1
|
Kuhlisch C, Shemi A, Barak-Gavish N, Schatz D, Vardi A. Algal blooms in the ocean: hot spots for chemically mediated microbial interactions. Nat Rev Microbiol 2024; 22:138-154. [PMID: 37833328 DOI: 10.1038/s41579-023-00975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
The cycling of major nutrients in the ocean is affected by large-scale phytoplankton blooms, which are hot spots of microbial life. Diverse microbial interactions regulate bloom dynamics. At the single-cell level, interactions between microorganisms are mediated by small molecules in the chemical crosstalk that determines the type of interaction, ranging from mutualism to pathogenicity. Algae interact with viruses, bacteria, parasites, grazers and other algae to modulate algal cell fate, and these interactions are dependent on the environmental context. Recent advances in mass spectrometry and single-cell technologies have led to the discovery of a growing number of infochemicals - metabolites that convey information - revealing the ability of algal cells to govern biotic interactions in the ocean. The diversity of infochemicals seems to account for the specificity in cellular response during microbial communication. Given the immense impact of algal blooms on biogeochemical cycles and climate regulation, a major challenge is to elucidate how microscale interactions control the fate of carbon and the recycling of major elements in the ocean. In this Review, we discuss microbial interactions and the role of infochemicals in algal blooms. We further explore factors that can impact microbial interactions and the available tools to decipher them in the natural environment.
Collapse
Affiliation(s)
- Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Barak-Gavish
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Lauritano C, Galasso C. Microbial Interactions between Marine Microalgae and Fungi: From Chemical Ecology to Biotechnological Possible Applications. Mar Drugs 2023; 21:md21050310. [PMID: 37233504 DOI: 10.3390/md21050310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Chemical interactions have been shown to regulate several marine life processes, including selection of food sources, defense, behavior, predation, and mate recognition. These chemical communication signals have effects not only at the individual scale, but also at population and community levels. This review focuses on chemical interactions between marine fungi and microalgae, summarizing studies on compounds synthetized when they are cultured together. In the current study, we also highlight possible biotechnological outcomes of the synthetized metabolites, mainly for human health applications. In addition, we discuss applications for bio-flocculation and bioremediation. Finally, we point out the necessity of further investigating microalgae-fungi chemical interactions because it is a field still less explored compared to microalga-bacteria communication and, considering the promising results obtained until now, it is worthy of further research for scientific advancement in both ecology and biotechnology fields.
Collapse
Affiliation(s)
- Chiara Lauritano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton n. 55, 80133 Naples, Italy
| | - Christian Galasso
- Department of Ecosustainable Marine Biotechnology, Calabria Marine Centre, Stazione Zoologica Anton Dohrn, C. da Torre Spaccata, 87071 Amendolara, Italy
| |
Collapse
|
3
|
Buaya A, Thines M. Miracula blauvikensis: a new species of Miracula from Iceland, and report of a co-cultivation system for studying oomycete-diatom interactions. Fungal Syst Evol 2022; 10:169-175. [PMID: 36741555 PMCID: PMC9875693 DOI: 10.3114/fuse.2022.10.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
The genus Miracula represents an early-diverging lineage of diatom-parasitic Oomycota, straminipilous eukaryotes that have evolved fungal features independent from the opisthokont Fungi. Recent studies have revealed that diatom parasitoids are much more species-rich than previously thought and may play an important role in limnic and marine ecosystems. Of the different diatom-parasitic lineages, the genus Miracula is one of the most abundant in marine ecosystems. Here a species of Miracula parasitising Fragilaria capucina s.l. from Iceland is described as Miracula blauvikensis. In addition, its phylogenetic position is clarified and its life-cycle documented. The species has been brought into co-cultivation with its host, and due to the ease of cultivation and the convenient microscopy of the diatom threads, this co-culture might be a useful tool to study oomycete-diatom interactions in the future. Citation: Buaya A, Thines M (2022). Miracula blauvikensis: a new species of Miracula from Iceland, and report of a co-cultivation system for studying oomycete-diatom interactions. Fungal Systematics and Evolution 10: 169-175. doi: 10.3114/fuse.2022.10.07.
Collapse
Affiliation(s)
- A. Buaya
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany,*Corresponding authors: ,
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany,Goethe University Frankfurt am Main, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany,*Corresponding authors: ,
| |
Collapse
|
4
|
Deng Y, Mauri M, Vallet M, Staudinger M, Allen RJ, Pohnert G. Dynamic Diatom-Bacteria Consortia in Synthetic Plankton Communities. Appl Environ Microbiol 2022; 88:e0161922. [PMID: 36300970 PMCID: PMC9680611 DOI: 10.1128/aem.01619-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/20/2022] Open
Abstract
Microalgae that form phytoplankton live and die in a complex microbial consortium in which they co-exist with bacteria and other microorganisms. The dynamics of species succession in the plankton depends on the interplay of these partners. Bacteria utilize substrates produced by the phototrophic algae, while algal growth can be supported by bacterial exudates. Bacteria might also use chemical mediators with algicidal properties to attack algae. To elucidate whether specific bacteria play universal or context-specific roles in the interaction with phytoplankton, we investigated the effect of cocultured bacteria on the growth of 8 microalgae. An interaction matrix revealed that the function of a given bacterium is highly dependent on the cocultured partner. We observed no universally algicidal or universally growth-promoting bacteria. The activity of bacteria can even change during the aging of an algal culture from inhibitory to stimulatory or vice versa. We further established a synthetic phytoplankton/bacteria community with the centric diatom, Coscinodiscus radiatus, and 4 phylogenetically distinctive bacterial isolates, Mameliella sp., Roseovarius sp., Croceibacter sp., and Marinobacter sp. Supported by a Lotka-Volterra model, we show that interactions within the consortium are specific and that the sum of the pairwise interactions can explain algal and bacterial growth in the community. No synergistic effects between bacteria in the presence of the diatom was observed. Our survey documents highly species-specific interactions that are dependent on algal fitness, bacterial metabolism, and community composition. This species specificity may underly the high complexity of the multi-species plankton communities observed in nature. IMPORTANCE The marine food web is fueled by phototrophic phytoplankton. These algae are central primary producers responsible for the fixation of ca. 40% of the global CO2. Phytoplankton always co-occur with a diverse bacterial community in nature. This diversity suggests the existence of ecological niches for the associated bacteria. We show that the interaction between algae and bacteria is highly species-specific. Furthermore, both, the fitness stage of the algae and the community composition are relevant in determining the effect of bacteria on algal growth. We conclude that bacteria should not be sorted into algicidal or growth supporting categories; instead, a context-specific function of the bacteria in the plankton must be considered. This functional diversity of single players within a consortium may underly the observed diversity in the plankton.
Collapse
Affiliation(s)
- Yun Deng
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Marco Mauri
- Theoretical Microbial Ecology Group, Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Marine Vallet
- Phytoplankton Community Interactions Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Mona Staudinger
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Rosalind J. Allen
- Theoretical Microbial Ecology Group, Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
- Phytoplankton Community Interactions Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
5
|
Deng Y, Vallet M, Pohnert G. Temporal and Spatial Signaling Mediating the Balance of the Plankton Microbiome. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:239-260. [PMID: 34437810 DOI: 10.1146/annurev-marine-042021-012353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The annual patterns of plankton succession in the ocean determine ecological and biogeochemical cycles. The temporally fluctuating interplay between photosynthetic eukaryotes and the associated microbiota balances the composition of aquatic planktonic ecosystems. In addition to nutrients and abiotic factors, chemical signaling determines the outcome of interactions between phytoplankton and their associated microbiomes. Chemical mediators control essential processes, such as the development of key morphological, physiological, behavioral, and life-history traits during algal growth. These molecules thus impact species succession and community composition across time and space in processes that are highlighted in this review. We focus on spatial, seasonal, and physiological dynamics that occur during the early association of algae with bacteria, the exponential growth of a bloom, and its decline and recycling. We also discuss how patterns from field data and global surveys might be linked to the actions of metabolic markers in natural phytoplankton assemblages.
Collapse
Affiliation(s)
- Yun Deng
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Marine Vallet
- Research Group Phytoplankton Community Interactions, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany;
- Research Group Phytoplankton Community Interactions, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
6
|
Lee SJ, Lee SR. Rapid Detection of Red Rot Disease Pathogens ( Pythium chondricola and P. porphyrae) in Pyropia yezoensis (Rhodophyta) with PCR-RFLP. PLANT DISEASE 2022; 106:30-33. [PMID: 34491096 DOI: 10.1094/pdis-07-21-1494-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Red rot disease is one of the best-known algal diseases infecting red algae Pyropia species. This disease decreases the quality and quantity of Pyropia aquaculture products in Korea, Japan, and China. Recently we found that Pythium chondricola (Oomycetes) infects blades of Pyropia yezoensis. Therefore, two Pythium species (P. chondricola and P. porphyrae) have been reported as red rot disease pathogens. In this study, we developed a species-specific molecular marker for distinguishing between the two red rot disease pathogens. Using a polymerase chain reaction restriction fragment length polymorphism method based on the mitochondrial cytochrome c oxidase subunit 2 (cox2) and nuclear ribosomal RNA large subunit regions, we classified these two Pythium species without a sequencing step. This new method had high specificity and efficiency for detecting red rot disease pathogens at the species level for both of the cultured and field samples. Therefore, the molecular markers developed in this study are effective for long-term monitoring of the infection and distribution pattern of each Pythium species in Pyropia aquaculture farms. Moreover, molecular monitoring can provide useful information for predicting infection and preventing mass mortality of Pyropia species by red rot disease.
Collapse
Affiliation(s)
- Soon Jeong Lee
- Mokpo Regional Office, National Fishery Products Quality Management Service (NFQS), Mokpo, Jeollanam-do 58746, Korea
| | - Sang-Rae Lee
- Marine Research Institute, Pusan National University, Busan 46241, Korea
| |
Collapse
|
7
|
Phylogeny and cultivation of the holocarpic oomycete Diatomophthora perforans comb. nov., an endoparasitoid of marine diatoms. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01569-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractOomycetes infecting diatoms are biotrophic parasitoids and live in both marine and freshwater environments. They are ubiquitous, but the taxonomic affinity of many species remains unclear and the majority of them have not been studied for their molecular phylogeny. Only recently, the phylogenetic and taxonomic placement of some diatom-infecting, early-diverging oomycetes was resolved, including the genera Ectrogella, Miracula, Olpidiopsis, and Pontisma. A group of holocarpic diatom parasitoids with zoospores swarming within the sporangium before release were found to be unrelated to the known genera with diatom-infecting species, and were re-classified to a new genus, Diatomophthora. However, about a dozen species of holocarpic diatom parasitoids with unclear affinity remained unsequenced, which includes a commonly occurring species so far identified as Ectrogella perforans. However, this assignment to Ectrogella is doubtful, as the species was not reported to feature a clear-cut diplanetism, a hallmark of Ectrogella s. str. and the whole class Saprolegniomycetes. It was the aim of the current study to clarify the phylogenetic affinities of the species and if the rather broad host range reported is correct or a reflection of cryptic species. By targeted screening, the parasitoid was rediscovered from Helgoland Roads, North Sea and Oslo Fjord, Southern Norway and investigated for its phylogenetic placement using small ribosomal subunit (18S) sequences. Stages of its life cycle on different marine diatoms were described and its phylogenetic placement in the genus Diatomophthora revealed. A stable host-parasite axenic culture from single spore strains of the parasitoid were established on several strains of Pleurosigma intermedium and Coscinodiscus concinnus. These have been continuously cultivated along with their hosts for more than 2 years, and cultural characteristics are reported. Cross-infection trials revealed the transferability of the strains between hosts under laboratory conditions, despite some genetic distance between the pathogen strains. Thus, we hypothesise that D. perforans might be in the process of active radiation to new host species.
Collapse
|
8
|
Buaya AT, Thines M. Bolbea parasitica gen. et sp. nov., a cultivable holocarpic parasitoid of the early-diverging Saprolegniomycetes. Fungal Syst Evol 2020; 6:129-137. [PMID: 32904153 PMCID: PMC7451777 DOI: 10.3114/fuse.2020.06.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Holocarpic oomycetes convert their entire cytoplasm into zoospores and thus do not form dedicated sporangia or hyphal compartments for asexual reproduction. The majority of holocarpic oomycetes are obligate parasites and parasitoids of a diverse suite of organisms, among them green and red algae, brown seaweeds, diatoms, fungi, oomycetes and invertebrates. Most of them are found among the early diverging oomycetes or the Peronosporomycetes, and some in the early-diverging Saprolegniomycetes (Leptomitales). The obligate parasitism renders it difficult to study some of these organisms. Only a few members of the genus Haliphthoross. l. have been cultured without their hosts, and of the parasitoid Leptomitales, some transient cultures have been established, which are difficult to maintain. Here, the cultivation of a new holocarpic oomycete genus of the Leptomitales, Bolbea, is presented. Bolbea is parasitic to ostracods, is readily cultivable on malt extract agar, and upon contact with water converts its cytoplasm into zoospores. Its morphology and phylogenetic relationships are reported. Due to the ease of cultivation and the ready triggering of zoospore development, similar to some lagenidiaceous oomycetes, the species could be a promising model to study sporulation processes in detail.
Collapse
Affiliation(s)
- A T Buaya
- Goethe-Universität Frankfurt am Main, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, D-60438 Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - M Thines
- Goethe-Universität Frankfurt am Main, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, D-60438 Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany.,LOEWE Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany
| |
Collapse
|