1
|
Luo P, Li J, Deng YH, Yu P, Wang Y, Peng F, Shao Z. Switchable Chemo-, Regio- and Pseudo-Stereodivergence in Palladium-Catalyzed Cycloaddition of Allenes. Angew Chem Int Ed Engl 2024; 63:e202412179. [PMID: 38990010 DOI: 10.1002/anie.202412179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/12/2024]
Abstract
Here, we report a strategy enabling triple switchable chemo-, regio-, and stereodivergence in newly developed palladium-catalyzed cycloadditions of allenes. An asymmetric pseudo-stereodivergent cycloaddition of allenes bearing a primary leaving group at the α-position, where a dynamic kinetic asymmetric hydroalkoxylation of racemic unactivated allenes was the enantio-determining step, is realized, providing four stereoisomers [(Z,R), (Z,S), (E,S), and (E,R)] containing a di-substituted alkene scaffold and a stereogenic center. By tuning reaction conditions, a mechanistically distinctive cycloaddition is uncovered selectively with the same set of substrates. By switching the position of the leaving group of allenes, a cycloaddition involving an intermolecular O-attack is disclosed. Diverse mechanisms of the cycloaddition reactions of allenes enable rapid access to structurally and stereochemically diverse 3,4-dihydro-2H-1,4-benzoxazines in high efficiency and selectivity.
Collapse
Affiliation(s)
- Pengfei Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Jinxia Li
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yingcheng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Fangzhi Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
2
|
Khajuria C, Saini N, Subba P, Singh VK. Asymmetric Cascade Dearomatization-Cyclization Reaction of Tryptamines with β,γ-Alkynyl-α-imino Esters: Access to Hexahydropyrrolo[2,3- b]indole-Containing Tetrasubstituted α-Amino Allenoates. J Org Chem 2024; 89:10148-10162. [PMID: 38959521 DOI: 10.1021/acs.joc.4c01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
An organocatalytic enantio- and diastereoselective synthesis of hexahydropyrrolo[2,3-b]indole-containing tetrasubstituted α-amino allenoates, exhibiting both axial and central chirality, has been accomplished via cascade dearomatization-cyclization reaction. The γ-addition to β,γ-alkynyl-α-imino esters provides a library of densely substituted highly enantioenriched allenes in high yields and excellent stereoselectivities. In addition, the scope of this methodology has been extended to tryptophol as well. A scale-up reaction and synthetic transformations of the products were performed to demonstrate the practical usefulness of this approach.
Collapse
Affiliation(s)
- Chhavi Khajuria
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Nidhi Saini
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Parbat Subba
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
3
|
Zhang J, Liu Y, Liu M, Wang Z, Qi T, Zhang M, Shi H, Song J. Carboxylic acid isomer-directed synthesis of CdS nanocluster isomers. Chem Sci 2024; 15:10585-10591. [PMID: 38994410 PMCID: PMC11234825 DOI: 10.1039/d4sc01569j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Selective synthesis of nanocluster (NC) isomers with tailored structures holds significant importance for enhancing their applications. Here, we develop an effective strategy for the selective synthesis of CdS NC isomers through the judicious choice of a pair of carboxylic acid isomer additives. Specifically, CdS NC-312 and NC-323 (denoted by their UV-vis absorption peak position) could be selectively produced by introducing a conventional mixture of Cd and S precursors, with the addition of 2-methylbutyric acid (2-MA) and 3-methylbutyric acid (3-MA), respectively. The synthesized NC isomers demonstrated a precise isomeric relationship, sharing both the isomeric inorganic core and organic surface. Alternatively, the as-synthesized NCs were interconvertible by re-adding the acid isomers. The density functional theory calculations further support that 2-MA and 3-MA have specific selectivity for producing CdS NC isomers by interfacial tuning. Finally, the generality of this methodology was also evidenced with applications in other CdS NC synthetic systems. This study unveils the intriguing correlation between additive structures and the configuration of NCs, providing a foundation for the selective synthesis of NC isomers.
Collapse
Affiliation(s)
- Jing Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu 610059 P. R. China
| | - Yu Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu 610059 P. R. China
| | - Mingyang Liu
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Zhenzhu Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu 610059 P. R. China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University Chengdu 610106 P. R. China
| | - Mingming Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Hao Shi
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu 610059 P. R. China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
4
|
Ren Y, Du M, Peng Z, Zheng C, Zhao G. Asymmetric aza-Henry reaction toward trifluoromethyl β-nitroamines and biological investigation of their adamantane-type derivatives. Front Chem 2024; 12:1398946. [PMID: 38800577 PMCID: PMC11116722 DOI: 10.3389/fchem.2024.1398946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Amino acid-derived quaternary ammonium salts were successfully applied in the asymmetric aza-Henry reaction of nitromethane to N-Boc trifluoromethyl ketimines. α-Trifluoromethyl β-nitroamines were synthesized in good to excellent yields with moderate to good enantioselectivities. This reaction is distinguished by its mild conditions, low catalyst loading (1 mol%), and catalytic base. It also proceeded on a gram scale without loss of enantioselectivity. The products were transformed to a series of adamantane-type compounds containing chiral trifluoromethylamine fragments. The potent anticancer activities of these compounds against liver cancer HepG2 and melanoma B16F10 were evaluated. Six promising compounds with notable efficacy have potential for further development.
Collapse
Affiliation(s)
- Yi Ren
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengyuan Du
- Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ziyu Peng
- Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gang Zhao
- Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Li Z, Ma C, Wu J, Wang X, Zheng C, Wu X. Copper-Catalyzed Direct Asymmetric Vinylogous Mannich Reaction between β,γ-Alkynyl-α-ketimino Esters and β,γ-Unsaturated N-Acylpyrazoles. Org Lett 2024; 26:1376-1381. [PMID: 38349071 DOI: 10.1021/acs.orglett.3c04292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
We report a Cu(I)-Ph-BPE-catalyzed asymmetric vinylogous Mannich reaction of β,γ-alkynyl-α-ketimino esters with β,γ-unsaturated N-acylpyrazoles. In this process, the Cu(I)-Ph-BPE catalyst activates the β,γ-alkynyl-α-ketimino ester through N,O-coordination, enabling the subsequent nucleophilic addition of a dienolate generated from the β,γ-unsaturated N-acylpyrazole via α-position deprotonation with a catalytic amount of tertiary amine. The reactions gave useful products with very high enantioselectivities. A broad range of substrates with various substituents are tolerated in this reaction. The versatility of this method was demonstrated by a gram-scale reaction, and subsequent elaboration of the Mannich adducts was also provided.
Collapse
Affiliation(s)
- Zhiming Li
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Chicheng Ma
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiangbo Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xuan Wang
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoyu Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Li S, Zhu H, Li L, Chen W, Jiang J, Qu ZW, Grimme S, Zhang YQ. A Nuclearity-Dependent Enantiodivergent Epoxide Opening via Enthalpy-Controlled Mononuclear and Entropy-Controlled Dinuclear (Salen)Titanium Catalysis. Angew Chem Int Ed Engl 2023; 62:e202309525. [PMID: 37489882 DOI: 10.1002/anie.202309525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
A nuclearity-dependent enantiodivergent epoxide opening reaction has been developed, in which both antipodes of chiral alcohol products are selectively accessed by mononuclear (salen)TiIII complex and its self-assembled oxygen-bridged dinuclear counterparts within the same stereogenic ligand scaffold. Kinetic studies based on the Eyring equation revealed an enthalpy-controlled enantio-differentiation mode in mononuclear catalysis, whereas an entropy-controlled one in dinuclear catalysis. DFT calculations outline the origin of the enantiocontrol of the mononuclear catalysis and indicate the actual catalyst species in the dinuclear catalytic system. The mechanistic insights may shed a light on a strategy for stereoswichable asymmetric catalysis utilizing nuclearity-distinct transition-metal complexes.
Collapse
Affiliation(s)
- Shengxiao Li
- Department of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Hui Zhu
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Longfei Li
- Department of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Wanjiao Chen
- Department of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jie Jiang
- Department of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Yong-Qiang Zhang
- Department of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
7
|
Gu C, Tian G, Yin Q, Wu F, Li Z, Wu X. Amide phosphonium salt catalyzed enantioselective Mannich addition of isoxazole-based nucleophiles to β,γ-alkynyl-α-ketimino esters. Org Biomol Chem 2022; 20:3323-3334. [PMID: 35353110 DOI: 10.1039/d2ob00309k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An enantioselective Mannich addition of 3,5-disubstituted 4-nitroisoxazoles to β,γ-alkynyl-α-ketimino esters promoted by an amide phosphonium salt-based catalyst has been developed. N-Cbz-protected ketimino esters with various aryl substituents attached to the alkyne unit were reacted with a series of isoxazoles with different substitution patterns. Chiral tertiary propargylic amine products were obtained with moderate to good yields and enantioselectivities. TIPS- and cyclopropyl-substituted alkynyl ketimines were also examined in the current system and the desired products were obtained with moderate yields and enantioselectivities. The potential scalability and utility of the current protocol were demonstrated by carrying out a relatively larger scale reaction followed by further transformations.
Collapse
Affiliation(s)
- Congzheng Gu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Guangzheng Tian
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Qingyu Yin
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Fan Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Zhiming Li
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Xiaoyu Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| |
Collapse
|
8
|
Bao X, Wang X, Tian JM, Ye X, Wang B, Wang H. Recent advances in the applications of pyrazolone derivatives in enantioselective synthesis. Org Biomol Chem 2022; 20:2370-2386. [PMID: 35234777 DOI: 10.1039/d1ob02426d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pyrazolones and pyrazoles, featuring nitrogen-nitrogen bonds, are two of the most important classes of heterocycles, owing to their widespread occurrence in medicinal chemistry and functional materials. The last decade has witnessed a rapid increase in the construction of chiral pyrazolone and pyrazole derivatives, with the application of pyrazolone derivatives as powerful synthons. Since our last review in 2018, a large number of new achievements has emerged in this area, requiring a timely update. Thus, this review summarizes these elegant achievements based on the multiple reactive sites of different pyrazolone synthons. In addition, important mechanisms and interesting biological investigations relating to the corresponding products are also discussed.
Collapse
Affiliation(s)
- Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xingyue Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jin-Miao Tian
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 112024, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
9
|
Tsou YJ, Sathishkumar N, Chen IT, Lee TA, Chen HT, Han JL. Hydrogen-Bond-Donor-Directed Switching of Enantioselectivity in the Vinylogous Aldol-Cyclization Cascade Reaction of Prostereogenic 3-Alkylidene Oxindoles with Isatins and o-Quinones. J Org Chem 2022; 87:2520-2531. [PMID: 35084858 DOI: 10.1021/acs.joc.1c02421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we reported a hydrogen-bond-donor-directed enantiodivergent vinylogous aldol-cyclization cascade reaction of 3-alkylidene oxindoles with isatins and o-quinones. Both enantiomers can be prepared by thiourea or squaramide cinchona alkaloid bifunctional organocatalysts with the same quinine scaffold. Kinetic study data provided the possible reaction mechanism for the vinylogous aldol-cyclization cascade reaction. The DFT calculation data showed the geometry of the generated dienolates from pronucleophiles dominated the observed switch of enantioselectivity.
Collapse
Affiliation(s)
- Yun-Jie Tsou
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Nadaraj Sathishkumar
- Department of Chemistry, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
| | - I-Ting Chen
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Ting-An Lee
- Department of Chemistry, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
| | - Hsin-Tsung Chen
- Department of Chemistry, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
| | - Jeng-Liang Han
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan
| |
Collapse
|
10
|
Ciber L, Ričko S, Gregorc J, Pozgan F, Svete J, Brodnik H, Štefane B, Grošelj U. Mechanistic Insights into Annulation of Arylidene‐Δ2‐pyrrolin‐4‐ones by Cinchona Squaramide‐Based Organocatalysts. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Luka Ciber
- University of Ljubljana, Faculty of Chemistry and Chemical Technology SLOVENIA
| | - Sebastijan Ričko
- Univerza v Ljubljani Fakulteta za Kemijo in Kemijsko tehnologijo SLOVENIA
| | - Jure Gregorc
- University of Ljubljana Faculty of Chemistry and Chemical Technology SLOVENIA
| | | | | | | | | | - Uroš Grošelj
- University of Ljubljana Faculty of Chemistry and Chemical Technology SLOVENIA
| |
Collapse
|
11
|
Sun Z, Chen L, Qiu KX, Liu B, Li H, Yu F. Enantioselective Peroxidation of C-Alkynyl Imines Enabled by Chiral BINOL Calcium Phosphate. Chem Commun (Camb) 2022; 58:3035-3038. [DOI: 10.1039/d1cc07156d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we reported a catalytic enantioselective addition of C-alkynyl imines with hydroperoxides catalyzd by chiral BINOL calcium phosphate, affording a broad range of enantioenriched α-peroxy propargylamines in good yields (80-99%)...
Collapse
|
12
|
Yuan H, Wang J. Constructing Furan-Fused Dihydropiperidines with an Alkyne-Substituted Aza-quaternary Stereocenter via Rh(II)-Catalyzed Desymmetric Cycloisomerization. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Li M, Chen Y, Yan Y, Liu M, Huang M, Li W, Cao L, Zhang X. Organocatalytic asymmetric synthesis of quaternary α-isoxazole–α-alkynyl amino acid derivatives. Org Biomol Chem 2022; 20:8849-8854. [DOI: 10.1039/d2ob01746f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chiral phosphoric acid catalyzed enantioselective addition of 5-amino-isoxazoles with β,γ-alkynyl-α-ketimino esters provided good yields and excellent enantioselectivities.
Collapse
Affiliation(s)
- Min Li
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yihua Chen
- Department of Chemistry, Xihua University, China
| | - Yingkun Yan
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Liu
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Huang
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhe Li
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lianyi Cao
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomei Zhang
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Iazzetti A, Mazzoccanti G, Bencivenni G, Righi P, Calcaterra A, Villani C, Ciogli A. Primary Amine Catalyzed Activation of Carbonyl Compounds: A Study on Reaction Pathways and Reactive Intermediates by Mass Spectrometry. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Antonia Iazzetti
- Department of Basic Biotechnological Sciences Intensivological and perioperative clinics Catholic University of Sacred Heart L. go F. Vito 1 00168 Rome Italy
| | - Giulia Mazzoccanti
- Department of Chemistry and Drug Technology Sapienza University of Rome Piazzale A. Moro 5 00185 Rome Italy
| | - Giorgio Bencivenni
- Department of Industrial Chemistry “Toso Montanari” University of Bologna Viale del Risorgimento 4 40136 Bologna Italy
| | - Paolo Righi
- Department of Industrial Chemistry “Toso Montanari” University of Bologna Viale del Risorgimento 4 40136 Bologna Italy
| | - Andrea Calcaterra
- Department of Chemistry and Drug Technology Sapienza University of Rome Piazzale A. Moro 5 00185 Rome Italy
| | - Claudio Villani
- Department of Chemistry and Drug Technology Sapienza University of Rome Piazzale A. Moro 5 00185 Rome Italy
| | - Alessia Ciogli
- Department of Chemistry and Drug Technology Sapienza University of Rome Piazzale A. Moro 5 00185 Rome Italy
| |
Collapse
|
15
|
Riehl PS, Richardson AD, Sakamoto T, Reid JP, Schindler CS. Origin of enantioselectivity reversal in Lewis acid-catalysed Michael additions relying on the same chiral source. Chem Sci 2021; 12:14133-14142. [PMID: 34760198 PMCID: PMC8565382 DOI: 10.1039/d1sc03741b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/04/2021] [Indexed: 01/19/2023] Open
Abstract
Enantiodivergence is an important concept in asymmetric catalysis that enables access to both enantiomers of a product relying on the same chiral source as reagent. This strategy is particularly appealing as an alternate approach when only one enantiomer of the required chiral ligand is readily accessible but both enantiomers of the product are desired. Despite the potential significance, general catalytic methods to effectively reverse enantioselectivity by changing an achiral reaction parameter remain underdeveloped. Herein we report our studies focused on elucidating the origin of metal-controlled enantioselectivity reversal in Lewis acid-catalysed Michael additions. Rigorous experimental and computational investigations reveal that specific Lewis and Brønsted acid interactions between the substrate and ligand change depending on the ionic radius of the metal catalyst, and are key factors responsible for the observed enantiodivergence. This holds potential to further our understanding of and facilitate the design of future enantiodivergent transformations. Enantiodivergence is an important concept in asymmetric catalysis that enables access to both enantiomers of a product relying on the same chiral source as reagent.![]()
Collapse
Affiliation(s)
- Paul S Riehl
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| | - Alistair D Richardson
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| | - Tatsuhiro Sakamoto
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| | - Jolene P Reid
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Corinna S Schindler
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| |
Collapse
|
16
|
Zhang CC, Chen LJ, Shen BC, Xie HD, Li W, Sun ZW. Enantioselective decarboxylative Mannich reaction of β-keto acids with C-alkynyl N-Boc N, O-acetals: access to chiral β-keto propargylamines. Org Biomol Chem 2021; 19:8607-8612. [PMID: 34569587 DOI: 10.1039/d1ob01555a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chiral keto-substituted propargylamines are an essential class of multifunctional compounds in the field of organic and pharmaceutical synthesis and have attracted considerable attention, but the related synthetic approaches remain limited. Therefore, a concise and efficient method for the enantioselective synthesis of β-keto propargylamines via chiral phosphoric acid-catalyzed asymmetric Mannich reaction between β-keto acids and C-alkynyl N-Boc N,O-acetals as easily available C-alkynyl imine precursors has been demonstrated here, affording a broad scope of β-keto N-Boc-propargylamines in high yields (up to 97%) with generally high enantioselectivities (up to 97 : 3 er).
Collapse
Affiliation(s)
- Cong-Cong Zhang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Li-Jun Chen
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Bao-Chun Shen
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Hui-Ding Xie
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Wei Li
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Zhong-Wen Sun
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China. .,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan University, Kunming, 650091, China
| |
Collapse
|
17
|
Wu R, Lu J, Cao T, Ma J, Chen K, Zhu S. Enantioselective Rh(II)-Catalyzed Desymmetric Cycloisomerization of Diynes: Constructing Furan-Fused Dihydropiperidines with an Alkyne-Substituted Aza-Quaternary Stereocenter. J Am Chem Soc 2021; 143:14916-14925. [PMID: 34469135 DOI: 10.1021/jacs.1c07556] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Described herein is an enantioselective dirhodium(II)-catalyzed cycloisomerization of diynes achieved by the strategy of desymmetrization, which not only represents a new cycloisomerization reaction of diynes but also constitutes the first Rh(II)-catalyzed asymmetric intramolecular cycloisomerization of 1,6-diynes. This protocol provides a range of valuable furan-fused dihydropiperidine derivatives with an enantiomerically enriched alkynyl-substituted aza-quaternary stereocenter in high efficiency, complete atom economy, and excellent enantioselectivity (up to 98% ee). Besides, the highly functionalized products could be easily transformed into various synthetically useful building blocks and conjugated with a series of pharmaceutical molecules. The mechanism involving a concerted [3+2] cycloaddition/[1,2]-H shift of the Rh(II) carbenoid intermediate was elucidated by DFT calculations and mechanistic studies. More importantly, the first single crystal of alkyne-dirhodium(II) was obtained to show that a η2-coordinating activation of alkynal by dirhodium(II) was involved. Weak hydrogen bondings between the carboxylate ligands and alkynal were found, which probably made the well-defined paddlewheel-like dirhodium(II) distinctive from other metal complexes in catalyzing this transformation. Furthermore, the origin of the enantioselectivity was elucidated by a Rh2(R-PTAD)4-alkyne complex and additional calculational studies.
Collapse
Affiliation(s)
- Rui Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Jiajun Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Tongxiang Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Jun Ma
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China.,Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
18
|
Chan YC, Wang X, Lam YP, Wong J, Tse YLS, Yeung YY. A Catalyst-Controlled Enantiodivergent Bromolactonization. J Am Chem Soc 2021; 143:12745-12754. [PMID: 34350758 DOI: 10.1021/jacs.1c05680] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A catalyst-controlled enantiodivergent bromolactonization of olefinic acids has been developed. Quinine-derived amino-amides bearing the same chiral core but different achiral aryl substituents were used as the catalysts. Switching the methoxy substituent in the aryl amide system from meta- to ortho-position results in a complete switch in asymmetric induction to afford the desired lactone in good enantioselectivity and yield. Mechanistic studies, including chemical experiments and density functional theory calculations, reveal that the differences in steric and electronic effects of the catalyst substituent alter the reaction mechanism.
Collapse
Affiliation(s)
- Yuk-Cheung Chan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Xinyan Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ying-Pong Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Jonathan Wong
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ying-Lung Steve Tse
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ying-Yeung Yeung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
19
|
He H, Yang Z, Chai Y, Wu R, Chen P, Zhou J, Zhou H. Reversal of Enantioselectivity in the Copper-Aminophenol Sulfonamide Catalyzed Alkynylation of Isatins by Slightly Tuning the Ligand Structure and Basic Additives. Org Lett 2021; 23:5739-5743. [PMID: 34279104 DOI: 10.1021/acs.orglett.1c01896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A series of new chiral aminophenol sulfonamide ligands with a monochiral arm has been developed for the first Cu(I) catalyzed enantiodivergent alkynylation of isatins. Dramatic reversal of enantioselectivity was accomplished by slightly tuning the substituted benzenesulfonamide and achiral basic additives. A wide range of both terminal alkynes and isatins are tolerated by this new catalyst system with up to 99% yield and 97% ee.
Collapse
Affiliation(s)
- Huakang He
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zinan Yang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yu Chai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ruoran Wu
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Peng Chen
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Hui Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
20
|
Synthesis of alkynyl Z-ketimines and their application in amine-catalyzed asymmetric Mannich reactions and conjugate addition. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Meng B, Shi Q, Meng Y, Chen J, Cao W, Wu X. Asymmetric catalytic alkynylation of thiazolones and azlactones for synthesis of quaternary α-amino acid precursors. Org Biomol Chem 2021; 19:5087-5092. [PMID: 34037046 DOI: 10.1039/d1ob00582k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Asymmetric alkynylation of thiazolones and azlactones with alkynylbenziodoxolones as the electrophilic alkyne source catalyzed by thiourea phosphonium salt is described. By using thiazolones as nucleophiles, the desired alkyne functionalized thiazolones were obtained in 55-89% yields with 31-86% ee. Azlactones gave the desired products in comparable yields with lower enantioselectivities. Ring-opening of the alkynylation products led to α,α-disubstituted α-amino acid derivatives efficiently without loss of enantioselectivity.
Collapse
Affiliation(s)
- Beibei Meng
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Qian Shi
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Yuan Meng
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Jie Chen
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Weiguo Cao
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Xiaoyu Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| |
Collapse
|
22
|
Xu C, Reep C, Jarvis J, Naumann B, Captain B, Takenaka N. Asymmetric Catalytic Ketimine Mannich Reactions and Related Transformations. Catalysts 2021; 11:712. [PMID: 34745653 PMCID: PMC8570560 DOI: 10.3390/catal11060712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The catalytic enantioselective ketimine Mannich and its related reactions provide direct access to chiral building blocks bearing an α-tertiary amine stereogenic center, a ubiquitous structural motif in nature. Although ketimines are often viewed as challenging electrophiles, various approaches/strategies to circumvent or overcome the adverse properties of ketimines have been developed for these transformations. This review showcases the selected examples that highlight the benefits and utilities of various ketimines and remaining challenges associated with them in the context of Mannich, allylation, and aza-Morita-Baylis-Hillman reactions as well as their variants.
Collapse
Affiliation(s)
- Changgong Xu
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Carlyn Reep
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Jamielyn Jarvis
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Brandon Naumann
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Burjor Captain
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
| | - Norito Takenaka
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| |
Collapse
|
23
|
Lupidi G, Palmieri A, Petrini M. Enantioselective Catalyzed Synthesis of Amino Derivatives Using Electrophilic Open‐Chain
N
‐Activated Ketimines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gabriele Lupidi
- School of Science and Technology, Chemistry Division Università di Camerino via S.Agostino, 1 I-62032 Camerino Italy
| | - Alessandro Palmieri
- School of Science and Technology, Chemistry Division Università di Camerino via S.Agostino, 1 I-62032 Camerino Italy
| | - Marino Petrini
- School of Science and Technology, Chemistry Division Università di Camerino via S.Agostino, 1 I-62032 Camerino Italy
| |
Collapse
|
24
|
Wang J, Zheng XZ, Xiao JA, Chen K, Xiang HY, Chen XQ, Yang H. Enantioselectivity-Switchable Organocatalytic [4 + 2]-Annulation to Access the Spirooxindole–Norcamphor Scaffold. Org Lett 2021; 23:963-968. [DOI: 10.1021/acs.orglett.0c04164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jing Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xian-Zhou Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jun-An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
25
|
Li Y, Chen P, Chen ZC, Du W, Ouyang Q, Chen YC. Palladium-catalysed oxidative nucleophilic allylation between alkenes and activated ketimines. Org Chem Front 2021. [DOI: 10.1039/d1qo00505g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A direct linear regioselective oxidative allylation reaction between alkenes and activated ketimines has been developed by using a Pd(OAc)2/2,6-dimethyl-1,4-benzoquinone system.
Collapse
Affiliation(s)
- Yue Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Peng Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
26
|
Homma C, Takeshima A, Kano T, Maruoka K. Construction of chiral α- tert-amine scaffolds via amine-catalyzed asymmetric Mannich reactions of alkyl-substituted ketimines. Chem Sci 2020; 12:1445-1450. [PMID: 34163907 PMCID: PMC8179053 DOI: 10.1039/d0sc05269h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stereoselective Mannich reactions of aldehydes with ketimines provide chiral β-amino aldehydes that bear an α-tert-amine moiety. However, the structural variation of the ketimines is limited due to the formation of inseparable E/Z isomers, low reactivity, and other synthetic difficulties. In this study, a highly diastereodivergent synthesis of hitherto difficult-to-access β-amino aldehydes that bear a chiral α-tert-amine moiety was achieved using the amine-catalyzed Mannich reactions of aldehydes with less-activated Z-ketimines that bear both alkyl and alkynyl groups.
Collapse
Affiliation(s)
- Chihiro Homma
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo Kyoto 606-8502 Japan
| | - Aika Takeshima
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo Kyoto 606-8502 Japan
| | - Taichi Kano
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo Kyoto 606-8502 Japan
| | - Keiji Maruoka
- Graduate School of Science, Graduate School of Pharmaceutical Sciences, Kyoto University Kyoto 606-8502 Japan .,School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| |
Collapse
|
27
|
Ran GY, Chen C, Yang XX, Zhao Z, Du W, Chen YC. Cu(I)-Catalyzed Asymmetric α-Allenylation of Activated Ketimines with 3-Butynoates. Org Lett 2020; 22:4732-4736. [PMID: 32495627 DOI: 10.1021/acs.orglett.0c01534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guang-Yao Ran
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chen Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xing-Xing Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
28
|
Wang MX, Liu J, Liu Z, Wang Y, Yang QQ, Shan W, Deng YH, Shao Z. Enantioselective synthesis of chiral α-alkynylated thiazolidones by tandem S-addition/acetalization of alkynyl imines. Org Biomol Chem 2020; 18:3117-3124. [PMID: 32253417 DOI: 10.1039/d0ob00365d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A SPINOL-derived chiral phosphoric acid catalyzed asymmetric formal [2 + 3]-annulation of in situ generated alkynyl imines and 1,4-dithiane-2,5-diol has been developed to afford enantiopure α-alkynylated thiazolidones with up to 72% yield and 98.5 : 1.5 er. This tandem annulation involved a tandem S-addition of alkynyl imines/intramolecular acetalization, followed by PDC-mediated oxidation. The α-alkynylated thiazolidones could facilely afford the corresponding chiral α-alkynylated or α-alkenylated cyclic sulfoxides via further elaboration.
Collapse
Affiliation(s)
- Mei-Xin Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Juan Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China. and Yunnan Baiyao Group CO., Ltd, Kunming, 650500, China
| | - Zhen Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Yingcheng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Qi-Qiong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Wenyu Shan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
29
|
Wang CJ, Yang QQ, Wang MX, Shang YH, Tong XY, Deng YH, Shao Z. Catalytic asymmetric 1,4-type Friedel–Crafts (hetero)arylations of 1-azadienes: the highly enantioselective syntheses of chiral hetero-triarylmethanes. Org Chem Front 2020. [DOI: 10.1039/c9qo01391a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Strategies for achieving the direct catalytic asymmetric syntheses of benzofuran-containing hetero-triarylmethanes using a 1,4-type Friedel–Crafts (hetero)arylation reaction were developed.
Collapse
Affiliation(s)
- Cheng-Jie Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Qi-Qiong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Mei-Xin Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Yun-Han Shang
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Xin-Yu Tong
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| |
Collapse
|
30
|
Abstract
Photoswitchable catalysis using organometallic complexes: a ligand design perspective.
Collapse
Affiliation(s)
- Zoraida Freixa
- Department of Applied Chemistry
- University of the Basque Country (UPV-EHU)
- San Sebastián
- Spain
- IKERBASQUE
| |
Collapse
|