1
|
Matsueda S, Yamada S, Torisu K, Kitamura H, Ninomiya T, Nakano T, Kitazono T. Vascular Calcification Is Accelerated by Hyponatremia and Low Osmolality. Arterioscler Thromb Vasc Biol 2024; 44:1925-1943. [PMID: 38989577 DOI: 10.1161/atvbaha.123.320069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Hyponatremia, frequently observed in patients with chronic kidney disease, is associated with increased cardiovascular morbidity and mortality. Hyponatremia or low osmolality induces oxidative stress and cell death, both of which accelerate vascular calcification (VC), a critical phenotype in patients with chronic kidney disease. Whether hyponatremia or low osmolality plays a role in the pathogenesis of VC is unknown. METHODS Human vascular smooth muscle cells (VSMCs) and mouse aortic rings were cultured in various osmotic conditions and calcifying medium supplemented with high calcium and phosphate. The effects of low osmolality on phenotypic change and oxidative stress in the cultured VSMCs were examined. Microarray analysis was conducted to determine the main signaling pathway of osmolality-related VC. The transcellular sodium and calcium ions flux across the VSMCs were visualized by live imaging. Furthermore, the effect of osmolality on calciprotein particles (CPPs) was investigated. Associations between arterial intimal calcification and hyponatremia or low osmolality were examined by a cross-sectional study using human autopsy specimens obtained in the Hisayama Study. RESULTS Low osmolality exacerbated calcification of the ECM (extracellular matrix) of cultured VSMCs and mouse aortic rings. Oxidative stress and osteogenic differentiation of VSMCs were identified as the underlying mechanisms responsible for low osmolality-induced VC. Microarray analysis showed that low osmolality activated the Rac1 (Ras-related C3 botulinum toxin substrate 1)-Akt (protein kinase B) pathway and reduced NCX1 (Na-Ca exchanger 1) expression. Live imaging showed synchronic calcium ion efflux and sodium ion influx via NCX1 when extracellular sodium ion concentrations were increased. An NCX1 inhibitor promoted calcifying media-induced VC by reducing calcium ion efflux. Furthermore, low osmolality accelerated the generation and maturation steps of CPPs. The cross-sectional study of human autopsy specimens showed that hyponatremia and low osmolality were associated with a greater area of arterial intimal calcification. CONCLUSIONS Hyponatremia and low osmolality promote VC through multiple cellular processes, including the Rac1-Akt pathway activation.
Collapse
Affiliation(s)
- Shumei Matsueda
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Yamada
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kumiko Torisu
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Toshiharu Ninomiya
- Epidemiology and Public Health (T. Ninomiya), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Kidney Care Unit, Kyushu University Hospital, Fukuoka, Japan (T. Nakano)
| | - Takanari Kitazono
- Departments of Medicine and Clinical Science (M.S., S.Y., K.T., T. Nakano, T.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Yoshiko Y, Vucenik I. Inositol Hexaphosphate in Bone Health and Disease. Biomolecules 2024; 14:1072. [PMID: 39334839 PMCID: PMC11430719 DOI: 10.3390/biom14091072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Dietary phytic acid/phytate/myo-inositol hexaphosphate (IP6), a phosphate reservoir in plants, was viewed as antinutrient, caused by an influence on the bioavailability of minerals through its chelating activity. However, there is a growing body of evidence indicating that IP6 has beneficial (e.g., antiinflammatory, antibacterial, and anticancer) effects on multiple biological processes. Also, IP6 and its metabolites are known to exist in mammalian cells, including human cells, and the role of IP6 as a functional molecule is attracting attention. IP6 can bind to the growth sites of hydroxy-apatite (HA) and calcium oxalate crystals to prevent their growth and hence inhibit pathological calcification. SNF472, hexasodium IP6, is currently being evaluated in clinical studies as a treatment for vascular calcification and calciphylaxis. However, since HA crystal growth within bone matrix is an essential process in bone formation, it is possible that IP6 intake may inhibit physiological mineralization and bone formation, although currently more published studies suggest that IP6 may contribute to bone health rather than inhibit bone formation. Given that IP6 and its metabolites are thought to have diverse activities and many health benefits, it remains important to consider the range of effects of IP6 on bone.
Collapse
Affiliation(s)
- Yuji Yoshiko
- Pi Skovy, 1-15-31-9, Mukainadahonmachi, Minami-ku, Hiroshima 734-0062, Japan
| | - Ivana Vucenik
- Department of Medical and Research Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Akram AW, Saba E, Rhee MH. Antiplatelet and Antithrombotic Activities of Lespedeza cuneata via Pharmacological Inhibition of Integrin αIIb β3, MAPK, and PI3K/AKT Pathways and FeCl3-Induced Murine Thrombosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:9927160. [PMID: 38370873 PMCID: PMC10872769 DOI: 10.1155/2024/9927160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
Cardiovascular diseases (CVDs) have been the major cause of mortality all around the globe. Lespedeza cuneata abbreviated as L. cuneata with the authority name of Dumont de Courset (G. Don) is a perennial flowering plant commonly grown in Asian countries such as Korea, Japan, China, and Taiwan. We aimed to investigate the L. cuneata extract's antiplatelet and antithrombotic properties as GC-MS analysis indicated that the extract contained short-chain fatty acids, which have been reported to possess beneficial cardiovascular effects. L. cuneata was extracted using water, 50% EtOH, 70% EtOH, and 100% EtOH. For in vitro antiplatelet analysis, washed platelets were prepared and incubated with L. cuneata with 200 μg/mL of 50% EtOH in the presence of 1 mM of CaCl2 for 1 minute followed by agonist (collagen 2.5 μg/mL or ADP 10 μM or thrombin 0.1 U/mL) stimulation for 5 minutes over light transmission aggregometer. Scanning electron microscopy was performed to assess platelet shape change. ATP release and intracellular calcium mobilization were quantified to assess the granular content. Fibrinogen-binding assay and clot retraction assay assessed integrin αIIbβ3-mediated inside-out and outside-in signaling. Protein phosphorylation expression was investigated by western blot analysis. Finally, the in vivo antithrombotic efficacy was investigated by oral dosage of L. cuneata 200 and 400 mg/kg and aspirin 100 mg/kg for 7 days, and tail bleeding and FeCl3-induced murine thrombus model were performed. In vitro platelet aggregation and platelet shape change were dose-dependently suppressed by L. cuneata. Calcium mobilization, dense granules secretion, integrin αIIbβ3-mediated inside-out and outside-in signaling, and protein phosphorylation of MAPK and PI3K/Akt pathways were significantly inhibited. In vivo assays revealed that L. cuneata prevents side effects of synthetic drugs via nonsignificantly increasing bleeding time and improving coronary artery blood flow and animal survival. Our results demonstrate that L. cuneata exhibited potent antiplatelet and antithrombotic effects and can be considered a potential herbal medicine with cardioprotective effects.
Collapse
Affiliation(s)
- Abdul Wahab Akram
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Evelyn Saba
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Companion Animal Medical Institute, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Hao N, Yong H, Zhang F, Liu C, Qiu Y, Shi Y, Li C, Wang F. Aortic calcification accelerates cardiac dysfunction via inducing apoptosis of cardiomyocytes. Int J Med Sci 2024; 21:306-318. [PMID: 38169576 PMCID: PMC10758138 DOI: 10.7150/ijms.90324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
Vascular calcification (VC) is a known predictor of cardiovascular events in patients with atherosclerosis and chronic renal disease. However, the exact relationship between VC and cardiovascular mortality remains unclear. Herein, we investigated the underlying mechanisms between VC progression, arterial stiffness, and cardiac dysfunction. C57BL/6 mice were administered intraperitoneally vitamin D3 (VD3) at a dosage of 35×104 IU/day for 14 days. At day 42, VC extent, artery elasticity, carotid artery blood flow, aorta pulse propagation velocity, cardiac function, and pathological changes were evaluated. Heart apoptosis was detected using TUNEL and immunohistochemistry staining. In vitro, rat cardiomyocytes H9C2 were exposed to media from calcified rat vascular smooth muscle cells (VSMCs) cultured in calcification medium, and then H9C2 apoptosis and gene expression related to cardiac function were assessed. VD3-treated mice displayed a significant aortic calcification, increased pulse propagation velocity of aortae, and reduced cardiac function. Aortae showed increased calcification and elastolysis, with increased heart apoptosis. Hearts demonstrated higher levels of ANP, BNP, MMP2, and lower levels of bcl2/bax. Moreover, calcified rat VSMC media induced H9C2 apoptosis and upregulated genes expression linked to cardiac dysfunction. Our data provide evidence that VC accelerates cardiac dysfunction, partially by inducing cardiomyocytes apoptosis.
Collapse
Affiliation(s)
- Nannan Hao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, China
| | - Hui Yong
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, China
| | - Feifei Zhang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, China
| | - Chang Liu
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, China
| | - Yulu Qiu
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, China
| | - Yumeng Shi
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, China
| | - Chunjian Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, China
| | - Fang Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, China
| |
Collapse
|
5
|
Lauten P, Costello-Boerrigter LC, Goebel B, Gonzalez-Lopez D, Schreiber M, Kuntze T, Al Jassem M, Lapp H. Transcatheter Aortic Valve Implantation: Addressing the Subsequent Risk of Permanent Pacemaker Implantation. J Cardiovasc Dev Dis 2023; 10:230. [PMID: 37367395 PMCID: PMC10299451 DOI: 10.3390/jcdd10060230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Transcatheter aortic valve implantation (TAVI) is now a commonly used therapy in patients with severe aortic stenosis, even in those patients at low surgical risk. The indications for TAVI have broadened as the therapy has proven to be safe and effective. Most challenges associated with TAVI after its initial introduction have been impressively reduced; however, the possible need for post-TAVI permanent pacemaker implantation (PPI) secondary to conduction disturbances continues to be on the radar. Conduction abnormalities post-TAVI are always of concern given that the aortic valve lies in close proximity to critical components of the cardiac conduction system. This review will present a summary of noteworthy pre-and post-procedural conduction blocks, the best use of telemetry and ambulatory device monitoring to avoid unnecessary PPI or to recognize the need for late PPI due to delayed high-grade conduction blocks, predictors to identify those patients at greatest risk of requiring PPI, important CT measurements and considerations to optimize TAVI planning, and the utility of the MInimizing Depth According to the membranous Septum (MIDAS) technique and the cusp-overlap technique. It is stressed that careful membranous septal (MS) length measurement by MDCT during pre-TAVI planning is necessary to establish the optimal implantation depth before the procedure to reduce the risk of compression of the MS and consequent damage to the cardiac conduction system.
Collapse
Affiliation(s)
- Philipp Lauten
- Department of Cardiology, Heart Center, Zentralklinik Bad Berka, Robert-Koch-Allee 9, 99437 Bad Berka, Germany (B.G.); (H.L.)
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Montanari E, Krupke H, Leroux JC. Engineering Lipid Spherulites for the Sustained Release of Highly Dosed Small Hydrophilic Compounds. Adv Healthc Mater 2023; 12:e2202249. [PMID: 36571233 PMCID: PMC11469156 DOI: 10.1002/adhm.202202249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Currently, there is a lack of parenteral sustained release formulations for the delivery of highly dosed small hydrophilic drugs. Therefore, parenteral lipid spherulites are engineered capable of entrapping large amounts of such compounds and spontaneously releasing them in a sustained fashion. A library of spherulites is prepared with a simple green process, using phosphatidylcholine (PC) and/or phosphatidylethanolamine (PE), nonionic surfactants and water. The vesicle formulations exhibiting appropriate size distribution and morphology are selected and loaded with 4,6-di-O-(methoxy-diethyleneglycol)-myo-inositol-1,2,3,5-tetrakis(phosphate), ((OEG2 )2 -IP4), an inositol phosphate derivative currently under clinical evaluation for the treatment of aortic valve stenosis. The loading efficiency of spherulites is up to 12.5-fold higher than that of liposomes produced with the same materials. While the PC-containing vesicles showed high stability, the PE spherulites gradually lost their multilayer organization upon dilution, triggering the active pharmaceutical ingredient (API) release over time. In vitro experiments and pharmacokinetic studies in rats demonstrated the ability of PE spherulites to increase the systemic exposure of (OEG2 )2 -IP4 up to 3.1-fold after subcutaneous injection, and to completely release their payload within 3-4 d. In conclusion, PE spherulites represent a promising lipid platform for the extravascular parenteral administration of highly dosed small hydrophilic drugs.
Collapse
Affiliation(s)
- Elita Montanari
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, 8093, Switzerland
| | - Hanna Krupke
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, 8093, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, 8093, Switzerland
| |
Collapse
|
7
|
Yang L, Li Y, Ke C, Zheng Y, Long H, Ouyang Z, Lin R, Zhou X, Chen S, Jiang ZX. One-Pot Synthesis of Monofunctionalized Oligoethylene Glycols through Ring-Opening and Heterogeneous Hydrolysis of Macrocyclic Sulfates. ACS OMEGA 2023; 8:7684-7689. [PMID: 36873021 PMCID: PMC9979223 DOI: 10.1021/acsomega.2c07319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The one-pot nucleophilic ring-opening reaction of oligoethylene glycol macrocyclic sulfates provides an efficient strategy for the monofunctionalization of oligoethylene glycols without protecting or activating group manipulation. In this strategy, the hydrolysis process is generally promoted by sulfuric acid, which is hazardous, difficult to handle, environmentally unfriendly, and unfit for industrial operation. Here, we explored a convenient handling solid acid, Amberlyst-15, as a replacement for sulfuric acid to accomplish the hydrolysis of sulfate salt intermediates. With this method, 18 valuable oligoethylene glycol derivatives were prepared with high efficiency, and gram-scale applicability of this method has been successfully demonstrated to afford a clickable oligoethylene glycol derivative 1b and a valuable building block 1g for F-19 magnetic resonance imaging traceable biomaterial construction.
Collapse
Affiliation(s)
- Lan Yang
- Hubei
Province Engineering and Technology Research Center for Fluorinated
Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu Li
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy for Precision Measurement
Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Changsheng Ke
- Hubei
Province Engineering and Technology Research Center for Fluorinated
Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yujie Zheng
- Hubei
Province Engineering and Technology Research Center for Fluorinated
Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hanxiong Long
- Hubei
Province Engineering and Technology Research Center for Fluorinated
Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhen Ouyang
- Hubei
Province Engineering and Technology Research Center for Fluorinated
Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Ruoyun Lin
- Hubei
Province Engineering and Technology Research Center for Fluorinated
Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xin Zhou
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy for Precision Measurement
Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhen Chen
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy for Precision Measurement
Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Xing Jiang
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy for Precision Measurement
Science and Technology, Chinese Academy
of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Koide T, Mandai S, Kitaoka R, Matsuki H, Chiga M, Yamamoto K, Yoshioka K, Yagi Y, Suzuki S, Fujiki T, Ando F, Mori T, Susa K, Iimori S, Naito S, Sohara E, Rai T, Yokota T, Uchida S. Circulating Extracellular Vesicle-Propagated microRNA Signature as a Vascular Calcification Factor in Chronic Kidney Disease. Circ Res 2023; 132:415-431. [PMID: 36700539 DOI: 10.1161/circresaha.122.321939] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) accelerates vascular calcification via phenotypic switching of vascular smooth muscle cells (VSMCs). We investigated the roles of circulating small extracellular vesicles (sEVs) between the kidneys and VSMCs and uncovered relevant sEV-propagated microRNAs (miRNAs) and their biological signaling pathways. METHODS AND RESULTS We established CKD models in rats and mice by adenine-induced tubulointerstitial fibrosis. Cultures of A10 embryonic rat VSMCs showed increased calcification and transcription of osterix (Sp7), osteocalcin (Bglap), and osteopontin (Spp1) when treated with rat CKD serum. sEVs, but not sEV-depleted serum, accelerated calcification in VSMCs. Intraperitoneal administration of a neutral sphingomyelinase and biogenesis/release inhibitor of sEVs, GW4869 (2.5 mg/kg per 2 days), inhibited thoracic aortic calcification in CKD mice under a high-phosphorus diet. GW4869 induced a nearly full recovery of calcification and transcription of osteogenic marker genes. In CKD, the miRNA transcriptome of sEVs revealed a depletion of 4 miRNAs, miR-16-5p, miR-17~92 cluster-originated miR-17-5p/miR-20a-5p, and miR-106b-5p. Their expression decreased in sEVs from CKD patients as kidney function deteriorated. Transfection of VSMCs with each miRNA-mimic mitigated calcification. In silico analyses revealed VEGFA (vascular endothelial growth factor A) as a convergent target of these miRNAs. We found a 16-fold increase in VEGFA transcription in the thoracic aorta of CKD mice under a high-phosphorus diet, which GW4869 reversed. Inhibition of VEGFA-VEGFR2 signaling with sorafenib, fruquintinib, sunitinib, or VEGFR2-targeted siRNA mitigated calcification in VSMCs. Orally administered fruquintinib (2.5 mg/kg per day) for 4 weeks suppressed the transcription of osteogenic marker genes in the mouse aorta. The area under the curve of miR-16-5p, miR-17-5p, 20a-5p, and miR-106b-5p for the prediction of abdominal aortic calcification was 0.7630, 0.7704, 0.7407, and 0.7704, respectively. CONCLUSIONS The miRNA transcriptomic signature of circulating sEVs uncovered their pathologic role, devoid of the calcification-protective miRNAs that target VEGFA signaling in CKD-driven vascular calcification. These sEV-propagated miRNAs are potential biomarkers and therapeutic targets for vascular calcification.
Collapse
Affiliation(s)
- Takaaki Koide
- Department of Nephrology (T.K., S.M., R.K., H.M., M.C., S.S., T.F., F.A., T.M., K.S., S.I., S.N., E.S., T.R., S.U.), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan
| | - Shintaro Mandai
- Department of Nephrology (T.K., S.M., R.K., H.M., M.C., S.S., T.F., F.A., T.M., K.S., S.I., S.N., E.S., T.R., S.U.), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan
| | - Reo Kitaoka
- Department of Nephrology (T.K., S.M., R.K., H.M., M.C., S.S., T.F., F.A., T.M., K.S., S.I., S.N., E.S., T.R., S.U.), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan
| | - Hisazumi Matsuki
- Department of Nephrology (T.K., S.M., R.K., H.M., M.C., S.S., T.F., F.A., T.M., K.S., S.I., S.N., E.S., T.R., S.U.), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan
| | - Motoko Chiga
- Department of Nephrology (T.K., S.M., R.K., H.M., M.C., S.S., T.F., F.A., T.M., K.S., S.I., S.N., E.S., T.R., S.U.), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan
| | - Kouhei Yamamoto
- Department of Human Pathology (K. Yamamoto), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan
| | - Kotaro Yoshioka
- Department of Neurology and Neurological Science (K. Yoshioka, Y.Y., T.Y.), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan
| | - Yohsuke Yagi
- Department of Neurology and Neurological Science (K. Yoshioka, Y.Y., T.Y.), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan
| | - Soichiro Suzuki
- Department of Nephrology (T.K., S.M., R.K., H.M., M.C., S.S., T.F., F.A., T.M., K.S., S.I., S.N., E.S., T.R., S.U.), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan
| | - Tamami Fujiki
- Department of Nephrology (T.K., S.M., R.K., H.M., M.C., S.S., T.F., F.A., T.M., K.S., S.I., S.N., E.S., T.R., S.U.), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan
| | - Fumiaki Ando
- Department of Nephrology (T.K., S.M., R.K., H.M., M.C., S.S., T.F., F.A., T.M., K.S., S.I., S.N., E.S., T.R., S.U.), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan
| | - Takayasu Mori
- Department of Nephrology (T.K., S.M., R.K., H.M., M.C., S.S., T.F., F.A., T.M., K.S., S.I., S.N., E.S., T.R., S.U.), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan
| | - Koichiro Susa
- Department of Nephrology (T.K., S.M., R.K., H.M., M.C., S.S., T.F., F.A., T.M., K.S., S.I., S.N., E.S., T.R., S.U.), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan
| | - Soichiro Iimori
- Department of Nephrology (T.K., S.M., R.K., H.M., M.C., S.S., T.F., F.A., T.M., K.S., S.I., S.N., E.S., T.R., S.U.), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan
| | - Shotaro Naito
- Department of Nephrology (T.K., S.M., R.K., H.M., M.C., S.S., T.F., F.A., T.M., K.S., S.I., S.N., E.S., T.R., S.U.), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan
| | - Eisei Sohara
- Department of Nephrology (T.K., S.M., R.K., H.M., M.C., S.S., T.F., F.A., T.M., K.S., S.I., S.N., E.S., T.R., S.U.), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan
| | - Tatemitsu Rai
- Department of Nephrology (T.K., S.M., R.K., H.M., M.C., S.S., T.F., F.A., T.M., K.S., S.I., S.N., E.S., T.R., S.U.), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science (K. Yoshioka, Y.Y., T.Y.), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan
| | - Shinichi Uchida
- Department of Nephrology (T.K., S.M., R.K., H.M., M.C., S.S., T.F., F.A., T.M., K.S., S.I., S.N., E.S., T.R., S.U.), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Japan
| |
Collapse
|
9
|
Implications of Senescent Cell Burden and NRF2 Pathway in Uremic Calcification: A Translational Study. Cells 2023; 12:cells12040643. [PMID: 36831311 PMCID: PMC9954542 DOI: 10.3390/cells12040643] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Increased senescent cell burden and dysregulation of the nuclear factor erythroid 2-related factor 2 (NRF2) pathway have been associated with numerous age-related pathologies; however, their role in promoting vascular calcification (VC) in chronic kidney disease (CKD) has yet to be determined. We investigated whether senescence and NRF2 pathways may serve as drivers of uremia-induced VC using three complementary approaches: a novel model of induced VC in 5/6-nephrectomized rats supplemented with high phosphate and vitamin D; epigastric arteries from CKD patients with established medial calcification; and vascular smooth muscle cells (VSMCs) incubated with uremic serum. Expression of p16Ink4a and p21Cip1, as well as γ-H2A-positive cells, confirmed increased senescent cell burden at the site of calcium deposits in aortic sections in rats, and was similarly observed in calcified epigastric arteries from CKD patients through increased p16Ink4a expression. However, uremic serum-induced VSMC calcification was not accompanied by senescence. Expression of NRF2 and downstream genes, Nqo1 and Sod1, was associated with calcification in uremic rats, while no difference was observed between calcified and non-calcified EAs. Conversely, in vitro uremic serum-driven VC was associated with depleted NRF2 expression. Together, our data strengthen the importance of senescence and NRF2 pathways as potential therapeutic options to combat VC in CKD.
Collapse
|
10
|
Bernabei I, So A, Busso N, Nasi S. Cartilage calcification in osteoarthritis: mechanisms and clinical relevance. Nat Rev Rheumatol 2023; 19:10-27. [PMID: 36509917 DOI: 10.1038/s41584-022-00875-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Pathological calcification of cartilage is a hallmark of osteoarthritis (OA). Calcification can be observed both at the cartilage surface and in its deeper layers. The formation of calcium-containing crystals, typically basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP) crystals, is an active, highly regulated and complex biological process that is initiated by chondrocytes and modified by genetic factors, dysregulated mitophagy or apoptosis, inflammation and the activation of specific cellular-signalling pathways. The links between OA and BCP deposition are stronger than those observed between OA and CPP deposition. Here, we review the molecular processes involved in cartilage calcification in OA and summarize the effects of calcium crystals on chondrocytes, synovial fibroblasts, macrophages and bone cells. Finally, we highlight therapeutic pathways leading to decreased joint calcification and potential new drugs that could treat not only OA but also other diseases associated with pathological calcification.
Collapse
Affiliation(s)
- Ilaria Bernabei
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Schulze-Niemand E, Naumann M. The COP9 signalosome: A versatile regulatory hub of Cullin-RING ligases. Trends Biochem Sci 2023; 48:82-95. [PMID: 36041947 DOI: 10.1016/j.tibs.2022.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/14/2022] [Accepted: 08/01/2022] [Indexed: 12/27/2022]
Abstract
The COP9 signalosome (CSN) is a universal regulator of Cullin-RING ubiquitin ligases (CRLs) - a family of modular enzymes that control various cellular processes via timely degradation of key signaling proteins. The CSN, with its eight-subunit architecture, employs multisite binding of CRLs and inactivates CRLs by removing a small ubiquitin-like modifier named neural precursor cell-expressed, developmentally downregulated 8 (Nedd8). Besides the active site of the catalytic subunit CSN5, two allosteric sites are present in the CSN, one of which recognizes the substrate recognition module and the presence of CRL substrates, and the other of which can 'glue' the CSN-CRL complex by recruitment of inositol hexakisphosphate. In this review, we present recent findings on the versatile regulation of CSN-CRL complexes.
Collapse
Affiliation(s)
- Eric Schulze-Niemand
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany.
| |
Collapse
|
12
|
Pluquet M, Kamel S, Choukroun G, Liabeuf S, Laville SM. Serum Calcification Propensity Represents a Good Biomarker of Vascular Calcification: A Systematic Review. Toxins (Basel) 2022; 14:toxins14090637. [PMID: 36136575 PMCID: PMC9501050 DOI: 10.3390/toxins14090637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Vascular calcification contributes to cardiovascular morbidity and mortality. A recently developed serum calcification propensity assay is based on the half-transformation time (T50) from primary calciprotein particles (CPPs) to secondary CPPs, reflecting the serum’s endogenous capacity to prevent calcium phosphate precipitation. We sought to identify and review the results of all published studies since the development of the T50-test by Pasch et al. in 2012 (whether performed in vitro, in animals or in the clinic) of serum calcification propensity. To this end, we searched PubMed, Elsevier EMBASE, the Cochrane Library and Google Scholar databases from 2012 onwards. At the end of the selection process, 57 studies were analyzed with regard to the study design, sample size, characteristics of the study population, the intervention and the main results concerning T50. In patients with primary aldosteronism, T50 is associated with the extent of vascular calcification in the abdominal aorta. In chronic kidney disease (CKD), T50 is associated with the severity and progression of coronary artery calcification. T50 is also associated with cardiovascular events and all-cause mortality in CKD patients, patients on dialysis and kidney transplant recipients and with cardiovascular mortality in patients on dialysis, kidney transplant recipients, patients with ischemic heart failure and reduced ejection fraction, and in the general population. Switching from acetate-acidified dialysate to citrate-acidified dialysate led to a longer T50, as did a higher dialysate magnesium concentration. Oral administration of magnesium (in CKD patients), phosphate binders, etelcalcetide and spironolactone (in hemodialysis patients) was associated with a lower serum calcification propensity. Serum calcification propensity is an overall marker of calcification associated with hard outcomes but is currently used in research projects only. This assay might be a valuable tool for screening serum calcification propensity in at-risk populations (such as CKD patients and hemodialyzed patients) and, in particular, for monitoring changes over time in T50.
Collapse
Affiliation(s)
- Maxime Pluquet
- MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80000 Amiens, France
| | - Said Kamel
- MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80000 Amiens, France
- Department of Biochemistry, Amiens University Medical Center, F-80000 Amiens, France
| | - Gabriel Choukroun
- MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80000 Amiens, France
- Department of Nephrology, Amiens University Medical Center, F-80000 Amiens, France
| | - Sophie Liabeuf
- MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80000 Amiens, France
- Pharmacoepidemiology Unit, Department of Clinical Pharmacology, Amiens University Medical Center, F-80000 Amiens, France
- Correspondence:
| | - Solène M. Laville
- MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80000 Amiens, France
- Pharmacoepidemiology Unit, Department of Clinical Pharmacology, Amiens University Medical Center, F-80000 Amiens, France
| |
Collapse
|
13
|
Gelli R, Pucci V, Ridi F, Baglioni P. A study on biorelevant calciprotein particles: Effect of stabilizing agents on the formation and crystallization mechanisms. J Colloid Interface Sci 2022; 620:431-441. [DOI: 10.1016/j.jcis.2022.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022]
|
14
|
Van den Bergh G, Van den Branden A, Opdebeeck B, Fransen P, Neven E, De Meyer G, D’Haese PC, Verhulst A. Endothelial dysfunction aggravates arterial media calcification in warfarin administered rats. FASEB J 2022; 36:e22315. [DOI: 10.1096/fj.202101919r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Geoffrey Van den Bergh
- Laboratory of Pathophysiology Department of Biomedical Sciences University of Antwerp Wilrijk Belgium
| | - Astrid Van den Branden
- Laboratory of Pathophysiology Department of Biomedical Sciences University of Antwerp Wilrijk Belgium
| | - Britt Opdebeeck
- Laboratory of Pathophysiology Department of Biomedical Sciences University of Antwerp Wilrijk Belgium
| | - Paul Fransen
- Laboratory of Physiopharmacology Department of Pharmaceutical Sciences University of Antwerp Wilrijk Belgium
| | - Ellen Neven
- Laboratory of Pathophysiology Department of Biomedical Sciences University of Antwerp Wilrijk Belgium
| | - Guido De Meyer
- Laboratory of Physiopharmacology Department of Pharmaceutical Sciences University of Antwerp Wilrijk Belgium
| | - Patrick C. D’Haese
- Laboratory of Pathophysiology Department of Biomedical Sciences University of Antwerp Wilrijk Belgium
| | - Anja Verhulst
- Laboratory of Pathophysiology Department of Biomedical Sciences University of Antwerp Wilrijk Belgium
| |
Collapse
|
15
|
New Therapeutics Targeting Arterial Media Calcification: Friend or Foe for Bone Mineralization? Metabolites 2022; 12:metabo12040327. [PMID: 35448514 PMCID: PMC9027727 DOI: 10.3390/metabo12040327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 01/27/2023] Open
Abstract
The presence of arterial media calcification, a highly complex and multifactorial disease, puts patients at high risk for developing serious cardiovascular consequences and mortality. Despite the numerous insights into the mechanisms underlying this pathological mineralization process, there is still a lack of effective treatment therapies interfering with the calcification process in the vessel wall. Current anti-calcifying therapeutics may induce detrimental side effects at the level of the bone, as arterial media calcification is regulated in a molecular and cellular similar way as physiological bone mineralization. This especially is a complication in patients with chronic kidney disease and diabetes, who are the prime targets of this pathology, as they already suffer from a disturbed mineral and bone metabolism. This review outlines recent treatment strategies tackling arterial calcification, underlining their potential to influence the bone mineralization process, including targeting vascular cell transdifferentiation, calcification inhibitors and stimulators, vascular smooth muscle cell (VSMC) death and oxidative stress: are they a friend or foe? Furthermore, this review highlights nutritional additives and a targeted, local approach as alternative strategies to combat arterial media calcification. Paving a way for the development of effective and more precise therapeutic approaches without inducing osseous side effects is crucial for this highly prevalent and mortal disease.
Collapse
|
16
|
Wang ZX, Luo ZW, Li FXZ, Cao J, Rao SS, Liu YW, Wang YY, Zhu GQ, Gong JS, Zou JT, Wang Q, Tan YJ, Zhang Y, Hu Y, Li YY, Yin H, Wang XK, He ZH, Ren L, Liu ZZ, Hu XK, Yuan LQ, Xu R, Chen CY, Xie H. Aged bone matrix-derived extracellular vesicles as a messenger for calcification paradox. Nat Commun 2022; 13:1453. [PMID: 35304471 PMCID: PMC8933454 DOI: 10.1038/s41467-022-29191-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Adipocyte differentiation of bone marrow mesenchymal stem/stromal cells (BMSCs) instead of osteoblast formation contributes to age- and menopause-related marrow adiposity and osteoporosis. Vascular calcification often occurs with osteoporosis, a contradictory association called “calcification paradox”. Here we show that extracellular vesicles derived from aged bone matrix (AB-EVs) during bone resorption favor BMSC adipogenesis rather than osteogenesis and augment calcification of vascular smooth muscle cells. Intravenous or intramedullary injection of AB-EVs promotes bone-fat imbalance and exacerbates Vitamin D3 (VD3)-induced vascular calcification in young or old mice. Alendronate (ALE), a bone resorption inhibitor, down-regulates AB-EVs release and attenuates aging- and ovariectomy-induced bone-fat imbalance. In the VD3-treated aged mice, ALE suppresses the ovariectomy-induced aggravation of vascular calcification. MiR-483-5p and miR-2861 are enriched in AB-EVs and essential for the AB-EVs-induced bone-fat imbalance and exacerbation of vascular calcification. Our study uncovers the role of AB-EVs as a messenger for calcification paradox by transferring miR-483-5p and miR-2861. This study uncovers the role of extracellular vesicles from bone matrix as a messenger in the development of osteoporosis and vascular calcification (calcification paradox) during skeletal aging and menopause by transferring miR-483-5p and miR-2861.
Collapse
Affiliation(s)
- Zhen-Xing Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong-Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fu-Xing-Zi Li
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Cao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan-Shan Rao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Yi-Wei Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Yi Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guo-Qiang Zhu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiang-Shan Gong
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing-Tao Zou
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiang Wang
- Department of Laboratory Medicine, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi-Juan Tan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Zhang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yin Hu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - You-You Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Yin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Kai Wang
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze-Hui He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Ren
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng-Zhao Liu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan, China.,Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan, China
| | - Xiong-Ke Hu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling-Qing Yuan
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ran Xu
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan, China. .,Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan, China.
| |
Collapse
|
17
|
Li T, Yu H, Zhang D, Feng T, Miao M, Li J, Liu X. Matrix Vesicles as a Therapeutic Target for Vascular Calcification. Front Cell Dev Biol 2022; 10:825622. [PMID: 35127686 PMCID: PMC8814528 DOI: 10.3389/fcell.2022.825622] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 01/01/2023] Open
Abstract
Vascular calcification (VC) is linked to an increased risk of heart disease, stroke, and atherosclerotic plaque rupture. It is a cell-active process regulated by vascular cells rather than pure passive calcium (Ca) deposition. In recent years, extracellular vesicles (EVs) have attracted extensive attention because of their essential role in the process of VC. Matrix vesicles (MVs), one type of EVs, are especially critical in extracellular matrix mineralization and the early stages of the development of VC. Vascular smooth muscle cells (VSMCs) have the potential to undergo phenotypic transformation and to serve as a nucleation site for hydroxyapatite crystals upon extracellular stimulation. However, it is not clear what underlying mechanism that MVs drive the VSMCs phenotype switching and to result in calcification. This article aims to review the detailed role of MVs in the progression of VC and compare the difference with other major drivers of calcification, including aging, uremia, mechanical stress, oxidative stress, and inflammation. We will also bring attention to the novel findings in the isolation and characterization of MVs, and the therapeutic application of MVs in VC.
Collapse
Affiliation(s)
- Tiantian Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hongchi Yu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tang Feng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Michael Miao
- Division of Oral & Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Jianwei Li
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Jianwei Li, ; Xiaoheng Liu,
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Jianwei Li, ; Xiaoheng Liu,
| |
Collapse
|
18
|
Therapy of Pseudoxanthoma Elasticum: Current Knowledge and Future Perspectives. Biomedicines 2021; 9:biomedicines9121895. [PMID: 34944710 PMCID: PMC8698611 DOI: 10.3390/biomedicines9121895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare, genetic, metabolic disease with an estimated prevalence of between 1 per 25,000 and 56,000. Its main hallmarks are characteristic skin lesions, development of choroidal neovascularization, and early-onset arterial calcification accompanied by a severe reduction in quality-of-life. Underlying the pathology are recessively transmitted pathogenic variants of the ABCC6 gene, which results in a deficiency of ABCC6 protein. This results in reduced levels of peripheral pyrophosphate, a strong inhibitor of peripheral calcification, but also dysregulation of blood lipids. Although various treatment options have emerged during the last 20 years, many are either already outdated or not yet ready to be applied generally. Clinical physicians often are left stranded while patients suffer from the consequences of outdated therapies, or feel unrecognized by their attending doctors who may feel uncertain about using new therapeutic approaches or not even know about them. In this review, we summarize the broad spectrum of treatment options for PXE, focusing on currently available clinical options, the latest research and development, and future perspectives.
Collapse
|
19
|
Evaluating Medical Therapy for Calcific Aortic Stenosis: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 78:2354-2376. [PMID: 34857095 DOI: 10.1016/j.jacc.2021.09.1367] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/08/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022]
Abstract
Despite numerous promising therapeutic targets, there are no proven medical treatments for calcific aortic stenosis (AS). Multiple stakeholders need to come together and several scientific, operational, and trial design challenges must be addressed to capitalize on the recent and emerging mechanistic insights into this prevalent heart valve disease. This review briefly discusses the pathobiology and most promising pharmacologic targets, screening, diagnosis and progression of AS, identification of subgroups that should be targeted in clinical trials, and the need to elicit the patient voice earlier rather than later in clinical trial design and implementation. Potential trial end points and tools for assessment and approaches to implementation and design of clinical trials are reviewed. The efficiencies and advantages offered by a clinical trial network and platform trial approach are highlighted. The objective is to provide practical guidance that will facilitate a series of trials to identify effective medical therapies for AS resulting in expansion of therapeutic options to complement mechanical solutions for late-stage disease.
Collapse
|
20
|
Shishkova DK, Velikanova EA, Bogdanov LA, Sinitsky MY, Kostyunin AE, Tsepokina AV, Gruzdeva OV, Mironov AV, Mukhamadiyarov RA, Glushkova TV, Krivkina EO, Matveeva VG, Hryachkova ON, Markova VE, Dyleva YA, Belik EV, Frolov AV, Shabaev AR, Efimova OS, Popova AN, Malysheva VY, Kolmykov RP, Sevostyanov OG, Russakov DM, Dolganyuk VF, Gutakovsky AK, Zhivodkov YA, Kozhukhov AS, Brusina EB, Ismagilov ZR, Barbarash OL, Yuzhalin AE, Kutikhin AG. Calciprotein Particles Link Disturbed Mineral Homeostasis with Cardiovascular Disease by Causing Endothelial Dysfunction and Vascular Inflammation. Int J Mol Sci 2021; 22:ijms222212458. [PMID: 34830334 PMCID: PMC8626027 DOI: 10.3390/ijms222212458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
An association between high serum calcium/phosphate and cardiovascular events or death is well-established. However, a mechanistic explanation of this correlation is lacking. Here, we examined the role of calciprotein particles (CPPs), nanoscale bodies forming in the human blood upon its supersaturation with calcium and phosphate, in cardiovascular disease. The serum of patients with coronary artery disease or cerebrovascular disease displayed an increased propensity to form CPPs in combination with elevated ionised calcium as well as reduced albumin levels, altogether indicative of reduced Ca2+-binding capacity. Intravenous administration of CPPs to normolipidemic and normotensive Wistar rats provoked intimal hyperplasia and adventitial/perivascular inflammation in both balloon-injured and intact aortas in the absence of other cardiovascular risk factors. Upon the addition to primary human arterial endothelial cells, CPPs induced lysosome-dependent cell death, promoted the release of pro-inflammatory cytokines, stimulated leukocyte adhesion, and triggered endothelial-to-mesenchymal transition. We concluded that CPPs, which are formed in the blood as a result of altered mineral homeostasis, cause endothelial dysfunction and vascular inflammation, thereby contributing to the development of cardiovascular disease.
Collapse
Affiliation(s)
- Daria K. Shishkova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Elena A. Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Leo A. Bogdanov
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Maxim Yu. Sinitsky
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Alexander E. Kostyunin
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Anna V. Tsepokina
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Olga V. Gruzdeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Andrey V. Mironov
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Rinat A. Mukhamadiyarov
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Tatiana V. Glushkova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Evgenia O. Krivkina
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Vera G. Matveeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Oksana N. Hryachkova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Victoria E. Markova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Yulia A. Dyleva
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Ekaterina V. Belik
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Alexey V. Frolov
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Amin R. Shabaev
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Olga S. Efimova
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences, 18 Sovetskiy Avenue, 650000 Kemerovo, Russia; (O.S.E.); (A.N.P.); (V.Y.M.); (R.P.K.); (Z.R.I.)
| | - Anna N. Popova
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences, 18 Sovetskiy Avenue, 650000 Kemerovo, Russia; (O.S.E.); (A.N.P.); (V.Y.M.); (R.P.K.); (Z.R.I.)
| | - Valentina Yu. Malysheva
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences, 18 Sovetskiy Avenue, 650000 Kemerovo, Russia; (O.S.E.); (A.N.P.); (V.Y.M.); (R.P.K.); (Z.R.I.)
| | - Roman P. Kolmykov
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences, 18 Sovetskiy Avenue, 650000 Kemerovo, Russia; (O.S.E.); (A.N.P.); (V.Y.M.); (R.P.K.); (Z.R.I.)
| | - Oleg G. Sevostyanov
- Institute of Fundamental Sciences, Kemerovo State University, 6 Krasnaya Street, 650000 Kemerovo, Russia; (O.G.S.); (D.M.R.); (V.F.D.)
| | - Dmitriy M. Russakov
- Institute of Fundamental Sciences, Kemerovo State University, 6 Krasnaya Street, 650000 Kemerovo, Russia; (O.G.S.); (D.M.R.); (V.F.D.)
| | - Viatcheslav F. Dolganyuk
- Institute of Fundamental Sciences, Kemerovo State University, 6 Krasnaya Street, 650000 Kemerovo, Russia; (O.G.S.); (D.M.R.); (V.F.D.)
| | - Anton K. Gutakovsky
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 13 Akademika Lavrentieva Avenue, 630090 Novosibirsk, Russia; (A.K.G.); (Y.A.Z.); (A.S.K.)
| | - Yuriy A. Zhivodkov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 13 Akademika Lavrentieva Avenue, 630090 Novosibirsk, Russia; (A.K.G.); (Y.A.Z.); (A.S.K.)
| | - Anton S. Kozhukhov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 13 Akademika Lavrentieva Avenue, 630090 Novosibirsk, Russia; (A.K.G.); (Y.A.Z.); (A.S.K.)
| | - Elena B. Brusina
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Zinfer R. Ismagilov
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences, 18 Sovetskiy Avenue, 650000 Kemerovo, Russia; (O.S.E.); (A.N.P.); (V.Y.M.); (R.P.K.); (Z.R.I.)
| | - Olga L. Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Arseniy E. Yuzhalin
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
| | - Anton G. Kutikhin
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, 650002 Kemerovo, Russia; (D.K.S.); (E.A.V.); (L.A.B.); (M.Y.S.); (A.E.K.); (A.V.T.); (O.V.G.); (A.V.M.); (R.A.M.); (T.V.G.); (E.O.K.); (V.G.M.); (O.N.H.); (V.E.M.); (Y.A.D.); (E.V.B.); (A.V.F.); (A.R.S.); (E.B.B.); (O.L.B.); (A.E.Y.)
- Correspondence: ; Tel.: +7-960-907-7067
| |
Collapse
|
21
|
Kutikhin AG, Feenstra L, Kostyunin AE, Yuzhalin AE, Hillebrands JL, Krenning G. Calciprotein Particles: Balancing Mineral Homeostasis and Vascular Pathology. Arterioscler Thromb Vasc Biol 2021; 41:1607-1624. [PMID: 33691479 PMCID: PMC8057528 DOI: 10.1161/atvbaha.120.315697] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Anton G. Kutikhin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Lian Feenstra
- Department of Pathology and Medical Biology, Division of Pathology (L.F., J.-L.H.), University Medical Center Groningen, University of Groningen, the Netherlands
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology (L.F., G.K.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Alexander E. Kostyunin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Arseniy E. Yuzhalin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology (L.F., J.-L.H.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology (L.F., G.K.), University Medical Center Groningen, University of Groningen, the Netherlands
- Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726 GN, Groningen, the Netherlands (G.K.)
| |
Collapse
|
22
|
Shimada BK, Pomozi V, Zoll J, Kuo S, Martin L, Le Saux O. ABCC6, Pyrophosphate and Ectopic Calcification: Therapeutic Solutions. Int J Mol Sci 2021; 22:ijms22094555. [PMID: 33925341 PMCID: PMC8123679 DOI: 10.3390/ijms22094555] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Pathological (ectopic) mineralization of soft tissues occurs during aging, in several common conditions such as diabetes, hypercholesterolemia, and renal failure and in certain genetic disorders. Pseudoxanthoma elasticum (PXE), a multi-organ disease affecting dermal, ocular, and cardiovascular tissues, is a model for ectopic mineralization disorders. ABCC6 dysfunction is the primary cause of PXE, but also some cases of generalized arterial calcification of infancy (GACI). ABCC6 deficiency in mice underlies an inducible dystrophic cardiac calcification phenotype (DCC). These calcification diseases are part of a spectrum of mineralization disorders that also includes Calcification of Joints and Arteries (CALJA). Since the identification of ABCC6 as the “PXE gene” and the development of several animal models (mice, rat, and zebrafish), there has been significant progress in our understanding of the molecular genetics, the clinical phenotypes, and pathogenesis of these diseases, which share similarities with more common conditions with abnormal calcification. ABCC6 facilitates the cellular efflux of ATP, which is rapidly converted into inorganic pyrophosphate (PPi) and adenosine by the ectonucleotidases NPP1 and CD73 (NT5E). PPi is a potent endogenous inhibitor of calcification, whereas adenosine indirectly contributes to calcification inhibition by suppressing the synthesis of tissue non-specific alkaline phosphatase (TNAP). At present, therapies only exist to alleviate symptoms for both PXE and GACI; however, extensive studies have resulted in several novel approaches to treating PXE and GACI. This review seeks to summarize the role of ABCC6 in ectopic calcification in PXE and other calcification disorders, and discuss therapeutic strategies targeting various proteins in the pathway (ABCC6, NPP1, and TNAP) and direct inhibition of calcification via supplementation by various compounds.
Collapse
Affiliation(s)
- Briana K Shimada
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| | - Viola Pomozi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Janna Zoll
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| | - Sheree Kuo
- Department of Pediatrics, Kapi'olani Medical Center for Women and Children, University of Hawaii, Honolulu, HI 96826, USA
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Reference Center for Rare Skin Diseases, Angers University Hospital, 49100 Angers, France
- BNMI, CNRS 6214/INSERM 1083, University Bretagne-Loire, 49100 Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| |
Collapse
|
23
|
Podestà MA, Cucchiari D, Ciceri P, Messa P, Torregrosa JV, Cozzolino M. Cardiovascular calcifications in kidney transplant recipients. Nephrol Dial Transplant 2021; 37:2063-2071. [PMID: 33620476 DOI: 10.1093/ndt/gfab053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
Vascular and valvular calcifications are highly prevalent in kidney transplant recipients and are associated with an increased risk of cardiovascular events, which represent the leading cause of long-term mortality in these patients. However, cardiovascular calcification has been traditionally considered as a condition mostly associated with advanced chronic kidney disease stages and dialysis, and comparatively fewer studies have assessed its impact after kidney transplantation. Despite partial or complete resolution of uremia-associated metabolic derangements, kidney transplant recipients are still exposed to several pro-calcifying stimuli that favour the progression of pre-existing vascular calcifications or their de novo development. Traditional risk factors, bone mineral disorders, inflammation, immunosuppressive drugs and deficiency of calcification inhibitors may all play a role, and strategies to correct or minimize their effects are urgently needed. The aim of this work is to provide an overview of established and putative mediators involved in the pathogenesis of cardiovascular calcification in kidney transplantation, and to describe the clinical and radiological features of these forms. We also discuss current evidence on preventive strategies to delay the progression of cardiovascular calcifications in kidney transplant recipients, as well as novel therapeutic candidates to potentially prevent their long-term deleterious effects.
Collapse
Affiliation(s)
- Manuel Alfredo Podestà
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Italy
| | - David Cucchiari
- Nephrology and Renal Transplant Department, Hospital Clínic, Barcelona, Spain
| | - Paola Ciceri
- Department of Nephrology, Dialysis and Renal Transplant, Renal Research Laboratory, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Piergiorgio Messa
- Department of Nephrology, Dialysis and Renal Transplant, Renal Research Laboratory, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Mario Cozzolino
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Italy
| |
Collapse
|
24
|
Bäck M, Michel JB. From organic and inorganic phosphates to valvular and vascular calcifications. Cardiovasc Res 2021; 117:2016-2029. [PMID: 33576771 PMCID: PMC8318101 DOI: 10.1093/cvr/cvab038] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/26/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Calcification of the arterial wall and valves is an important part of the pathophysiological process of peripheral and coronary atherosclerosis, aortic stenosis, ageing, diabetes, and chronic kidney disease. This review aims to better understand how extracellular phosphates and their ability to be retained as calcium phosphates on the extracellular matrix initiate the mineralization process of arteries and valves. In this context, the physiological process of bone mineralization remains a human model for pathological soft tissue mineralization. Soluble (ionized) calcium precipitation occurs on extracellular phosphates; either with inorganic or on exposed organic phosphates. Organic phosphates are classified as either structural (phospholipids, nucleic acids) or energetic (corresponding to phosphoryl transfer activities). Extracellular phosphates promote a phenotypic shift in vascular smooth muscle and valvular interstitial cells towards an osteoblast gene expression pattern, which provokes the active phase of mineralization. A line of defense systems protects arterial and valvular tissue calcifications. Given the major roles of phosphate in soft tissue calcification, phosphate mimetics, and/or prevention of phosphate dissipation represent novel potential therapeutic approaches for arterial and valvular calcification.
Collapse
Affiliation(s)
- Magnus Bäck
- Division of Valvular and Coronary Disease, Department of Cardiology, Karolinska University Hospital, 141 86 Stockholm, Sweden.,Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,University of Lorraine, Nancy University Hospital, INSERM U1116, Nancy, France
| | | |
Collapse
|
25
|
Jacobs IJ, Li D, Ivarsson ME, Uitto J, Li Q. A phytic acid analogue INS-3001 prevents ectopic calcification in an Abcc6 -/- mouse model of pseudoxanthoma elasticum. Exp Dermatol 2021; 30:853-858. [PMID: 33523493 DOI: 10.1111/exd.14288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/07/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022]
Abstract
Pseudoxanthoma elasticum (PXE), a prototype of heritable ectopic calcification disorders, affects the skin, eyes and the cardiovascular system due to inactivating mutations in the ABCC6 gene. There is no effective treatment for the systemic manifestations of PXE. In this study, the efficacy of INS-3001, an analogue of phytic acid, was tested for inhibition of ectopic calcification in an Abcc6-/- mouse model of PXE. In prevention study, Abcc6-/- mice, at 6 weeks of age, the time of onset of ectopic calcification, were treated with INS-3001 with 0.16, 0.8, 4, 20 or 100 mg/kg/day administered by subcutaneous implantation of osmotic pumps, as well as 4 mg/kg/day by subcutaneous injection thrice weekly or 14, 4 and 0.8 mg/kg/day once weekly subcutaneous injection. Mice were necropsied at 12 weeks of age. Histologic examination and quantitative calcium assay revealed that mice receiving 6 weeks of continuous INS-3001 administration via osmotic pumps showed dose-dependent inhibition of muzzle skin calcification with complete response at 4 mg/kg/day and a minimum effective dose at 0.8 mg/kg/day. INS-3001 plasma concentrations were dose-dependent and largely consistent during treatment for each dose. thrice weekly and once weekly subcutaneous injections of INS-3001 also prevented calcification. In established disease study, 12-week-old Abcc6-/- mice with extensive calcification were continuously administered INS-3001 at 4 mg/kg/day for a follow-up of 12 weeks. INS-3001 treatment was found to stabilize existing calcification that had developed at start of treatment. These results suggest that INS-3001 may provide a promising preventive treatment strategy for PXE, a currently intractable ectopic calcification disorder.
Collapse
Affiliation(s)
- Ida Joely Jacobs
- Department of Dermatology and Cutaneous Biology, PXE International Center of Excellence in Research and Clinical Care, Jefferson Institute of Molecular Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Diana Li
- Department of Dermatology and Cutaneous Biology, PXE International Center of Excellence in Research and Clinical Care, Jefferson Institute of Molecular Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, PXE International Center of Excellence in Research and Clinical Care, Jefferson Institute of Molecular Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, PXE International Center of Excellence in Research and Clinical Care, Jefferson Institute of Molecular Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
26
|
Singh A, Tandon S, Tandon C. An update on vascular calcification and potential therapeutics. Mol Biol Rep 2021; 48:887-896. [PMID: 33394226 DOI: 10.1007/s11033-020-06086-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Pathological calcification is a major cause of cardiovascular morbidities primarily in population with chronic kidney disease (CKD), end stage renal diseases (ERSD) and metabolic disorders. Investigators have accepted the fact that vascular calcification is not a passive process but a highly complex, cell mediated, active process in patients with cardiovascular disease (CVD) resulting from, metabolic insults of bone fragility, diabetes, hypertension, dyslipidemia and atherosclerosis. Over the years, studies have revealed various mechanisms of vascular calcification like induction of bone formation, apoptosis, alteration in Ca-P balance and loss of inhibition. Novel clinical studies targeting cellular mechanisms of calcification provide promising and potential avenues for drug development. The interventions include phosphate binders, sodium thiosulphate, vitamin K, calcimimetics, vitamin D, bisphosphonates, Myoinositol hexaphosphate (IP6), Denosumab and TNAP inhibitors. Concurrently investigators are also working towards reversing or curing pathological calcification. This review focuses on the relationship of vascular calcification to clinical diseases, regulators and factors causing calcification including genetics which have been identified. At present, there is lack of any significant preventive measures for calcifications and hence this review explores further possibilities for drug development and treatment modalities.
Collapse
Affiliation(s)
- Anubha Singh
- Amity Institute of Biotechnology (AIB), Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Simran Tandon
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Chanderdeep Tandon
- Amity Institute of Biotechnology (AIB), Amity University Uttar Pradesh, Noida, Uttar Pradesh, India.
| |
Collapse
|
27
|
Luo H, Li Q, Cao Y, Uitto J. Therapeutics Development for Pseudoxanthoma Elasticum and Related Ectopic Mineralization Disorders: Update 2020. J Clin Med 2020; 10:E114. [PMID: 33396306 PMCID: PMC7795895 DOI: 10.3390/jcm10010114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE), the prototype of heritable ectopic mineralization disorders, manifests with deposition of calcium hydroxyapatite crystals in the skin, eyes and arterial blood vessels. This autosomal recessive disorder, due to mutations in ABCC6, is usually diagnosed around the second decade of life. In the spectrum of heritable ectopic mineralization disorders are also generalized arterial calcification of infancy (GACI), with extremely severe arterial calcification diagnosed by prenatal ultrasound or perinatally, and arterial calcification due to CD73 deficiency (ACDC) manifesting with arterial and juxta-articular mineralization in the elderly; the latter disorders are caused by mutations in ENPP1 and NT5E, respectively. The unifying pathomechanistic feature in these three conditions is reduced plasma levels of inorganic pyrophosphate (PPi), a powerful endogenous inhibitor of ectopic mineralization. Several on-going attempts to develop treatments for these conditions, either with the goal to normalize PPi plasma levels or by means of preventing calcium hydroxyapatite deposition independent of PPi, are in advanced preclinical levels or in early clinical trials. This overview summarizes the prospects of treatment development for ectopic mineralization disorders, with PXE, GACI and ACDC as the target diseases, from the 2020 vantage point.
Collapse
Affiliation(s)
- Hongbin Luo
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College and the PXE International Center for Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA; (H.L.); (Q.L.)
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China;
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College and the PXE International Center for Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA; (H.L.); (Q.L.)
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yi Cao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China;
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College and the PXE International Center for Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA; (H.L.); (Q.L.)
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
28
|
Kletzmayr A, Bigler M, Montanari E, Kuro-o M, Hayashi H, Ivarsson ME, Leroux JC. Development of a Kidney Calcification Inhibitor Employing Image-Based Profiling: A Proof-of-Concept Study. ACS Pharmacol Transl Sci 2020; 3:1339-1351. [DOI: 10.1021/acsptsci.0c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Anna Kletzmayr
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Melina Bigler
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Elita Montanari
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Makoto Kuro-o
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Hirosaka Hayashi
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | | | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
29
|
MacAskill MG, McDougald W, Alcaide-Corral C, Newby DE, Tavares AA, Hadoke PW, Wu J. Characterisation of an atherosclerotic micro-calcification model using ApoE -/- mice and PET/CT. IJC HEART & VASCULATURE 2020; 31:100672. [PMID: 33251323 PMCID: PMC7680769 DOI: 10.1016/j.ijcha.2020.100672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Mark G. MacAskill
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Wendy McDougald
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Carlos Alcaide-Corral
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - David E. Newby
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Adriana A.S. Tavares
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Patrick W.F. Hadoke
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Junxi Wu
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
30
|
Drüeke TB, Floege J. Cardiovascular complications of chronic kidney disease: pioneering studies. Kidney Int 2020; 98:522-526. [PMID: 32828229 DOI: 10.1016/j.kint.2020.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Tilman B Drüeke
- Inserm U-1018, CESP, Paris-Ile-de-France-Ouest University (UVSQ), Paris-Sud University (UPS), and Paris Saclay University, Villejuif, France.
| | - Jürgen Floege
- Department of Nephrology and Clinical Immunology, University Hospital, Rheinisch Westfälische Technische Hochschule Aachen, Aachen, Germany
| |
Collapse
|
31
|
Narula N, Olin JW, Narula N. Pathologic Disparities Between Peripheral Artery Disease and Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2020; 40:1982-1989. [PMID: 32673526 DOI: 10.1161/atvbaha.119.312864] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is a systemic disease that involves multiple vascular beds. The pathological characteristics and clinical presentation, however, vary among the different vascular territories. Acute coronary syndrome is a relatively common manifestation of coronary atherosclerotic disease, wherein the thrombosis occurs secondary to disruption (65%-75%) and erosion (25%-35%) of the fibrous caps of atheromatous plaques. The plaques associated with plaque rupture have large necrotic cores and thin and inflamed fibrous caps. However, the pathological manifestations of peripheral artery disease result from thrombosis regardless of the extent of atherosclerosis. Approximately 75% of peripheral arteries with significant stenosis demonstrate presence of thrombi, of which two-thirds have thrombi associated with insignificant atherosclerosis. The presence of obliterative thrombi in peripheral arteries of patients with critical limb ischemia in the absence of coronary artery-like lesions suggests a locally thrombogenic or remotely embolic basis of disease. Extensive calcification of the medial vascular layer is commonly observed. In this review, we have described and compared the pathological basis of coronary and peripheral artery disease in patients with acute coronary syndrome and critical limb ischemia. It is expected that pathogenetic characterization would allow for definition of strategic targets for superior management of peripheral artery disease.
Collapse
Affiliation(s)
- Nupoor Narula
- From the Division of Cardiology/Department of Medicine, New York Presbyterian Hospital/Weill Cornell Medicine (Nupoor Narula)
| | - Jeffrey W Olin
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY (J.W.O.)
| | - Navneet Narula
- Department of Pathology, New York University Grossman School of Medicine, New York, NY (Navneet Narula)
| |
Collapse
|
32
|
Kletzmayr A, Ivarsson ME, Leroux JC. Investigational Therapies for Primary Hyperoxaluria. Bioconjug Chem 2020; 31:1696-1707. [PMID: 32539351 DOI: 10.1021/acs.bioconjchem.0c00268] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent years have brought exciting new insights in the field of primary hyperoxaluria (PH), both on a basic research level as well as through the progress of novel therapeutics in clinical development. To date, very few supportive measures are available for patients suffering from PH, which, together with the severity of the disorder, make disease management challenging. Basic and clinical research and development efforts range from correcting the underlying gene mutations, preventing calcium oxalate crystal-induced kidney damage, to the administration of probiotics favoring the intestinal secretion of excess oxalate. In this review, current advances in the development of those strategies are presented and discussed.
Collapse
Affiliation(s)
- Anna Kletzmayr
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
33
|
Zununi Vahed S, Mostafavi S, Hosseiniyan Khatibi SM, Shoja MM, Ardalan M. Vascular Calcification: An Important Understanding in Nephrology. Vasc Health Risk Manag 2020; 16:167-180. [PMID: 32494148 PMCID: PMC7229867 DOI: 10.2147/vhrm.s242685] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular calcification (VC) is a life-threatening state in chronic kidney disease (CKD). High cardiovascular mortality and morbidity of CKD cases may root from medial VC promoted by hyperphosphatemia. Vascular calcification is an active, highly regulated, and complex biological process that is mediated by genetics, epigenetics, dysregulated form of matrix mineral metabolism, hormones, and the activation of cellular signaling pathways. Moreover, gut microbiome as a source of uremic toxins (eg, phosphate, advanced glycation end products and indoxyl-sulfate) can be regarded as a potential contributor to VC in CKD. Here, an update on different cellular and molecular processes involved in VC in CKD is discussed to elucidate the probable therapeutic pathways in the future.
Collapse
Affiliation(s)
| | - Soroush Mostafavi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammadali M Shoja
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | | |
Collapse
|
34
|
Kletzmayr A, Mulay SR, Motrapu M, Luo Z, Anders HJ, Ivarsson ME, Leroux JC. Inhibitors of Calcium Oxalate Crystallization for the Treatment of Oxalate Nephropathies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903337. [PMID: 32328427 PMCID: PMC7175250 DOI: 10.1002/advs.201903337] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/31/2020] [Indexed: 05/06/2023]
Abstract
Calcium oxalate (CaOx) crystal-induced nephropathies comprise a range of kidney disorders, for which there are no efficient pharmacological treatments. Although CaOx crystallization inhibitors have been suggested as a therapeutic modality already decades ago, limited progress has been made in the discovery of potent molecules with efficacy in animal disease models. Herein, an image-based machine learning approach to systematically screen chemically modified myo-inositol hexakisphosphate (IP6) analogues is utilized, which enables the identification of a highly active divalent inositol phosphate molecule. To date, this is the first molecule shown to completely inhibit the crystallization process in the nanomolar range, reduce crystal-cell interactions, thereby preventing CaOx-induced transcriptomic changes, and decrease renal CaOx deposition and kidney injury in a mouse model of hyperoxaluria. In conclusion, IP6 analogues based on such a scaffold may represent a new treatment option for CaOx nephropathies.
Collapse
Affiliation(s)
- Anna Kletzmayr
- Institute of Pharmaceutical Sciences Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
| | - Shrikant R Mulay
- Division of Nephrology Department of Medicine IV University Hospital LMU Munich 80336 Munich Germany
| | - Manga Motrapu
- Division of Nephrology Department of Medicine IV University Hospital LMU Munich 80336 Munich Germany
| | - Zhi Luo
- Institute of Pharmaceutical Sciences Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
| | - Hans-Joachim Anders
- Division of Nephrology Department of Medicine IV University Hospital LMU Munich 80336 Munich Germany
| | | | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
| |
Collapse
|