1
|
Riechers B, Das A, Dufresne E, Derlet PM, Maaß R. Intermittent cluster dynamics and temporal fractional diffusion in a bulk metallic glass. Nat Commun 2024; 15:6595. [PMID: 39097585 PMCID: PMC11298002 DOI: 10.1038/s41467-024-50758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/18/2024] [Indexed: 08/05/2024] Open
Abstract
Glassy solids evolve towards lower-energy structural states by physical aging. This can be characterized by structural relaxation times, the assessment of which is essential for understanding the glass' time-dependent property changes. Conducted over short times, a continuous increase of relaxation times with time is seen, suggesting a time-dependent dissipative transport mechanism. By focusing on micro-structural rearrangements at the atomic-scale, we demonstrate the emergence of sub-diffusive anomalous transport and therefore temporal fractional diffusion in a metallic glass, which we track via coherent x-ray scattering conducted over more than 300,000 s. At the longest probed decorrelation times, a transition from classical stretched exponential to a power-law behavior occurs, which in concert with atomistic simulations reveals collective and intermittent atomic motion. Our observations give a physical basis for classical stretched exponential relaxation behavior, uncover a new power-law governed collective transport regime for metallic glasses at long and practically relevant time-scales, and demonstrate a rich and highly non-monotonous aging response in a glassy solid, thereby challenging the common framework of homogeneous aging and atomic scale diffusion.
Collapse
Affiliation(s)
- Birte Riechers
- Federal Institute of Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Amlan Das
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cornell High Energy Synchrotron Source, Cornell University, 161 Synchrotron Drive, Ithaca, NY, 14850, USA
| | - Eric Dufresne
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Peter M Derlet
- Condensed Matter Theory Group, Paul-Scherrer-Institute, CH-5232, Villingen PSI, Switzerland.
| | - Robert Maaß
- Federal Institute of Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany.
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Materials Engineering, Technical University of Munich, 85748, Garchingen, Germany.
| |
Collapse
|
2
|
Yu HB, Gao L, Gao JQ, Samwer K. Universal origin of glassy relaxation as recognized by configuration pattern matching. Natl Sci Rev 2024; 11:nwae091. [PMID: 38577671 PMCID: PMC10989661 DOI: 10.1093/nsr/nwae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Relaxation processes are crucial for understanding the structural rearrangements of liquids and amorphous materials. However, the overarching principle that governs these processes across vastly different materials remains an open question. Substantial analysis has been carried out based on the motions of individual particles. Here, as an alternative, we propose viewing the global configuration as a single entity. We introduce a global order parameter, namely the inherent structure minimal displacement (IS Dmin), to quantify the variability of configurations by a pattern-matching technique. Through atomic simulations of seven model glass-forming liquids, we unify the influences of temperature, pressure and perturbation time on the relaxation dissipation, via a scaling law between the mechanical damping factor and IS Dmin. Fundamentally, this scaling reflects the curvature of the local potential energy landscape. Our findings uncover a universal origin of glassy relaxation and offer an alternative approach to studying disordered systems.
Collapse
Affiliation(s)
- Hai-Bin Yu
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Gao
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jia-Qi Gao
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Konrad Samwer
- I. Physikalisches Institut, Universität Göttingen, Göttingen D-37077, Germany
| |
Collapse
|
3
|
Huang S, Voyles PM. Momentum transfer resolved electron correlation microscopy. Ultramicroscopy 2023; 256:113886. [PMID: 38000289 DOI: 10.1016/j.ultramic.2023.113886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Electron correlation microscopy (ECM) characterizes local structural relaxation dynamics in fluctuating systems like supercooled liquids with nanometer spatial resolution. We have developed a new type of ECM technique that provides moderate resolution in momentum transfer or k space using five-dimensional scanning transmission electron microscopy. k-resolved ECM on a Pt57.5Cu14.7Ni5.3P22.5 metallic supercooled liquids measures rich spatial and momentum structure in the relaxation time data τ(r,k). Relaxation time maps τ(r) at each azimuthal k are independent samples of the material's underlying relaxation time distribution, and τ of radial k shows more complex behavior than the de Gennes narrowing observed in analogous X-ray experiments. We have determined the requirements for electron counts per k-pixel, number of k-pixels per speckle, and time sampling to obtain reliable k-resolved ECM data.
Collapse
Affiliation(s)
- Shuoyuan Huang
- Department of Materials Science and Engineering, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Paul M Voyles
- Department of Materials Science and Engineering, University of Wisconsin Madison, Madison, WI 53706, USA.
| |
Collapse
|
4
|
Anthuparambil ND, Girelli A, Timmermann S, Kowalski M, Akhundzadeh MS, Retzbach S, Senft MD, Dargasz M, Gutmüller D, Hiremath A, Moron M, Öztürk Ö, Poggemann HF, Ragulskaya A, Begam N, Tosson A, Paulus M, Westermeier F, Zhang F, Sprung M, Schreiber F, Gutt C. Exploring non-equilibrium processes and spatio-temporal scaling laws in heated egg yolk using coherent X-rays. Nat Commun 2023; 14:5580. [PMID: 37696830 PMCID: PMC10495384 DOI: 10.1038/s41467-023-41202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
The soft-grainy microstructure of cooked egg yolk is the result of a series of out-of-equilibrium processes of its protein-lipid contents; however, it is unclear how egg yolk constituents contribute to these processes to create the desired microstructure. By employing X-ray photon correlation spectroscopy, we investigate the functional contribution of egg yolk constituents: proteins, low-density lipoproteins (LDLs), and yolk-granules to the development of grainy-gel microstructure and microscopic dynamics during cooking. We find that the viscosity of the heated egg yolk is solely determined by the degree of protein gelation, whereas the grainy-gel microstructure is controlled by the extent of LDL aggregation. Overall, protein denaturation-aggregation-gelation and LDL-aggregation follows Arrhenius-type time-temperature superposition (TTS), indicating an identical mechanism with a temperature-dependent reaction rate. However, above 75 °C TTS breaks down and temperature-independent gelation dynamics is observed, demonstrating that the temperature can no longer accelerate certain non-equilibrium processes above a threshold value.
Collapse
Affiliation(s)
- Nimmi Das Anthuparambil
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
- Department Physik, Universität Siegen, 57072, Siegen, Germany.
| | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | | | - Marvin Kowalski
- Department Physik, Universität Siegen, 57072, Siegen, Germany
| | | | - Sebastian Retzbach
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Maximilian D Senft
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | | | - Dennis Gutmüller
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Anusha Hiremath
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Marc Moron
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Özgül Öztürk
- Department Physik, Universität Siegen, 57072, Siegen, Germany
| | | | | | - Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Amir Tosson
- Department Physik, Universität Siegen, 57072, Siegen, Germany
| | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, 57072, Siegen, Germany.
| |
Collapse
|
5
|
Zhang X, Lou H, Ruta B, Chushkin Y, Zontone F, Li S, Xu D, Liang T, Zeng Z, Mao HK, Zeng Q. Pressure-induced nonmonotonic cross-over of steady relaxation dynamics in a metallic glass. Proc Natl Acad Sci U S A 2023; 120:e2302281120. [PMID: 37276419 PMCID: PMC10268294 DOI: 10.1073/pnas.2302281120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/14/2023] [Indexed: 06/07/2023] Open
Abstract
Relaxation dynamics, as a key to understand glass formation and glassy properties, remains an elusive and challenging issue in condensed matter physics. In this work, in situ high-pressure synchrotron high-energy X-ray photon correlation spectroscopy has been developed to probe the atomic-scale relaxation dynamics of a cerium-based metallic glass during compression. Although the sample density continuously increases, the collective atomic motion initially slows down as generally expected and then counterintuitively accelerates with further compression (density increase), showing an unusual nonmonotonic pressure-induced steady relaxation dynamics cross-over at ~3 GPa. Furthermore, by combining in situ high-pressure synchrotron X-ray diffraction, the relaxation dynamics anomaly is evidenced to closely correlate with the dramatic changes in local atomic structures during compression, rather than monotonically scaling with either sample density or overall stress level. These findings could provide insight into relaxation dynamics and their relationship with local atomic structures of glasses.
Collapse
Affiliation(s)
- Xin Zhang
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
| | - Hongbo Lou
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
| | - Beatrice Ruta
- Université Lyon, Université Claude Bernard Lyon 1, Centre national de la recherche scientifique, Institut Lumière Matière, Campus LyonTech–La Doua, LyonF-69622, France
| | - Yuriy Chushkin
- European Synchrotron Radiation Facility-The European Synchrotron, GrenobleCS 40220, 38043, France
| | - Federico Zontone
- European Synchrotron Radiation Facility-The European Synchrotron, GrenobleCS 40220, 38043, France
| | - Shubin Li
- Université Lyon, Université Claude Bernard Lyon 1, Centre national de la recherche scientifique, Institut Lumière Matière, Campus LyonTech–La Doua, LyonF-69622, France
| | - Dazhe Xu
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
| | - Tao Liang
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
| | - Zhidan Zeng
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
| | - Ho-kwang Mao
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
- Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments, Shanghai Advanced Research in Physical Sciences, Shanghai201203, China
| | - Qiaoshi Zeng
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
- Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments, Shanghai Advanced Research in Physical Sciences, Shanghai201203, China
| |
Collapse
|
6
|
Donley GJ, Narayanan S, Wade MA, Park JD, Leheny RL, Harden JL, Rogers SA. Investigation of the yielding transition in concentrated colloidal systems via rheo-XPCS. Proc Natl Acad Sci U S A 2023; 120:e2215517120. [PMID: 37094149 PMCID: PMC10161110 DOI: 10.1073/pnas.2215517120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/04/2023] [Indexed: 04/26/2023] Open
Abstract
We probe the microstructural yielding dynamics of a concentrated colloidal system by performing creep/recovery tests with simultaneous collection of coherent scattering data via X-ray Photon Correlation Spectroscopy (XPCS). This combination of rheology and scattering allows for time-resolved observations of the microstructural dynamics as yielding occurs, which can be linked back to the applied rheological deformation to form structure-property relations. Under sufficiently small applied creep stresses, examination of the correlation in the flow direction reveals that the scattering response recorrelates with its predeformed state, indicating nearly complete microstructural recovery, and the dynamics of the system under these conditions slows considerably. Conversely, larger creep stresses increase the speed of the dynamics under both applied creep and recovery. The data show a strong connection between the microstructural dynamics and the acquisition of unrecoverable strain. By comparing this relationship to that predicted from homogeneous, affine shearing, we find that the yielding transition in concentrated colloidal systems is highly heterogeneous on the microstructural level.
Collapse
Affiliation(s)
- Gavin J. Donley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Physics & Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC20057
- Infrastructure Materials Group, Materials and Structural Systems Division, Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD20899
| | - Suresh Narayanan
- X-ray Science Division, Argonne National Laboratory, Lemont, IL60439
| | - Matthew A. Wade
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Jun Dong Park
- Department of Chemical Engineering, Sookmyung Women’s University, Seoul04310, Korea
| | - Robert L. Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD21218
| | - James L. Harden
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Simon A. Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
7
|
Mendoza-Méndez P, Peredo-Ortiz R, Lázaro-Lázaro E, Chávez-Paez M, Ruiz-Estrada H, Pacheco-Vázquez F, Medina-Noyola M, Elizondo-Aguilera LF. Structural relaxation, dynamical arrest, and aging in soft-sphere liquids. J Chem Phys 2022; 157:244504. [PMID: 36586975 DOI: 10.1063/5.0121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We investigate the structural relaxation of a soft-sphere liquid quenched isochorically (ϕ = 0.7) and instantaneously to different temperatures Tf above and below the glass transition. For this, we combine extensive Brownian dynamics simulations and theoretical calculations based on the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory. The response of the liquid to a quench generally consists of a sub-linear increase of the α-relaxation time with system's age. Approaching the ideal glass-transition temperature from above (Tf > Ta), sub-aging appears as a transient process describing a broad equilibration crossover for quenches to nearly arrested states. This allows us to empirically determine an equilibration timescale teq(Tf) that becomes increasingly longer as Tf approaches Ta. For quenches inside the glass (Tf ≤ Ta), the growth rate of the structural relaxation time becomes progressively larger as Tf decreases and, unlike the equilibration scenario, τα remains evolving within the whole observation time-window. These features are consistently found in theory and simulations with remarkable semi-quantitative agreement and coincide with those revealed in a previous and complementary study [P. Mendoza-Méndez et al., Phys. Rev. 96, 022608 (2017)] that considered a sequence of quenches with fixed final temperature Tf = 0 but increasing ϕ toward the hard-sphere dynamical arrest volume fraction ϕHS a=0.582. The NE-SCGLE analysis, however, unveils various fundamental aspects of the glass transition, involving the abrupt passage from the ordinary equilibration scenario to the persistent aging effects that are characteristic of glass-forming liquids. The theory also explains that, within the time window of any experimental observation, this can only be observed as a continuous crossover.
Collapse
Affiliation(s)
- P Mendoza-Méndez
- Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado Postal 1152, CP 72570 Puebla, Mexico
| | - R Peredo-Ortiz
- Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado Postal 1152, CP 72570 Puebla, Mexico
| | - E Lázaro-Lázaro
- Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado Postal 1152, CP 72570 Puebla, Mexico
| | - M Chávez-Paez
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, Mexico
| | - H Ruiz-Estrada
- Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado Postal 1152, CP 72570 Puebla, Mexico
| | - F Pacheco-Vázquez
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla, Mexico
| | - M Medina-Noyola
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, Mexico
| | - L F Elizondo-Aguilera
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla, Mexico
| |
Collapse
|
8
|
Abstract
Arrested soft materials such as gels and glasses exhibit a slow stress relaxation with a broad distribution of relaxation times in response to linear mechanical perturbations. Although this macroscopic stress relaxation is an essential feature in the application of arrested systems as structural materials, consumer products, foods, and biological materials, the microscopic origins of this relaxation remain poorly understood. Here, we elucidate the microscopic dynamics underlying the stress relaxation of such arrested soft materials under both quiescent and mechanically perturbed conditions through X-ray photon correlation spectroscopy. By studying the dynamics of a model associative gel system that undergoes dynamical arrest in the absence of aging effects, we show that the mean stress relaxation time measured from linear rheometry is directly correlated to the quiescent superdiffusive dynamics of the microscopic clusters, which are governed by a buildup of internal stresses during arrest. We also show that perturbing the system via small mechanical deformations can result in large intermittent fluctuations in the form of avalanches, which give rise to a broad non-Gaussian spectrum of relaxation modes at short times that is observed in stress relaxation measurements. These findings suggest that the linear viscoelastic stress relaxation in arrested soft materials may be governed by nonlinear phenomena involving an interplay of internal stress relaxations and perturbation-induced intermittent avalanches.
Collapse
|
9
|
Spieckermann F, Şopu D, Soprunyuk V, Kerber MB, Bednarčík J, Schökel A, Rezvan A, Ketov S, Sarac B, Schafler E, Eckert J. Structure-dynamics relationships in cryogenically deformed bulk metallic glass. Nat Commun 2022; 13:127. [PMID: 35013192 PMCID: PMC8748940 DOI: 10.1038/s41467-021-27661-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
The atomistic mechanisms occurring during the processes of aging and rejuvenation in glassy materials involve very small structural rearrangements that are extremely difficult to capture experimentally. Here we use in-situ X-ray diffraction to investigate the structural rearrangements during annealing from 77 K up to the crystallization temperature in Cu44Zr44Al8Hf2Co2 bulk metallic glass rejuvenated by high pressure torsion performed at cryogenic temperatures and at room temperature. Using a measure of the configurational entropy calculated from the X-ray pair correlation function, the structural footprint of the deformation-induced rejuvenation in bulk metallic glass is revealed. With synchrotron radiation, temperature and time resolutions comparable to calorimetric experiments are possible. This opens hitherto unavailable experimental possibilities allowing to unambiguously correlate changes in atomic configuration and structure to calorimetrically observed signals and can attribute those to changes of the dynamic and vibrational relaxations (α-, β- and γ-transition) in glassy materials. The results suggest that the structural footprint of the β-transition is related to entropic relaxation with characteristics of a first-order transition. Dynamic mechanical analysis data shows that in the range of the β-transition, non-reversible structural rearrangements are preferentially activated. The low-temperature γ-transition is mostly triggering reversible deformations and shows a change of slope in the entropic footprint suggesting second-order characteristics. Understanding of the atomic-scale mechanisms of rejuvenation of bulk metallic glass still remains unclear. Here, using configurational entropy derived from X-ray experiments, authors show a clear picture of the relaxation process during annealing of a metallic glass.
Collapse
Affiliation(s)
- Florian Spieckermann
- Department of Materials Science, Chair of Materials Physics, Montanuniversität Leoben, Jahnstraße 12, 8700, Leoben, Austria.
| | - Daniel Şopu
- Erich Schmid Institute of Materials Science of the Austrian Academy of Sciences, Jahnstraße 12, 8700, Leoben, Austria.,Institut für Materialwissenschaft, Fachgebiet Materialmodellierung, Technische Universität Darmstadt, Otto-Berndt-Strasse 3, Darmstadt, D-64287, Germany
| | - Viktor Soprunyuk
- Erich Schmid Institute of Materials Science of the Austrian Academy of Sciences, Jahnstraße 12, 8700, Leoben, Austria.,Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Michael B Kerber
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Jozef Bednarčík
- Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany.,P. J. Šafarik University in Košice, Faculty of Science, Institute of Physics, Park Angelinum 9, 041 54, Košice, Slovakia
| | - Alexander Schökel
- Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - Amir Rezvan
- Erich Schmid Institute of Materials Science of the Austrian Academy of Sciences, Jahnstraße 12, 8700, Leoben, Austria
| | - Sergey Ketov
- Erich Schmid Institute of Materials Science of the Austrian Academy of Sciences, Jahnstraße 12, 8700, Leoben, Austria
| | - Baran Sarac
- Erich Schmid Institute of Materials Science of the Austrian Academy of Sciences, Jahnstraße 12, 8700, Leoben, Austria
| | - Erhard Schafler
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Jürgen Eckert
- Department of Materials Science, Chair of Materials Physics, Montanuniversität Leoben, Jahnstraße 12, 8700, Leoben, Austria.,Erich Schmid Institute of Materials Science of the Austrian Academy of Sciences, Jahnstraße 12, 8700, Leoben, Austria
| |
Collapse
|
10
|
Liu C, Fan Y. Emergent Fractal Energy Landscape as the Origin of Stress-Accelerated Dynamics in Amorphous Solids. PHYSICAL REVIEW LETTERS 2021; 127:215502. [PMID: 34860096 DOI: 10.1103/physrevlett.127.215502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/23/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The ageing dynamics in a multiplicity of metastable glasses are investigated at various thermomechanical conditions. By using data analytics to deconvolute the integral effects of environmental factors (e.g., energy level, temperature, stress), and by directly scrutinizing the minimum energy pathways for local excitations, we demonstrate external shear would make the system's energy landscape surprisingly fractal and create an emergent low-barrier mode with highly tortuous pathways, leading to an accelerated relaxation. This finding marks a departure from the classic picture of shear-induced simple bias of energy landscape. The insights and implications of this study are also discussed.
Collapse
Affiliation(s)
- Chaoyi Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yue Fan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
11
|
Hoshino T, Okamoto Y, Yamamoto A, Masunaga H. Heterogeneous dynamics in the curing process of epoxy resins. Sci Rep 2021; 11:9767. [PMID: 34001939 PMCID: PMC8129072 DOI: 10.1038/s41598-021-89155-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
Epoxy resin is indispensable for modern industry because of its excellent mechanical properties, chemical resistance, and excellent moldability. To date, various methods have been used to investigate the physical properties of the cured product and the kinetics of the curing process, but its microscopic dynamics have been insufficiently studied. In this study, the microscopic dynamics in the curing process of a catalytic epoxy resin were investigated under different temperature conditions utilizing X-ray photon correlation spectroscopy. Our results revealed that the temperature conditions greatly affected the dynamical heterogeneity and cross-linking density of the cured materials. An overview of the microscopic mechanism of the curing process was clearly presented through comparison with the measurement results of other methods, such as 1H-pulse nuclear magnetic resonance spectroscopy. The quantification of such heterogeneous dynamics is particularly useful for optimizing the curing conditions of various materials to improve their physical properties.
Collapse
Affiliation(s)
- Taiki Hoshino
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
| | - Yasushi Okamoto
- DENSO CORPORATION, 1-1, Showa-cho, Kariya, Aichi, 448-8661, Japan
| | - Atsushi Yamamoto
- DENSO CORPORATION, 1-1, Showa-cho, Kariya, Aichi, 448-8661, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| |
Collapse
|
12
|
Zhang Q, Dufresne EM, Nakaye Y, Jemian PR, Sakumura T, Sakuma Y, Ferrara JD, Maj P, Hassan A, Bahadur D, Ramakrishnan S, Khan F, Veseli S, Sandy AR, Schwarz N, Narayanan S. 20 µs-resolved high-throughput X-ray photon correlation spectroscopy on a 500k pixel detector enabled by data-management workflow. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:259-265. [PMID: 33399576 DOI: 10.1107/s1600577520014319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
The performance of the new 52 kHz frame rate Rigaku XSPA-500k detector was characterized on beamline 8-ID-I at the Advanced Photon Source at Argonne for X-ray photon correlation spectroscopy (XPCS) applications. Due to the large data flow produced by this detector (0.2 PB of data per 24 h of continuous operation), a workflow system was deployed that uses the Advanced Photon Source data-management (DM) system and high-performance software to rapidly reduce area-detector data to multi-tau and two-time correlation functions in near real time, providing human-in-the-loop feedback to experimenters. The utility and performance of the workflow system are demonstrated via its application to a variety of small-angle XPCS measurements acquired from different detectors in different XPCS measurement modalities. The XSPA-500k detector, the software and the DM workflow system allow for the efficient acquisition and reduction of up to ∼109 area-detector data frames per day, facilitating the application of XPCS to measuring samples with weak scattering and fast dynamics.
Collapse
Affiliation(s)
- Qingteng Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Eric M Dufresne
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Yasukazu Nakaye
- XRD Design and Engineering Department, Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo, Japan
| | - Pete R Jemian
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Takuto Sakumura
- XRD Design and Engineering Department, Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo, Japan
| | - Yasutaka Sakuma
- XRD Design and Engineering Department, Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo, Japan
| | - Joseph D Ferrara
- XRD Design and Engineering Department, Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo, Japan
| | - Piotr Maj
- AGH University of Science and Technology, av. Mickiewicza 30, Krakow 30-059, Poland
| | - Asra Hassan
- Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
| | - Divya Bahadur
- Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
| | - Subramanian Ramakrishnan
- Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
| | - Faisal Khan
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Sinisa Veseli
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Alec R Sandy
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Nicholas Schwarz
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Suresh Narayanan
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| |
Collapse
|
13
|
Amadei F, Thoma J, Czajor J, Kimmle E, Yamamoto A, Abuillan W, Konovalov OV, Chushkin Y, Tanaka M. Ion-Mediated Cross-linking of Biopolymers Confined at Liquid/Liquid Interfaces Probed by In Situ High-Energy Grazing Incidence X-ray Photon Correlation Spectroscopy. J Phys Chem B 2020; 124:8937-8942. [PMID: 32876453 DOI: 10.1021/acs.jpcb.0c07056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As manifested in biological cell membranes, the confinement of chemical reactions at the 2D interfaces significantly improves the reaction efficacy. The interface between two liquid phases is used in various key processes in industries, such as in food emulsification and floatation. However, monitoring the changes in the mechanics and dynamics of molecules confined at the liquid/liquid interfaces still remains a scientific challenge because it is nontrivial to access the interface buried under a liquid phase. Herein, we report the in situ monitoring of the cross-linking of polyalginate mediated by Ca2+ ions at the oil/water interface by grazing incidence X-ray photon correlation spectroscopy (GIXPCS). We first optimized the reaction conditions with the aid of interfacial shear rheology and then performed GIXPCS using a high-energy synchrotron X-ray beam (22 keV) that guarantees sufficiently high transmittance through the oil phase. The intensity autocorrelation functions implied that the formation of a percolated network of polyalginate is accompanied by increasing relaxation time. Moreover, the relaxation rate scales linearly with the momentum transfer parallel to the interface, suggesting that the process is driven by hyperdiffusive propagation but not by Brownian diffusion. Our data indicated that high-energy GIXPCS has potential for in situ monitoring of changes in the dynamics of polymers confined between two liquid phases.
Collapse
Affiliation(s)
- Federico Amadei
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Judith Thoma
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Julian Czajor
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Esther Kimmle
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Wasim Abuillan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Oleg V Konovalov
- European Synchrotron Radiation Facility, CS 40220, Grenoble 38043, France
| | - Yuriy Chushkin
- European Synchrotron Radiation Facility, CS 40220, Grenoble 38043, France
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany.,Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|