1
|
Shin HE, Won CW, Kim M. Circulating small non-coding RNA profiling for identification of older adults with low muscle strength and physical performance: A preliminary study. Exp Gerontol 2024; 197:112598. [PMID: 39343252 DOI: 10.1016/j.exger.2024.112598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Small non-coding RNAs (ncRNAs) have recently emerged as potential biomarkers of sarcopenia. However, previous studies have rarely explored the association of small ncRNAs with sarcopenic components, especially muscle strength and physical performance. We aimed to examine circulating small ncRNA profiles to detect low muscle strength and physical performance in older adults. METHODS Ninety-eight older adults were randomly selected from Korean Frailty and Aging Cohort Study and classified into the "Normal," "Low muscle strength (MS) only," "Low physical performance (PP) only," and "Low MS and PP" groups by Asian Working Group for Sarcopenia 2019 criteria. We used high-throughput sequencing to delineate small ncRNA profiles in plasma. Differentially expressed small ncRNAs were analyzed to reveal distinct patterns based on muscle strength and physical performance status. RESULTS In "Low MS and PP" group, 119 miRNAs, 86 piRNAs, 92 snoRNAs, 106 snRNAs, and 15 tRNAs were differentially expressed compared to "Normal" group (p < 0.05). After Benjamini-Hochberg adjustment, 39 miRNAs, 2 piRNAs, 75 snoRNAs, 48 snRNAs, and 15 tRNAs showed differential expression in "Low MS and PP" group compared to than "Normal" group (adjusted p < 0.05). No significant differences were observed in comparisons between the other groups (adjusted p > 0.05). CONCLUSION The expression of circulating small ncRNAs were comprehensively characterized, revealing distinct signatures in older adults with both low muscle strength and physical performance compared to normal individuals. Although preliminary, this characterization can advance small ncRNA research on age-related declines in muscle strength and physical performance by providing foundational data for further investigation.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA 30329, USA; Department of Health Sciences and Technology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Miji Kim
- Department of Health Sciences and Technology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Shen LP, Zhang WC, Deng JR, Qi ZH, Lin ZW, Wang ZD. Advances in the mechanism of small nucleolar RNA and its role in DNA damage response. Mil Med Res 2024; 11:53. [PMID: 39118131 PMCID: PMC11308251 DOI: 10.1186/s40779-024-00553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) were previously regarded as a class of functionally conserved housekeeping genes, primarily involved in the regulation of ribosome biogenesis by ribosomal RNA (rRNA) modification. However, some of them are involved in several biological processes via complex molecular mechanisms. DNA damage response (DDR) is a conserved mechanism for maintaining genomic stability to prevent the occurrence of various human diseases. It has recently been revealed that snoRNAs are involved in DDR at multiple levels, indicating their relevant theoretical and clinical significance in this field. The present review systematically addresses four main points, including the biosynthesis and classification of snoRNAs, the mechanisms through which snoRNAs regulate target molecules, snoRNAs in the process of DDR, and the significance of snoRNA in disease diagnosis and treatment. It focuses on the potential functions of snoRNAs in DDR to help in the discovery of the roles of snoRNAs in maintaining genome stability and pathological processes.
Collapse
Affiliation(s)
- Li-Ping Shen
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wen-Cheng Zhang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jia-Rong Deng
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhen-Hua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhong-Wu Lin
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhi-Dong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Li M, Shou H, Martínez Corrales G, Svermova T, Franco AV, Alic N. Xbp1 targets canonical UPR ER and non-canonical pathways in separate tissues to promote longevity. iScience 2024; 27:109962. [PMID: 38832022 PMCID: PMC11144730 DOI: 10.1016/j.isci.2024.109962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Transcription factors can reprogram gene expression to promote longevity. Here, we investigate the role of Drosophila Xbp1. Xbp1 is activated by splicing of its primary transcript, Xbp1u, to generate Xbp1s, a key activator of the endoplasmic reticulum unfolded protein response (UPRER). We show that Xbp1s induces the conical UPRER in the gut, promoting longevity from the resident stem cells. In contrast, in the fat body, Xbp1s does not appear to trigger UPRER but alters metabolic gene expression and is still able to extend lifespan. In the fat body, Xbp1s and dFOXO impinge on the same target genes, including the PGC-1α orthologue Srl, and dfoxo requires Xbp1 to extend lifespan. Interestingly, unspliceable version of the Xbp1 mRNA, Xbp1u can also extend lifespan, hinting at roles in longevity for the poorly characterized Xbp1u transcription factor. These findings reveal the diverse functions of Xbp1 in longevity in the fruit fly.
Collapse
Affiliation(s)
- Mengjia Li
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Haocheng Shou
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Guillermo Martínez Corrales
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Tatiana Svermova
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Alessandra Vieira Franco
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Nazif Alic
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
4
|
Shen L, Lin C, Lu W, He J, Wang Q, Huang Y, Zheng X, Wang Z. Involvement of the oncogenic small nucleolar RNA SNORA24 in regulation of p53 stability in colorectal cancer. Cell Biol Toxicol 2023; 39:1377-1394. [PMID: 36087186 DOI: 10.1007/s10565-022-09765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Colorectal cancer (CRC) is a common malignant cancer worldwide. Although the molecular mechanism of CRC carcinogenesis has been studied extensively, the details remain unclear. Small nucleolar RNAs (snoRNAs) have recently been reported to have essential functions in carcinogenesis, although their roles in CRC pathogenesis are largely unknown. In this study, we found that the H/ACA snoRNA SNORA24 was upregulated in various cancers, including CRC. SNORA24 expression was significantly associated with age and history of colon polyps in CRC patient cohorts, with high expression associated with a decreased 5-year overall survival. Our results indicated that the oncogenic function of SNORA24 is mediated by promoting G1/S phase transformation, cell proliferation, colony formation, and growth of xenograft tumors. Furthermore, SNORA24 knockdown induced massive apoptosis. RNA-sequencing and gene ontology (GO) enrichment analyses were performed to explore its downstream targets. Finally, we confirmed that SNORA24 regulates p53 protein stability in a proteasomal degradation pathway. Our study clarifies the oncogenic role of SNORA24 in CRC and advance the current model of the role of the p53 pathway in this process.
Collapse
Affiliation(s)
- Liping Shen
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chuxian Lin
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wenqing Lu
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Junyan He
- The First Affiliated Hospital, Department of Radiation Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yujv Huang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiaofei Zheng
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
5
|
Lis B, Domagała PJ, Lis JA. Tribe Acalyptaini ( Hemiptera: Tingidae: Tinginae) Revisited: Can Apomorphies in Secondary and Tertiary Structures of 18S rRNA Length-Variable Regions (LVRs) Support Tribe Validity? INSECTS 2023; 14:600. [PMID: 37504606 PMCID: PMC10380217 DOI: 10.3390/insects14070600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
The lace bug tribe Acalyptaini (Tingidae: Tinginae) includes five genera, Acalypta, Derephysia, Dictyonota, Kalama, and Recaredus, and it was recently resurrected based on morphological and karyological characters. We aimed to validate the distinctiveness of this tribe using 18S rDNA sequences, which have not been used in previous Tingidae phylogenomic studies. Our results confirmed the monophyly of the tribe. Moreover, the monophyly of the subfamily Cantacaderinae and its basal position within the family Tingidae were indicated, as well as the position of the tribe Litadeini as sister to all other Tinginae. In addition, we attempted to determine the apomorphic morpho-molecular characters in the secondary and tertiary structures of length-variable regions of the 18S rRNA sequences of the analysed species. The results showed that two LVRs (LVR X and LVR L) of the hypervariable region V4 exhibited significant variability in the number of nucleotides and could be considered for apomorphic recognition.
Collapse
Affiliation(s)
- Barbara Lis
- Institute of Biology, University of Opole, 45-052 Opole, Oleska 22, Poland
| | - Paweł J Domagała
- Institute of Biology, University of Opole, 45-052 Opole, Oleska 22, Poland
| | - Jerzy A Lis
- Institute of Biology, University of Opole, 45-052 Opole, Oleska 22, Poland
| |
Collapse
|
6
|
Lis JA. Molecular Apomorphies in the Secondary and Tertiary Structures of Length-Variable Regions (LVRs) of 18S rRNA Shed Light on the Systematic Position of the Family Thaumastellidae (Hemiptera: Heteroptera: Pentatomoidea). Int J Mol Sci 2023; 24:ijms24097758. [PMID: 37175465 PMCID: PMC10178826 DOI: 10.3390/ijms24097758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The SSU nrDNA, a small subunit of the nuclear ribosomal DNA (coding 18S rRNA), is one of the most frequently sequenced genes in molecular studies in Hexapoda. In insects, including true bugs (Hemiptera: Heteroptera), only its primary structures (i.e., aligned sequences) are predominantly used in phylogenetic reconstructions. It is known that including RNA secondary structures in the alignment procedure is essential for improving accuracy and robustness in phylogenetic tree reconstruction. Moreover, local plasticity in rRNAs might impact their tertiary structures and corresponding functions. To determine the systematic position of Thaumastellidae within the superfamily Pentatomoidea, the secondary and-for the first time among all Hexapoda-tertiary structures of 18S rRNAs in twelve pentatomoid families were compared and analysed. Results indicate that the shapes of the secondary and tertiary structures of the length-variable regions (LVRs) in the 18S rRNA are phylogenetically highly informative. Based on these results, it is suggested that the Thaumastellidae is maintained as an independent family within the superfamily Pentatomoidea, rather than as a part of the family Cydnidae. Moreover, the analyses indicate a close relationship between Sehirinae and Parastrachiidae, expressed in morpho-molecular synapomorphies in the predicted secondary and tertiary structures of the length-variable region L (LVR L).
Collapse
Affiliation(s)
- Jerzy A Lis
- Institute of Biology, University of Opole, Oleska 22, 45-052 Opole, Poland
| |
Collapse
|
7
|
Li R, Zhu B, Shan J, Li L, Liang P, Gao X. Functional analysis of a carboxylesterase gene involved in beta-cypermethrin and phoxim resistance in Plutella xylostella (L.). PEST MANAGEMENT SCIENCE 2021; 77:2097-2105. [PMID: 33342080 DOI: 10.1002/ps.6238] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/03/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Carboxylesterases (CarEs) are associated with detoxification of xenobiotics, including insecticides, in organism bodies. Overexpression of CarE genes is considered to have an important role in insecticide resistance in insects, however its involvement in multi-insecticide resistance has rarely been reported. This study aimed to assess the function of a CarE gene (PxαE8) in resistance to five insecticides in Plutella xylostella. RESULTS Relative expression of PxαE8 in three multi-insecticide-resistant Plutella xylostella populations, GD-2017, GD-2019 and HN, was14.8-, 19.5- and 28.0-fold higher than that in the susceptible population. Exposure to lethal concentrations associated with 25% mortality (LC25 ) of beta-cypermethrin, chlorantraniliprole, metaflumizone, phoxim and tebufenozide could induce the specific activity of CarEs and increase the relative expression of PxαE8. By contrast, knockdown of PxαE8 expression dramatically reduced the activity of CarEs and increased the resistance of P. xylostella (GD-2019) larvae to beta-cypermethrin and phoxim by 47.4% and 45.5%, respectively. Further, a transgenic line of Drosophila melanogaster overexpressing PxαE8 was constructed and the bioassay results showed that the tolerance of transgenic Drosophila to beta-cypermethrin and phoxim was 3.93- and 3.98-fold higher than that of the untransgenic line. CONCLUSION These results provide evidence that overexpression of PxαE8 is involved in resistance, at least to beta-cypermethrin and phoxim, in multi-insecticide-resistant P. xylostella populations, which could help in further understanding the molecular mechanisms of multi-insecticide resistance in this pest. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ran Li
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Jinqiong Shan
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Linhong Li
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
8
|
El-Khoury F, Bignon J, Martin JR. jouvence, a new human snoRNA involved in the control of cell proliferation. BMC Genomics 2020; 21:817. [PMID: 33225905 PMCID: PMC7682050 DOI: 10.1186/s12864-020-07197-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Background Small nucleolar RNAs (snoRNAs) are non-coding RNAs that are conserved from archaebacteria to mammals. They are associated in the nucleolus, with proteins to form small nucleolar ribonucleoprotein (snoRNPs). They modify ribosomal RNAs, for example, the H/ACA box that converts uridine to pseudouridine. In humans, various pathologies have been associated with snoRNAs, and several snoRNAs have been reported to participate in many cancer processes. Recently, a new H/ACA box snoRNA named jouvence has been identified in Drosophila and has been shown to be involved in lifespan determination in relation to gut homeostasis. Because snoRNAs are conserved through evolution, both structurally and functionally, a jouvence orthologue has been identified in humans. RT-PCR has revealed that jouvence is expressed, suggesting that it might be functional. These results suggest the hypothesis that jouvence may display similar functions, including increasing the healthy lifespan in humans. Results Here, we report the characterization of the human snoRNA jouvence, which has not yet been annotated in the genome. We show that its overexpression significantly stimulates cell proliferation, both in various stable cancerous cell lines as well as in primary cells. By contrast, its knockdown by siRNA leads to the opposite phenotype, a rapid decrease in cell proliferation. Transcriptomic analysis (RNA-Seq) revealed that the overexpression of jouvence leads to a dedifferentiation signature of the cells. Conversely, the knockdown of jouvence led to a striking decrease in the expression levels of genes involved in ribosome biogenesis and the spliceosome. Conclusion The overexpression of a single and short non-coding RNA of 159 nucleotides, the snoRNA-jouvence, seems to be sufficient to reorient cells toward stemness, while its depletion blocks cell proliferation. In this context, we speculate that the overexpression of jouvence, which appears to be a non-canonical H/ACA snoRNA, could represent a new tool to fight against the deleterious effects of aging, while inversely, its knockdown by siRNA could represent a new approach in cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07197-3.
Collapse
Affiliation(s)
- Flaria El-Khoury
- Equipe: Imagerie Cérébrale Fonctionnelle et Comportements (ICFC), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR-9197, CNRS/Université Paris-Saclay, 1 Avenue de la Terrasse (Bat. 32/33), 91198, Gif-sur-Yvette, France
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-René Martin
- Equipe: Imagerie Cérébrale Fonctionnelle et Comportements (ICFC), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR-9197, CNRS/Université Paris-Saclay, 1 Avenue de la Terrasse (Bat. 32/33), 91198, Gif-sur-Yvette, France.
| |
Collapse
|