1
|
Kumar A, Sénéchal D, Tremblay AMS. Cluster dynamical mean-field study of intra-unit-cell charge nematicity in hole-doped cuprates. Proc Natl Acad Sci U S A 2025; 122:e2419534122. [PMID: 40030024 PMCID: PMC11912365 DOI: 10.1073/pnas.2419534122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/13/2025] [Indexed: 03/19/2025] Open
Abstract
Recent scanning-tunneling microscopy on hole-doped Bi[Formula: see text]Sr[Formula: see text]CaCu[Formula: see text]O[Formula: see text], one of the materials of the cuprate family, finds a long-range ordered spontaneous splitting of the energy levels of oxygen orbitals inside the CuO[Formula: see text] unit cells [S. Wang et al., Nat. Mat. 23, 492-498 (2024)]. This spontaneous intra-unit-cell orbital ordering, also known as electronic nematicity, breaks [Formula: see text] symmetry and is thought to arise from the Coulomb interaction (denoted by [Formula: see text]) between oxygen [Formula: see text] and [Formula: see text] electrons. In this work, we study the spontaneous emergence of electronic nematicity within the three-band Hubbard [aka the Emery-VSA (Varma-Schmitt-Rink-Abrahams) model], using cluster dynamical mean-field theory. This method incorporates short-range electronic correlations and gives us access to the density of states, a quantity that is directly probed in experiments. We argue that there is a delicate competition between [Formula: see text] and [Formula: see text] (the latter being the Coulomb interaction between copper [Formula: see text] and oxygen [Formula: see text] electrons) that must be taken into account in order to find a Zhang-Rice singlet band well-resolved from the upper Hubbard band, and a splitting of the charge-transfer band (one of the signatures of charge nematicity) by roughly 50 meV, as observed recently.
Collapse
Affiliation(s)
- Abhishek Kumar
- Département de physique and Institut Quantique, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
| | - David Sénéchal
- Département de physique and Institut Quantique, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
| | - A.-M. S. Tremblay
- Département de physique and Institut Quantique, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
| |
Collapse
|
2
|
Bluschke M, Gupta NK, Jang H, Husain AA, Lee B, Kim M, Na M, Dos Remedios B, Smit S, Moen P, Park SY, Kim M, Jang D, Choi H, Sutarto R, Reid AH, Dakovski GL, Coslovich G, Nguyen QL, Burdet NG, Lin MF, Revcolevschi A, Park JH, Geck J, Turner JJ, Damascelli A, Hawthorn DG. Orbital-selective time-domain signature of nematicity dynamics in the charge-density-wave phase of La 1.65Eu 0.2Sr 0.15CuO 4. Proc Natl Acad Sci U S A 2024; 121:e2400727121. [PMID: 38819998 PMCID: PMC11161785 DOI: 10.1073/pnas.2400727121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
Understanding the interplay between charge, nematic, and structural ordering tendencies in cuprate superconductors is critical to unraveling their complex phase diagram. Using pump-probe time-resolved resonant X-ray scattering on the (0 0 1) Bragg peak at the Cu [Formula: see text] and O [Formula: see text] resonances, we investigate nonequilibrium dynamics of [Formula: see text] nematic order and its association with both charge density wave (CDW) order and lattice dynamics in La[Formula: see text]Eu[Formula: see text]Sr[Formula: see text]CuO[Formula: see text]. The orbital selectivity of the resonant X-ray scattering cross-section allows nematicity dynamics associated with the planar O 2[Formula: see text] and Cu 3[Formula: see text] states to be distinguished from the response of anisotropic lattice distortions. A direct time-domain comparison of CDW translational-symmetry breaking and nematic rotational-symmetry breaking reveals that these broken symmetries remain closely linked in the photoexcited state, consistent with the stability of CDW topological defects in the investigated pump fluence regime.
Collapse
Affiliation(s)
- Martin Bluschke
- Quantum Matter Institute, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - Naman K. Gupta
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ONN2L 3G1, Canada
| | - Hoyoung Jang
- X-ray Free Electron Laser Beamline Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang37673, Gyeongbuk, Republic of Korea
- Photon Science Center, Pohang University of Science and Technology, Pohang37673, Gyeongbuk, Republic of Korea
| | - Ali. A. Husain
- Quantum Matter Institute, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - Byungjune Lee
- Max Planck - Pohang University of Science and Technology/Korea Research Initiative, Center for Complex Phase Materials, Pohang37673, Republic of Korea
- Department of Physics, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Minjune Kim
- Quantum Matter Institute, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - MengXing Na
- Quantum Matter Institute, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - Brandon Dos Remedios
- Quantum Matter Institute, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - Steef Smit
- Quantum Matter Institute, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - Peter Moen
- Quantum Matter Institute, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - Sang-Youn Park
- X-ray Free Electron Laser Beamline Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang37673, Gyeongbuk, Republic of Korea
| | - Minseok Kim
- X-ray Free Electron Laser Beamline Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang37673, Gyeongbuk, Republic of Korea
| | - Dogeun Jang
- X-ray Free Electron Laser Beamline Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang37673, Gyeongbuk, Republic of Korea
| | - Hyeongi Choi
- X-ray Free Electron Laser Beamline Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang37673, Gyeongbuk, Republic of Korea
| | | | - Alexander H. Reid
- Linac Coherent Light Source, Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, CA94025
| | - Georgi L. Dakovski
- Linac Coherent Light Source, Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, CA94025
| | - Giacomo Coslovich
- Linac Coherent Light Source, Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, CA94025
| | - Quynh L. Nguyen
- Linac Coherent Light Source, Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, CA94025
- Stanford PULSE Institute, Stanford University and Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, CA94025
| | - Nicolas G. Burdet
- Linac Coherent Light Source, Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, CA94025
- Stanford Institute for Materials and Energy Sciences, Stanford Linear Accelerator Center National Accelerator Laboratory and Stanford University, Menlo Park, CA94025
| | - Ming-Fu Lin
- Linac Coherent Light Source, Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, CA94025
| | - Alexandre Revcolevschi
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, Université Paris-Saclay, Centre National de la Recherche Scientifique, UMR 8182, 91405Orsay, France
| | - Jae-Hoon Park
- Max Planck - Pohang University of Science and Technology/Korea Research Initiative, Center for Complex Phase Materials, Pohang37673, Republic of Korea
- Department of Physics, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Jochen Geck
- Institute of Solid State and Materials Physics, Technische Universität Dresden, 01069Dresden, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062Dresden, Germany
| | - Joshua J. Turner
- Linac Coherent Light Source, Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, CA94025
- Stanford Institute for Materials and Energy Sciences, Stanford Linear Accelerator Center National Accelerator Laboratory and Stanford University, Menlo Park, CA94025
| | - Andrea Damascelli
- Quantum Matter Institute, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - David G. Hawthorn
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ONN2L 3G1, Canada
| |
Collapse
|
3
|
Wang S, Kennedy N, Fujita K, Uchida SI, Eisaki H, Johnson PD, Davis JCS, O'Mahony SM. Discovery of orbital ordering in Bi 2Sr 2CaCu 2O 8+x. NATURE MATERIALS 2024; 23:492-498. [PMID: 38438620 PMCID: PMC10990940 DOI: 10.1038/s41563-024-01817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 01/22/2024] [Indexed: 03/06/2024]
Abstract
The primordial ingredient of cuprate superconductivity is the CuO2 unit cell. Theories usually concentrate on the intra-atom Coulombic interactions dominating the 3d9 and 3d10 configurations of each copper ion. However, if Coulombic interactions also occur between electrons of the 2p6 orbitals of each planar oxygen atom, spontaneous orbital ordering may split their energy levels. This long-predicted intra-unit-cell symmetry breaking should generate an orbitally ordered phase, for which the charge transfer energy ε separating the 2p6 and 3d10 orbitals is distinct for the two oxygen atoms. Here we introduce sublattice-resolved ε(r) imaging to CuO2 studies and discover intra-unit-cell rotational symmetry breaking of ε(r). Spatially, this state is arranged in disordered Ising domains of orthogonally oriented orbital order bounded by dopant ions, and within whose domain walls low-energy electronic quadrupolar two-level systems occur. Overall, these data reveal a Q = 0 orbitally ordered state that splits the oxygen energy levels by ~50 meV, in underdoped CuO2.
Collapse
Affiliation(s)
- Shuqiu Wang
- Clarendon Laboratory, University of Oxford, Oxford, UK.
- Department of Physics, Cornell University, Ithaca, NY, USA.
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, UK.
| | - Niall Kennedy
- Clarendon Laboratory, University of Oxford, Oxford, UK
- School of Physics, University College Cork, Cork, Ireland
| | - Kazuhiro Fujita
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | | | - Hiroshi Eisaki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Peter D Johnson
- Clarendon Laboratory, University of Oxford, Oxford, UK
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - J C Séamus Davis
- Clarendon Laboratory, University of Oxford, Oxford, UK.
- Department of Physics, Cornell University, Ithaca, NY, USA.
- School of Physics, University College Cork, Cork, Ireland.
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
| | | |
Collapse
|
4
|
Yuan J, Shi L, Yue L, Li B, Wang Z, Xu S, Xu T, Wang Y, Gan Z, Chen F, Lin Z, Wang X, Jin K, Wang X, Luo J, Zhang S, Wu Q, Liu Q, Hu T, Li R, Zhou X, Wu D, Dong T, Wang N. Dynamical interplay between superconductivity and pseudogap in cuprates as revealed by terahertz third-harmonic generation spectroscopy. SCIENCE ADVANCES 2024; 10:eadg9211. [PMID: 38335284 PMCID: PMC10857425 DOI: 10.1126/sciadv.adg9211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
We report on nonlinear terahertz third-harmonic generation (THG) measurements on YBa2Cu3O6+x thin films. Different from conventional superconductors, the THG signal starts to appear in the normal state, which is consistent with the crossover temperature T* of pseudogap over broad doping levels. Upon lowering the temperature, the THG signal shows an anomaly just below Tc in the optimally doped sample. Notably, we observe a beat pattern directly in the measured real-time waveform of the THG signal. We elaborate that the Higgs mode, which develops below Tc, couples to the mode already developed below T*, resulting in an energy level splitting. However, this coupling effect is not evident in underdoped samples. We explore different potential explanations for the observed phenomena. Our research offers valuable insight into the interplay between superconductivity and pseudogap.
Collapse
Affiliation(s)
- Jiayu Yuan
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Liyu Shi
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Li Yue
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Bohan Li
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Zixiao Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Shuxiang Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Tiequan Xu
- Applied Superconductivity Center and State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yue Wang
- Applied Superconductivity Center and State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, China
| | - Zizhao Gan
- Applied Superconductivity Center and State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, China
| | - Fucong Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zefeng Lin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Kui Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinbo Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianlin Luo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Sijie Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Qiong Wu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Qiaomei Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Tianchen Hu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Rongsheng Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Xinyu Zhou
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Dong Wu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Tao Dong
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Nanlin Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
| |
Collapse
|
5
|
Botana MM, Ramallo MV. A Scenario for the Critical Fluctuations near the Transition of Few-Bilayer Films of High-Temperature Cuprate Superconductors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4368. [PMID: 36558221 PMCID: PMC9781180 DOI: 10.3390/nano12244368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
We study the critical fluctuations near the resistive transition of very thin films of high-temperature cuprate superconductors composed of a number N of only a few unit cells of superconducting bilayers. For that, we solve the fluctuation spectrum of a Gaussian-Ginzburg-Landau model for few-bilayers superconductors considering two alternating Josephson interlayer interaction strengths, and we obtain the corresponding paraconductivity above the transition. Then, we extend these calculations to temperatures below the transition through expressions for the Ginzburg number and Kosterlitz-Thouless-like critical region. When compared with previously available data in YBa2Cu3O7-δ few-bilayers systems, with N = 1 to 4, our results seem to provide a plausible scenario for their critical regime.
Collapse
Affiliation(s)
- Martín M. Botana
- Quantum Materials and Photonics Research Group (QMatterPhotonics), Department of Particle Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Instituto de Materiais (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel V. Ramallo
- Quantum Materials and Photonics Research Group (QMatterPhotonics), Department of Particle Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Instituto de Materiais (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Xie T, Liu Z, Gu Y, Gong D, Mao H, Liu J, Hu C, Ma X, Yao Y, Zhao L, Zhou X, Schneeloch J, Gu G, Danilkin S, Yang YF, Luo H, Li S. Tracking the nematicity in cuprate superconductors: a resistivity study under uniaxial pressure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:334001. [PMID: 35671749 DOI: 10.1088/1361-648x/ac768c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Overshadowing the superconducting dome in hole-doped cuprates, the pseudogap state is still one of the mysteries that no consensus can be achieved. It has been suggested that the rotational symmetry is broken in this state and may result in a nematic phase transition, whose temperature seems to coincide with the onset temperature of the pseudogap stateT∗around optimal doping level, raising the question whether the pseudogap results from the establishment of the nematic order. Here we report results of resistivity measurements under uniaxial pressure on several hole-doped cuprates, where the normalized slope of the elastoresistivityζcan be obtained as illustrated in iron-based superconductors. The temperature dependence ofζalong particular lattice axis exhibits kink feature atTkand shows Curie-Weiss-like behavior above it, which may suggest a spontaneous nematic transition. WhileTkseems to be the same asT∗around the optimal doping and in the overdoped region, they become very different in underdoped La2-xSrxCuO4. Our results suggest that the nematic order, if indeed existing, is an electronic phase within the pseudogap state.
Collapse
Affiliation(s)
- Tao Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Zhaoyu Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yanhong Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Dongliang Gong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Huican Mao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jing Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Cheng Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xiaoyan Ma
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yuan Yao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Lin Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xingjiang Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - John Schneeloch
- Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Genda Gu
- Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Sergey Danilkin
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Lucas Heights, NSW 2234, Australia
| | - Yi-Feng Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Huiqian Luo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Shiliang Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
7
|
Abstract
SignificanceThe notion of the quantum critical point (QCP) is at the core of modern condensed matter physics. Near a QCP of the symmetry-breaking order, associated quantum-mechanical fluctuations are intensified, which can lead to unconventional superconductivity. Indeed, dome-shaped superconducting phases are often observed near the magnetic QCPs, which supports the spin fluctuation-driven superconductivity. However, the fundamental question remains as to whether a nonmagnetic QCP of electronic nematic order characterized by spontaneous rotational symmetry breaking can promote superconductivity in real materials. Here, we provide an experimental demonstration that a pure nematic QCP exists near the center of a superconducting dome in nonmagnetic FeSe[Formula: see text] Tex. This result evidences that nematic fluctuations enhanced around the nematic QCP can boost superconductivity.
Collapse
|
8
|
Vanishing nematic order beyond the pseudogap phase in overdoped cuprate superconductors. Proc Natl Acad Sci U S A 2021; 118:2106881118. [PMID: 34413195 DOI: 10.1073/pnas.2106881118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the last decade, translational and rotational symmetry-breaking phases-density wave order and electronic nematicity-have been established as generic and distinct features of many correlated electron systems, including pnictide and cuprate superconductors. However, in cuprates, the relationship between these electronic symmetry-breaking phases and the enigmatic pseudogap phase remains unclear. Here, we employ resonant X-ray scattering in a cuprate high-temperature superconductor [Formula: see text] (Nd-LSCO) to navigate the cuprate phase diagram, probing the relationship between electronic nematicity of the Cu 3d orbitals, charge order, and the pseudogap phase as a function of doping. We find evidence for a considerable decrease in electronic nematicity beyond the pseudogap phase, either by raising the temperature through the pseudogap onset temperature T* or increasing doping through the pseudogap critical point, p*. These results establish a clear link between electronic nematicity, the pseudogap, and its associated quantum criticality in overdoped cuprates. Our findings anticipate that electronic nematicity may play a larger role in understanding the cuprate phase diagram than previously recognized, possibly having a crucial role in the phenomenology of the pseudogap phase.
Collapse
|
9
|
Wiecki P, Frachet M, Haghighirad AA, Wolf T, Meingast C, Heid R, Böhmer AE. Emerging symmetric strain response and weakening nematic fluctuations in strongly hole-doped iron-based superconductors. Nat Commun 2021; 12:4824. [PMID: 34376670 PMCID: PMC8355183 DOI: 10.1038/s41467-021-25121-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/25/2021] [Indexed: 11/18/2022] Open
Abstract
Electronic nematicity is often found in unconventional superconductors, suggesting its relevance for electronic pairing. In the strongly hole-doped iron-based superconductors, the symmetry channel and strength of the nematic fluctuations, as well as the possible presence of long-range nematic order, remain controversial. Here, we address these questions using transport measurements under elastic strain. By decomposing the strain response into the appropriate symmetry channels, we demonstrate the emergence of a giant in-plane symmetric contribution, associated with the growth of both strong electronic correlations and the sensitivity of these correlations to strain. We find weakened remnants of the nematic fluctuations that are present at optimal doping, but no change in the symmetry channel of nematic fluctuations with hole doping. Furthermore, we find no indication of a nematic-ordered state in the AFe2As2 (A = K, Rb, Cs) superconductors. These results revise the current understanding of nematicity in hole-doped iron-based superconductors.
Collapse
Affiliation(s)
- P Wiecki
- Karlsruhe Institute of Technology, Institute for Quantum Materials and Technologies, Karlsruhe, Germany
| | - M Frachet
- Karlsruhe Institute of Technology, Institute for Quantum Materials and Technologies, Karlsruhe, Germany
| | - A-A Haghighirad
- Karlsruhe Institute of Technology, Institute for Quantum Materials and Technologies, Karlsruhe, Germany
| | - T Wolf
- Karlsruhe Institute of Technology, Institute for Quantum Materials and Technologies, Karlsruhe, Germany
| | - C Meingast
- Karlsruhe Institute of Technology, Institute for Quantum Materials and Technologies, Karlsruhe, Germany
| | - R Heid
- Karlsruhe Institute of Technology, Institute for Quantum Materials and Technologies, Karlsruhe, Germany
| | - A E Böhmer
- Karlsruhe Institute of Technology, Institute for Quantum Materials and Technologies, Karlsruhe, Germany.
- Institut für Experimentalphysik IV, Ruhr-Universität Bochum, Bochum, Germany.
| |
Collapse
|
10
|
Fermi surface in La-based cuprate superconductors from Compton scattering imaging. Nat Commun 2021; 12:2223. [PMID: 33850119 PMCID: PMC8044246 DOI: 10.1038/s41467-021-22229-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/01/2021] [Indexed: 11/09/2022] Open
Abstract
Compton scattering provides invaluable information on the underlying Fermi surface (FS) and is a powerful tool complementary to angle-resolved photoemission spectroscopy and quantum oscillation measurements. Here we perform high-resolution Compton scattering measurements for La2−xSrxCuO4 with x = 0.08 (Tc = 20 K) at 300 K and 150 K, and image the momentum distribution function in the two-dimensional Brillouin zone. We find that the observed images cannot be reconciled with the conventional hole-like FS believed so far. Instead, our data imply that the FS is strongly deformed by the underlying nematicity in each CuO2 plane, but the bulk FSs recover the fourfold symmetry. We also find an unusually strong temperature dependence of the momentum distribution function, which may originate from the pseudogap formation in the presence of the reconstructed FSs due to the underlying nematicity. Additional measurements for x = 0.15 and 0.30 at 300 K suggest similar FS deformation with weaker nematicity, which nearly vanishes at x = 0.30. Compton scattering provides information on the Fermi surface (FS) hence very useful to understand the electronic structure of high temperature superconductors. Here, Yamase et al. perform Compton scattering measurements on La2−xSrxCuO4 samples and observe deformed FS in CuO2 plane due to nematicity but recovering fourfold symmetry in bulk FS.
Collapse
|
11
|
Bagrov AA, Danilov M, Brener S, Harland M, Lichtenstein AI, Katsnelson MI. Detecting quantum critical points in the t-[Formula: see text] Fermi-Hubbard model via complex network theory. Sci Rep 2020; 10:20470. [PMID: 33235259 PMCID: PMC7686386 DOI: 10.1038/s41598-020-77513-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/27/2020] [Indexed: 11/25/2022] Open
Abstract
A considerable success in phenomenological description of [Formula: see text] superconductors has been achieved within the paradigm of Quantum Critical Point (QCP)-a parental state of a variety of exotic phases that is characterized by dense entanglement and absence of well-defined quasiparticles. However, the microscopic origin of the critical regime in real materials remains an open question. On the other hand, there is a popular view that a single-band t-[Formula: see text] Hubbard model is the minimal model to catch the main relevant physics of superconducting compounds. Here, we suggest that emergence of the QCP is tightly connected with entanglement in real space and identify its location on the phase diagram of the hole-doped t-[Formula: see text] Hubbard model. To detect the QCP we study a weighted graph of inter-site quantum mutual information within a four-by-four plaquette that is solved by exact diagonalization. We demonstrate that some quantitative characteristics of such a graph, viewed as a complex network, exhibit peculiar behavior around a certain submanifold in the parametric space of the model. This method allows us to overcome difficulties caused by finite size effects and to identify precursors of the transition point even on a small lattice, where long-range asymptotics of correlation functions cannot be accessed.
Collapse
Affiliation(s)
- Andrey A. Bagrov
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
- Institute for Molecules and Materials, Radboud University, 6525AJ Nijmegen, The Netherlands
- Theoretical Physics and Applied Mathematics Department, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Mikhail Danilov
- Institute of Theoretical Physics, University of Hamburg, 20355 Hamburg, Germany
| | - Sergey Brener
- Institute of Theoretical Physics, University of Hamburg, 20355 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Malte Harland
- Institute of Theoretical Physics, University of Hamburg, 20355 Hamburg, Germany
| | - Alexander I. Lichtenstein
- Theoretical Physics and Applied Mathematics Department, Ural Federal University, 620002 Yekaterinburg, Russia
- Institute of Theoretical Physics, University of Hamburg, 20355 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Mikhail I. Katsnelson
- Institute for Molecules and Materials, Radboud University, 6525AJ Nijmegen, The Netherlands
- Theoretical Physics and Applied Mathematics Department, Ural Federal University, 620002 Yekaterinburg, Russia
| |
Collapse
|