1
|
Lagunas-Rangel FA, Liao S, Williams MJ, Trukhan V, Fredriksson R, Schiöth HB. Drosophila as a Rapid Screening Model to Evaluate the Hypoglycemic Effects of Dipeptidyl Peptidase 4 (DPP4) Inhibitors: High Evolutionary Conservation of DPP4. Biomedicines 2023; 11:3032. [PMID: 38002032 PMCID: PMC10669173 DOI: 10.3390/biomedicines11113032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Dipeptidyl peptidase 4 (DPP4) inhibitors, commonly known as gliptins, have been an integral part of the treatment of type 2 diabetes mellitus (T2DM) for several years. Despite their remarkable efficacy in lowering glucose levels and their compatibility with other hypoglycemic drugs, recent studies have revealed adverse effects, prompting the search for improved drugs within this category, which has required the use of animal models to verify the hypoglycemic effects of these compounds. Currently, in many countries the use of mammals is being significantly restricted, as well as cost prohibitive, and alternative in vivo approaches have been encouraged. In this sense, Drosophila has emerged as a promising alternative for several compelling reasons: it is cost-effective, offers high experimental throughput, is genetically manipulable, and allows the assessment of multigenerational effects, among other advantages. In this study, we present evidence that diprotin A, a DPP4 inhibitor, effectively reduces glucose levels in Drosophila hemolymph. This discovery underscores the potential of Drosophila as an initial screening tool for novel compounds directed against DPP4 enzymatic activity.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.A.L.-R.); (S.L.); (M.J.W.)
| | - Sifang Liao
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.A.L.-R.); (S.L.); (M.J.W.)
| | - Michael J. Williams
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.A.L.-R.); (S.L.); (M.J.W.)
| | | | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden;
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.A.L.-R.); (S.L.); (M.J.W.)
| |
Collapse
|
2
|
Yang P, Hao S, Han M, Xu J, Yu S, Chen C, Zhang H, Ning K. Analysis of antibiotic resistance genes reveals their important roles in influencing the community structure of ocean microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153731. [PMID: 35143795 DOI: 10.1016/j.scitotenv.2022.153731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance gene (ARG) content is a well-established driver of microbial abundance and diversity in an environment. By reanalyzing 132 metagenomic datasets from the Tara Oceans project, we aim to unveil the associations between environmental factors, the ocean microbial community structure and ARG contents. We first investigated the structural patterns of microbial communities including both prokaryotes such as bacteria and eukaryotes such as protists. Additionally, several ARG-dominant horizontal gene transfer events between Protist and Prokaryote have been identified, indicating the potential roles of ARG in shaping the ocean microbial communities. For a deeper insight into the role of ARGs in ocean microbial communities on a global scale, we identified 1926 unique types of ARGs and discovered that the ARGs are more abundant and diverse in the mesopelagic zone than other water layers, potentially caused by limited resources. Finally, we found that ARG-enriched genera were often more abundant compared to their ARG-less neighbors in the same environment (e.g. coastal oceans). A deeper understanding of the ARG-microbiome relationships could help in the conservation of the oceanic ecosystem.
Collapse
Affiliation(s)
- Pengshuo Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shiguang Hao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Maozhen Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Junjie Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaojun Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chaoyun Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Houjin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
3
|
Laiolo P, Pato J, Illera JC, Obeso JR. Selection for functional performance in the evolution of cuticle hardening mechanisms in insects. Evolution 2021; 75:1132-1142. [PMID: 33634481 DOI: 10.1111/evo.14201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/29/2022]
Abstract
Calcified tissues have repeatedly evolved in many animal lineages and show a tremendous diversity of forms and functions. The cuticle of many insects is enriched with elements other than Calcium, a strategy of hardening that is taxonomically widespread but apparently poorly variable among clades. Here, we investigate the evolutionary potential of the enrichment with metals in insect cuticle at different biological levels. We combined experimental evidence of Zinc content variation in the mandibles of a target species (Chorthippus cazurroi [Bolívar]) with phylogenetic comparative analyses among grasshopper species. We found that mandibular Zinc content was repeatable among related individuals and was associated with an indicator of fitness, so there was potential for adaptive variation. Among species, Zinc enrichment evolved as a consequence of environmental and dietary influences on the physical function of the jaw (cutting and chewing), suggesting a role of natural selection in environmental fit. However, there were also important within and transgenerational environmental sources of similarity among individuals. These environmental influences, along with the tight relationship with biomechanics, may limit the potential for diversification of this hardening mechanism. This work provides novel insights into the diversification of biological structures and the link between evolutionary capacity and intra- and interspecific variation.
Collapse
Affiliation(s)
- Paola Laiolo
- Research Unit of Biodiversity (UO, CSIC, PA), Oviedo University, Mieres, 33600, Spain
| | - Joaquina Pato
- Research Unit of Biodiversity (UO, CSIC, PA), Oviedo University, Mieres, 33600, Spain
| | - Juan Carlos Illera
- Research Unit of Biodiversity (UO, CSIC, PA), Oviedo University, Mieres, 33600, Spain
| | - José Ramón Obeso
- Research Unit of Biodiversity (UO, CSIC, PA), Oviedo University, Mieres, 33600, Spain
| |
Collapse
|
4
|
Evolutionary conservation and functional impact of dopamine D2 receptor. Neurosci Lett 2020; 733:135081. [DOI: 10.1016/j.neulet.2020.135081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 11/19/2022]
|