yuhui Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yuanhao Hao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Liangbing Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
4
|
Du X, Liu L, Wu W, Li P, Pan Z, Zhang L, Liu J, Li Q. SMARCA2 is regulated by NORFA-miR-29c, a novel pathway that controls granulosa cell apoptosis and is related to female fertility. J Cell Sci 2020; 133:jcs249961. [PMID: 33148612 DOI: 10.1242/jcs.249961] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
SMARCA2, an evolutionarily conserved catalytic ATPase subunit of SWI/SNF complexes, has been implicated in development and diseases; however, its role in mammalian ovarian function and female fertility is unknown. Here, we identified and characterized the 3'-UTR of the porcine SMARCA2 gene and identified a novel adenylate number variation. Notably, this mutation was significantly associated with sow litter size traits and SMARCA2 levels, due to its influence on the stability of SMARCA2 mRNA in ovarian granulosa cells (GCs). Immunohistochemistry and functional analysis showed that SMARCA2 is involved in the regulation of follicular atresia by inhibiting GC apoptosis. In addition, miR-29c, a pro-apoptotic factor, was identified as a functional miRNA that targets SMARCA2 in GCs and mediates regulation of SMARCA2 expression via the NORFA-SMAD4 axis. Although a potential miR-29c-responsive element was identified within NORFA, negative regulation of miR-29c expression by NORFA was not due to activity as a competing endogenous RNA. In conclusion, our findings demonstrate that SMARCA2 is a candidate gene for sow litter size traits, because it regulates follicular atresia and GC apoptosis. Additionally, we have defined a novel candidate pathway for sow fertility, the NORFA-TGFBR2-SMAD4-miR-29c-SMARCA2 pathway.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Pinghua Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiying Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|