1
|
Koh S, Saito Y, Kudo H, Taguchi S, Kumagai A, Mizuno M, Samejima M, Amano Y. Synthesis of a natural core substrate with lignin-xylan cross-linkage for unveiling the productive kinetic parameters of glucuronoyl esterase. Biochem Biophys Res Commun 2024; 734:150642. [PMID: 39316949 DOI: 10.1016/j.bbrc.2024.150642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/26/2024]
Abstract
Lignin-carbohydrate complexes (LCCs) present a considerable hurdle to the economic utilization of lignocellulosic biomass. Glucuronoyl esterase (GE) is an LCC-degrading enzyme that catalyzes the cleavage of the cross-linkages between lignin and xylan in LCCs. Benzyl-d-glucuronate (Bn-GlcA), a commercially available substrate, is widely used to evaluate GE activity assays. However, since Bn-GlcA lacks the structural backbone of naturally occurring LCCs, the mechanisms underlying the activity of GEs and their diversity in the structure-activity relationship are not fully understood. Herein, we provided a synthesis scheme for designing 1,23-α-d-(6-benzyl-4-O-methyl-glucuronyl)-1,4-β-d-xylotriose (Bn-MeGlcA3Xyl3) as a natural core substrate bearing cross-linkage between lignin and glucuronoxylan. A well-defined and yet more realistic synthetic substrate was successfully synthesized via a key step of the benzyl esterification of 4-O-methyl-glucuronyl-1,4-β-d-xylotriose (MeGlcA3Xyl3), a minimized fragment of glucuronoxylan enzymatically digested by β-1,4-xylanase. To the best of our knowledge, this is the first report of the productive GE kinetic analysis using this substrate. Kinetic parameters of the GE from the fungal Pestalotiopsis sp. AN-7 (PesGE), i.e., the Km, Vmax, and kcat of Bn-MeGlcA3Xyl3, were 0.43 mM, 55.5 μmol min-1·mg-1, and 35.8 s-1, respectively. On the other hand, as reported to date, the productive kinetic parameters for Bn-GlcA were not obtained because of its excessively high Km value (>16 mM). The substantial variance in the enzymatic activity of PesGE regarding substrate-binding affinity between Bn-MeGlcA3Xyl3 and Bn-GlcA was also demonstrated using in silico docking simulation. These results suggested that the extended xylan fragment is a key structural determinant affecting PesGE's substrate recognition. Furthermore, the presence of a natural xylan backbone allows for evaluating the enzyme activity of xylan-degrading enzymes. Accordingly, the synthesized substrate with the natural core structure of LCC allowed us to unveil the productive kinetic parameters of GEs, serving as a versatile substrate for further elucidating the cascade reaction of GE and xylan-degrading enzymes.
Collapse
Affiliation(s)
- Sangho Koh
- Department of Bioscience and Textile Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan.
| | - Yasuko Saito
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima, 737-0046, Japan
| | - Hisashi Kudo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Seiichi Taguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Akio Kumagai
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima, 737-0046, Japan
| | - Masahiro Mizuno
- Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
| | - Masahiro Samejima
- Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
| | - Yoshihiko Amano
- Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan.
| |
Collapse
|
2
|
Madsen MS, Martins PA, Agger JW. Efficient activity screening of new glucuronoyl esterases using a pNP-based assay. Enzyme Microb Technol 2024; 178:110444. [PMID: 38581869 DOI: 10.1016/j.enzmictec.2024.110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Glucuronoyl esterases (CE15, EC 3.1.1.117) catalyze the hydrolysis of ester bonds between lignin and carbohydrates in lignocellulose. They are widespread within fungi and bacteria, and are subjects to research interest due to their potential applicability in lignocellulose processing. Identifying new and relevant glucuronoyl esterase candidates is challenging because available model substrates poorly represent the natural substrate, which leads to inefficient screening for the activity. In this study, we demonstrate how fifteen novel, fungal, putative glucuronoyl esterases from family CE15 were expressed and screened for activity towards a commercially available, colorimetric assay based on the methyl-ester of 4-O-methyl-aldotriuronic acid linked to para-nitrophenol (methyl ester-UX-β-pNP) and coupled with the activity of GH67 (α-glucuronidase) and GH43 (β-xylosidase) activity. The assay provides easy means for accurately establishing activity and determining specific activity of glucuronoyl esterases. Out of the fifteen expressed CE15 proteins, seven are active and were purified to determine their specific activity. The seven active enzymes originate from Auricularia subglabra (3 proteins), Ganoderma sinensis (2 proteins) and Neocallimastix californiae (2 proteins). Among the CE15 proteins not active towards the screening substrate (methyl ester-UX-β-pNP) were proteins originating from Schizophyllum commune, Podospora anserina, Trametes versicolor, and Coprinopsis cinerea. It is unexpected that CE15 proteins from such canonical lignocellulose degraders do not have the anticipated activity, and these observations call for deeper investigations.
Collapse
Affiliation(s)
- Michael S Madsen
- Technical University of Denmark, Lignin Biotechnology, Department of Biotechnology and Biomedicine, Søltofts Plads 224, Kgs Lyngby DK-2800, Denmark
| | - Pedro A Martins
- Technical University of Denmark, Lignin Biotechnology, Department of Biotechnology and Biomedicine, Søltofts Plads 224, Kgs Lyngby DK-2800, Denmark
| | - Jane W Agger
- Technical University of Denmark, Lignin Biotechnology, Department of Biotechnology and Biomedicine, Søltofts Plads 224, Kgs Lyngby DK-2800, Denmark.
| |
Collapse
|
3
|
Gruninger RJ, Kevorkova M, Low KE, Jones DR, Worrall L, McAllister TA, Abbott DW. Structural, Biochemical, and Phylogenetic Analysis of Bacterial and Fungal Carbohydrate Esterase Family 15 Glucuronoyl Esterases in the Rumen. Protein J 2024; 43:910-922. [PMID: 39153129 PMCID: PMC11345330 DOI: 10.1007/s10930-024-10221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/19/2024]
Abstract
Glucuronoyl esterases (GEs) are carbohydrate active enzymes in carbohydrate esterase family 15 which are involved in the hydrolysis of lignin-carbohydrate complexes. They are encoded by a wide range of aerobic and anaerobic fungi and bacteria inhabiting diverse environments. The rumen microbiome is a complex microbial community with a wide array of enzymes that specialize in deconstructing plant cell wall carbohydrates. Enzymes from the rumen tend to show low similarity to homologues found in other environments, making the rumen microbiome a promising source for the discovery of novel enzymes. Using a combination of phylogenetic and structural analysis, we investigated the structure-function relationship of GEs from the rumen bacteria Fibrobacter succinogenes and Ruminococcus flavefaciens, and from the rumen fungus, Piromyces rhizinflata. All adopt a canonical α/β hydrolase fold and possess a structurally conserved Ser-His-Glu/Asp catalytic triad. Structural variations in the enzymes are localized to loops surrounding the active site. Analysis of the active site structures in these enzymes emphasized the importance of structural plasticity in GEs with non-canonical active site conformations. We hypothesize that interkingdom HGT events may have contributed to the diversity of GEs in the rumen, and this is demonstrated by the phylogenetic and structural similarity observed between rumen bacterial and fungal GEs. This study advances our understanding of the structure-function relationship in glucuronoyl esterases and illuminates the evolutionary dynamics that contribute to enzyme diversity in the rumen microbiome.
Collapse
Affiliation(s)
- Robert J Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
| | - Maya Kevorkova
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Darryl R Jones
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Liam Worrall
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
4
|
Carbonaro M, Mazurkewich S, Fiorentino G, Lo Leggio L, Larsbrink J. Exploration of three Dyadobacter fermentans enzymes uncovers molecular activity determinants in CE15. Appl Microbiol Biotechnol 2024; 108:335. [PMID: 38747981 PMCID: PMC11096219 DOI: 10.1007/s00253-024-13175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/18/2024]
Abstract
Glucuronoyl esterases (GEs) are serine-type hydrolase enzymes belonging to carbohydrate esterase family 15 (CE15), and they play a central role in the reduction of recalcitrance in plant cell walls by cleaving ester linkages between glucuronoxylan and lignin in lignocellulose. Recent studies have suggested that bacterial CE15 enzymes are more heterogeneous in terms of sequence, structure, and substrate preferences than their fungal counterparts. However, the sequence space of bacterial GEs has still not been fully explored, and further studies on diverse enzymes could provide novel insights into new catalysts of biotechnological interest. To expand our knowledge on this family of enzymes, we investigated three unique CE15 members encoded by Dyadobacter fermentans NS114T, a Gram-negative bacterium found endophytically in maize/corn (Zea mays). The enzymes are dissimilar, sharing ≤ 39% sequence identity to each other' and were considerably different in their activities towards synthetic substrates. Combined analysis of their primary sequences and structural predictions aided in establishing hypotheses regarding specificity determinants within CE15, and these were tested using enzyme variants attempting to shift the activity profiles. Together, the results expand our existing knowledge of CE15, shed light into the molecular determinants defining specificity, and support the recent thesis that diverse GEs encoded by a single microorganism may have evolved to fulfil different physiological functions. KEY POINTS: • D. fermentans encodes three CE15 enzymes with diverse sequences and specificities • The Region 2 inserts in bacterial GEs may directly influence enzyme activity • Rational amino acid substitutions improved the poor activity of the DfCE15A enzyme.
Collapse
Affiliation(s)
- Miriam Carbonaro
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Scott Mazurkewich
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| | | | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Johan Larsbrink
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
5
|
Perna V, Agger JW. Transesterification with CE15 glucuronoyl esterase from Cerrena unicolor reveals substrate preferences. Biotechnol Lett 2024; 46:107-114. [PMID: 38150097 PMCID: PMC10787888 DOI: 10.1007/s10529-023-03456-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/28/2023]
Abstract
PURPOSE Glucuronoyl esterases (GE, family CE15) catalyse the cleavage of ester linkages in lignin-carbohydrate complexes (LCCs), and this study demonstrate how transesterification reactions with a fungal GE from Cerrena unicolor (CuGE) can reveal the enzyme's preference for the alcohol-part of the ester-bond. METHODS This alcohol-preference relates to where the ester-LCCs are located on the lignin molecule, and has consequences for how the enzymes potentially interact with lignin. It is unknown exactly what the enzymes prefer; either the α-benzyl or the γ-benzyl position. By providing the enzyme with a donor substrate (the methyl ester of either glucuronate or 4-O-methyl-glucuronate) and either one of two acceptor molecules (benzyl alcohol or 3-phenyl-1-propanol) we demonstrate that the enzyme can perform transesterification and it serves as a method for assessing the enzyme's alcohol preferences. CONCLUSION CuGE preferentially forms the γ-ester from the methyl ester of 4-O-methyl-glucuronate and 3-phenyl-1-propanol and the enzyme's substrate preferences are primarily dictated by the presence of the 4-O-methylation on the glucuronoyl donor, and secondly on the type of alcohol.
Collapse
Affiliation(s)
- Valentina Perna
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Jane Wittrup Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
6
|
Agger JW, Madsen MS, Martinsen LK, Martins PA, Barrett K, Meyer AS. New insights to diversity and enzyme-substrate interactions of fungal glucuronoyl esterases. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12575-4. [PMID: 37256329 DOI: 10.1007/s00253-023-12575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023]
Abstract
Glucuronoyl esterases (GEs) (EC 3.1.1.117) catalyze the cleavage of ester-linked lignin-carbohydrate complexes that has high impact on the plant cell wall integrity. The GEs are among the very few known types of hydrolytic enzymes that act at the interface of lignin, or which may potentially interact with lignin itself. In this review, we provide the latest update of the current knowledge on GEs with a special focus on the fungal variants. In addition, we have established the phylogenetic relationship between all GEs and this reveals that the fungal enzymes largely fall into one major branch, together with only a minor subset of bacterial enzymes. About 22% of the fungal proteins carry an additional domain, which is almost exclusively a CBM1 binding domain. We address how GEs may interact with the lignin-side of their substrate by molecular docking experiments based on the known structure of the Cerrena unicolor GE (CuGE). The docking studies indicate that there are no direct interactions between the enzyme and the lignin polymer, that the lignin-moiety is facing away from the protein surface and that an elongated carbon-chain between the ester-linkage and the first phenyl of lignin is preferable. Much basic research on these enzymes has been done over the past 15 years, but the next big step forward for these enzymes is connected to application and how these enzymes can facilitate the use of lignocellulose as a renewable resource. KEY POINTS: Fungal GEs are closely related and are sometimes linked to a binding module Molecular docking suggests good accommodation of lignin-like substructures GEs could be among the first expressed enzymes during fungal growth on biomass.
Collapse
Affiliation(s)
- Jane Wittrup Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark.
| | - Michael Schmidt Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| | - Line Korte Martinsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| | - Pedro Alves Martins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| | - Kristian Barrett
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Østby H, Várnai A. Hemicellulolytic enzymes in lignocellulose processing. Essays Biochem 2023; 67:533-550. [PMID: 37068264 PMCID: PMC10160854 DOI: 10.1042/ebc20220154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 04/19/2023]
Abstract
Lignocellulosic biomass is the most abundant source of carbon-based material on a global basis, serving as a raw material for cellulosic fibers, hemicellulosic polymers, platform sugars, and lignin resins or monomers. In nature, the various components of lignocellulose (primarily cellulose, hemicellulose, and lignin) are decomposed by saprophytic fungi and bacteria utilizing specialized enzymes. Enzymes are specific catalysts and can, in many cases, be produced on-site at lignocellulose biorefineries. In addition to reducing the use of often less environmentally friendly chemical processes, the application of such enzymes in lignocellulose processing to obtain a range of specialty products can maximize the use of the feedstock and valorize many of the traditionally underutilized components of lignocellulose, while increasing the economic viability of the biorefinery. While cellulose has a rich history of use in the pulp and paper industries, the hemicellulosic fraction of lignocellulose remains relatively underutilized in modern biorefineries, among other reasons due to the heterogeneous chemical structure of hemicellulose polysaccharides, the composition of which varies significantly according to the feedstock and the choice of pretreatment method and extraction solvent. This paper reviews the potential of hemicellulose in lignocellulose processing with focus on what can be achieved using enzymatic means. In particular, we discuss the various enzyme activities required for complete depolymerization of the primary hemicellulose types found in plant cell walls and for the upgrading of hemicellulosic polymers, oligosaccharides, and pentose sugars derived from hemicellulose depolymerization into a broad spectrum of value-added products.
Collapse
Affiliation(s)
- Heidi Østby
- Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, N-1432 Aas, Norway
| | - Anikó Várnai
- Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, N-1432 Aas, Norway
| |
Collapse
|
8
|
Glucuronoyl esterases - enzymes to decouple lignin and carbohydrates and enable better utilization of renewable plant biomass. Essays Biochem 2023; 67:493-503. [PMID: 36651189 PMCID: PMC10154605 DOI: 10.1042/ebc20220155] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023]
Abstract
Glucuronoyl esterases (GEs) are microbial enzymes able to cleave covalent linkages between lignin and carbohydrates in the plant cell wall. GEs are serine hydrolases found in carbohydrate esterase family 15 (CE15), which belongs to the large α/β hydrolase superfamily. GEs have been shown to reduce plant cell wall recalcitrance by hydrolysing the ester bonds found between glucuronic acid moieties on xylan polysaccharides and lignin. In recent years, the exploration of CE15 has broadened significantly and focused more on bacterial enzymes, which are more diverse in terms of sequence and structure to their fungal counterparts. Similar to fungal GEs, the bacterial enzymes are able to improve overall biomass deconstruction but also appear to have less strict substrate preferences for the uronic acid moiety. The structures of bacterial GEs reveal that they often have large inserts close to the active site, with implications for more extensive substrate interactions than the fungal GEs which have more open active sites. In this review, we highlight the recent work on GEs which has predominantly regarded bacterial enzymes, and discuss similarities and differences between bacterial and fungal enzymes in terms of the biochemical properties, diversity in sequence and modularity, and structural variations that have been discovered thus far in CE15.
Collapse
|
9
|
Microbial xylanolytic carbohydrate esterases. Essays Biochem 2022; 67:479-491. [PMID: 36468678 DOI: 10.1042/ebc20220129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Abstract
This article reviews microbial esterases participating in the degradation of the major plant hemicellulose, xylan. The main chain of this polysaccharide built of β-1,4-glycosidically linked xylopyranosyl residues is substituted by other sugars and also partially acetylated. Besides esters of acetic acid, there are two other types of ester linkages in plant xylans. L-Arabinofuranosyl side chains form esters with phenolic acids, predominantly with ferulic acid. The dimerization of ferulic acid residues leads to cross-links connecting the hemicellulose molecules. Ferulic acid cross-links were shown to serve as covalent linkage between lignin and hemicellulose. Another cross-linking between lignin and hemicellulose is provided by esters between the xylan side residues of glucuronic or 4-O-methyl-D-glucurononic acid and lignin alcohols. Regardless of the cross-linking, the side residues prevent xylan main chains from association that leads to crystallization similar to that of cellulose. Simultaneously, xylan decorations hamper the action of enzymes acting on the main chain. The enzymatic breakdown of plant xylan, therefore, requires a concerted action of glycanases attacking the main chain and enzymes catalyzing debranching, called accessory xylanolytic enzymes including xylanolytic esterases. While acetylxylan esterases and feruloyl esterases participate directly in xylan degradation, glucuronoyl esterases catalyze its separation from lignin. The current state of knowledge of diversity, classification and structure–function relationship of these three types of xylanolytic carbohydrate esterases is discussed with emphasis on important aspects of their future research relevant to their industrial applications.
Collapse
|
10
|
Viegas MF, Neves RPP, Ramos MJ, Fernandes PA. QM/MM Study of the Reaction Mechanism of Thermophilic Glucuronoyl Esterase for Biomass Treatment. Chemphyschem 2022; 23:e202200269. [PMID: 35925549 DOI: 10.1002/cphc.202200269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/23/2022] [Indexed: 11/06/2022]
Abstract
Hydrolysis of lignocellulosic biomass, composed of a lignin-carbohydrate-complex (LCC) matrix, is critical for producing bioethanol from glucose. However, current methods for LCC processing require costly and polluting processes. The fungal Thermothelomyces thermophila glucuronoyl esterase (TtGE) is a promising thermophilic enzyme that hydrolyses LCC ester bonds. This study describes the TtGE catalytic mechanism using QM/MM methods. Two nearly-degenerate rate-determining transition states were found, with barriers of 16 and 17 kcal ⋅ mol-1 , both with a zwitterionic nature that results from a proton interplay from His346 to either the Ser213-hydroxyl or the lignin leaving group and the rehybridisation of the ester moiety of the substrate to an alkoxide. An oxyanion hole, characteristic of esterases, was provided by the conserved Arg214 through its backbone and sidechain. Our work further suggests that a mutation of Glu267 to a non-negative residue will decrease the energetic barrier in ca. -5 kcal ⋅ mol-1 , improving the catalytic rate of TtGE.
Collapse
Affiliation(s)
- Matilde F Viegas
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Rui P P Neves
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Maria J Ramos
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Pedro A Fernandes
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
11
|
Mechanism and biomass association of glucuronoyl esterase: an α/β hydrolase with potential in biomass conversion. Nat Commun 2022; 13:1449. [PMID: 35304453 PMCID: PMC8933493 DOI: 10.1038/s41467-022-28938-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/11/2022] [Indexed: 12/02/2022] Open
Abstract
Glucuronoyl esterases (GEs) are α/β serine hydrolases and a relatively new addition in the toolbox to reduce the recalcitrance of lignocellulose, the biggest obstacle in cost-effective utilization of this important renewable resource. While biochemical and structural characterization of GEs have progressed greatly recently, there have yet been no mechanistic studies shedding light onto the rate-limiting steps relevant for biomass conversion. The bacterial GE OtCE15A possesses a classical yet distinctive catalytic machinery, with easily identifiable catalytic Ser/His completed by two acidic residues (Glu and Asp) rather than one as in the classical triad, and an Arg side chain participating in the oxyanion hole. By QM/MM calculations, we identified deacylation as the decisive step in catalysis, and quantified the role of Asp, Glu and Arg, showing the latter to be particularly important. The results agree well with experimental and structural data. We further calculated the free-energy barrier of post-catalysis dissociation from a complex natural substrate, suggesting that in industrial settings non-catalytic processes may constitute the rate-limiting step, and pointing to future directions for enzyme engineering in biomass utilization. Zong and coworkers combine computational and experimental methods to decipher in detail the mechanism of action of glucuronoyl esterases, enzymes with significant biotechnological potential for decoupling lignin from polysaccharides in biomass.
Collapse
|
12
|
Monclaro AV, Gorgulho Silva CDO, Gomes HAR, Moreira LRDS, Filho EXF. The enzyme interactome concept in filamentous fungi linked to biomass valorization. BIORESOURCE TECHNOLOGY 2022; 344:126200. [PMID: 34710591 DOI: 10.1016/j.biortech.2021.126200] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 05/15/2023]
Abstract
Biomass represents an abundant and inexpensive source of sugars and aromatic compounds that can be used as raw materials for conversion into value-added bioproducts. Filamentous fungi are sources of plant cell wall degrading enzymes in nature. Understanding the interactions between enzymes is crucial for optimizing biomass degradation processes. Herein, the concept of the interactome is presented as a holistic approach that depicts the interactions among enzymes, substrates, metabolites, and inhibitors. The interactome encompasses several stages of biomass degradation, starting with the sensing of the substrate and the subsequent synthesis of hydrolytic and oxidative enzymes (fungus-substrate interaction). Enzyme-enzyme interactions are exemplified in the complex processes of lignocellulosic biomass degradation. The enzyme-substrate-metabolite-inhibitor interaction also provides a better understanding of biomass conversion, allowing bioproduct production from recalcitrant agro-industrial residues, thus bringing greater value to residual biomass. Finally, technological applications are presented for optimizing the interactome at various levels.
Collapse
Affiliation(s)
- Antonielle Vieira Monclaro
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology and Urban Resource Efficiency (CAPTURE), Frieda Saeysstraat, 9052 Ghent, Belgium
| | - Caio de Oliveira Gorgulho Silva
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway; Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Helder Andrey Rocha Gomes
- Health Science School, University Center of the Federal District (UDF), DF, Brasília 70390045, Brazil
| | | | | |
Collapse
|
13
|
Zhao X, Meng X, Ragauskas AJ, Lai C, Ling Z, Huang C, Yong Q. Unlocking the secret of lignin-enzyme interactions: Recent advances in developing state-of-the-art analytical techniques. Biotechnol Adv 2021; 54:107830. [PMID: 34480987 DOI: 10.1016/j.biotechadv.2021.107830] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/07/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023]
Abstract
Bioconversion of renewable lignocellulosics to produce liquid fuels and chemicals is one of the most effective ways to solve the problem of fossil resource shortage, energy security, and environmental challenges. Among the many biorefinery pathways, hydrolysis of lignocellulosics to fermentable monosaccharides by cellulase is arguably the most critical step of lignocellulose bioconversion. In the process of enzymatic hydrolysis, the direct physical contact between enzymes and cellulose is an essential prerequisite for the hydrolysis to occur. However, lignin is considered one of the most recalcitrant factors hindering the accessibility of cellulose by binding to cellulase unproductively, which reduces the saccharification rate and yield of sugars. This results in high costs for the saccharification of carbohydrates. The various interactions between enzymes and lignin have been explored from different perspectives in literature, and a basic lignin inhibition mechanism has been proposed. However, the exact interaction between lignin and enzyme as well as the recently reported promotion of some types of lignin on enzymatic hydrolysis is still unclear at the molecular level. Multiple analytical techniques have been developed, and fully unlocking the secret of lignin-enzyme interactions would require a continuous improvement of the currently available analytical techniques. This review summarizes the current commonly used advanced research analytical techniques for investigating the interaction between lignin and enzyme, including quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy (FLS), and molecular dynamics (MD) simulations. Interdisciplinary integration of these analytical methods is pursued to provide new insight into the interactions between lignin and enzymes. This review will serve as a resource for future research seeking to develop new methodologies for a better understanding of the basic mechanism of lignin-enzyme binding during the critical hydrolysis process.
Collapse
Affiliation(s)
- Xiaoxue Zhao
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chenhuan Lai
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Ling
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
14
|
Vuong TV, Master ER. Enzymatic upgrading of heteroxylans for added-value chemicals and polymers. Curr Opin Biotechnol 2021; 73:51-60. [PMID: 34311175 DOI: 10.1016/j.copbio.2021.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023]
Abstract
Xylan is one of the most abundant, natural polysaccharides, and much recent interest focuses on upgrading heteroxylan to make use of its unique structures and chemistries. Significant progress has been made in the discovery and application of novel enzymes for debranching and modifying heteroxylans. Debranching enzymes include acetylxylan esterases, α-l-arabinofuranosidases and α-dglucuronidases that release side groups from the xylan backbone to recover both biochemicals and less substituted xylans for polymer applications in food packaging or drug delivery systems. Besides esterases and hydrolases, many oxidoreductases including carbohydrate oxidases, lytic polysaccharide monooxygenases, laccases and peroxidases have been also applied to alter different types of xylans for improved physical and chemical properties. This review will highlight the recent discovery and application of enzymes for upgrading xylans for use as added-value chemicals and in functional polymers.
Collapse
Affiliation(s)
- Thu V Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada; Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.
| |
Collapse
|
15
|
Krska D, Mazurkewich S, Brown HA, Theibich Y, Poulsen JCN, Morris AL, Koropatkin NM, Lo Leggio L, Larsbrink J. Structural and Functional Analysis of a Multimodular Hyperthermostable Xylanase-Glucuronoyl Esterase from Caldicellulosiruptor kristjansonii. Biochemistry 2021; 60:2206-2220. [PMID: 34180241 PMCID: PMC8280721 DOI: 10.1021/acs.biochem.1c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The hyperthermophilic bacterium Caldicellulosiruptor kristjansonii encodes an unusual enzyme, CkXyn10C-GE15A, which
incorporates two catalytic domains, a xylanase and a glucuronoyl esterase,
and five carbohydrate-binding modules (CBMs) from families 9 and 22.
The xylanase and glucuronoyl esterase catalytic domains were recently
biochemically characterized, as was the ability of the individual
CBMs to bind insoluble polysaccharides. Here, we further probed the
abilities of the different CBMs from CkXyn10C-GE15A
to bind to soluble poly- and oligosaccharides using affinity gel electrophoresis,
isothermal titration calorimetry, and differential scanning fluorimetry.
The results revealed additional binding properties of the proteins
compared to the former studies on insoluble polysaccharides. Collectively,
the results show that all five CBMs have their own distinct binding
preferences and appear to complement each other and the catalytic
domains in targeting complex cell wall polysaccharides. Additionally,
through renewed efforts, we have achieved partial structural characterization
of this complex multidomain protein. We have determined the structures
of the third CBM9 domain (CBM9.3) and the glucuronoyl esterase (GE15A)
by X-ray crystallography. CBM9.3 is the second CBM9 structure determined
to date and was shown to bind oligosaccharide ligands at the same
site but in a different binding mode compared to that of the previously
determined CBM9 structure from Thermotoga maritima. GE15A represents a unique intermediate between reported fungal
and bacterial glucuronoyl esterase structures as it lacks two inserted
loop regions typical of bacterial enzymes and a third loop has an
atypical structure. We also report small-angle X-ray scattering measurements
of the N-terminal CBM22.1–CBM22.2–Xyn10C construct,
indicating a compact arrangement at room temperature.
Collapse
Affiliation(s)
- Daniel Krska
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Scott Mazurkewich
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.,Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Haley A Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Yusuf Theibich
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | - Adeline L Morris
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Johan Larsbrink
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.,Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
16
|
Higasi PMR, Velasco JA, Pellegrini VOA, de Araújo EA, França BA, Keller MB, Labate CA, Blossom BM, Segato F, Polikarpov I. Light-stimulated T. thermophilus two-domain LPMO9H: Low-resolution SAXS model and synergy with cellulases. Carbohydr Polym 2021; 260:117814. [PMID: 33712158 DOI: 10.1016/j.carbpol.2021.117814] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/19/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs), monocopper enzymes that oxidatively cleave recalcitrant polysaccharides, have important biotechnological applications. Thermothelomyces thermophilus is a rich source of biomass-active enzymes, including many members from auxiliary activities family 9 LPMOs. Here, we report biochemical and structural characterization of recombinant TtLPMO9H which oxidizes cellulose at the C1 and C4 positions and shows enhanced activity in light-driven catalysis assays. TtLPMO9H also shows activity against xyloglucan. The addition of TtLPMO9H to endoglucanases from four different glucoside hydrolase families (GH5, GH12, GH45 and GH7) revealed that the product formation was remarkably increased when TtLPMO9H was combined with GH7 endoglucanase. Finally, we determind the first low resolution small-angle X-ray scattering model of the two-domain TtLPMO9H in solution that shows relative positions of its two functional domains and a conformation of the linker peptide, which can be relevant for the catalytic oxidation of cellulose and xyloglucan.
Collapse
Affiliation(s)
- Paula M R Higasi
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense 400, São Carlos, São Paulo, Brazil
| | - Josman A Velasco
- Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho s/n, Lorena, São Paulo, Brazil
| | - Vanessa O A Pellegrini
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense 400, São Carlos, São Paulo, Brazil
| | - Evandro A de Araújo
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense 400, São Carlos, São Paulo, Brazil
| | - Bruno Alves França
- Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho s/n, Lorena, São Paulo, Brazil
| | - Malene B Keller
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Carlos A Labate
- Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias 11, Piracicaba, São Paulo, Brazil
| | - Benedikt M Blossom
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Fernando Segato
- Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho s/n, Lorena, São Paulo, Brazil
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense 400, São Carlos, São Paulo, Brazil.
| |
Collapse
|
17
|
Raji O, Arnling Bååth J, Vuong TV, Larsbrink J, Olsson L, Master ER. The coordinated action of glucuronoyl esterase and α-glucuronidase promotes the disassembly of lignin-carbohydrate complexes. FEBS Lett 2021; 595:351-359. [PMID: 33277689 PMCID: PMC8044923 DOI: 10.1002/1873-3468.14019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Glucuronoxylans represent a significant fraction of woody biomass, and its decomposition is complicated by the presence of lignin–carbohydrate complexes (LCCs). Herein, LCCs from birchwood were used to investigate the potential coordinated action of a glucuronoyl esterase (TtCE15A) and two α‐glucuronidases (SdeAgu115A and AxyAgu115A). When supplementing α‐glucuronidase with equimolar quantities of TtCE15A, total MeGlcpA released after 72 h by SdeAgu115A and AxyAgu115A increased from 52% to 67%, and 61% to 95%, respectively. Based on the combined TtCE15A and AxyAgu115A activities, ~ 34% of MeGlcpA in the extracted birchwood glucuronoxylan was occupied as LCCs. Notably, insoluble LCC fractions reduced soluble α‐glucuronidase concentrations by up to 70%, whereas reduction in soluble TtCE15A was less than 30%, indicating different tendencies to adsorb onto the LCC substrate.
Collapse
Affiliation(s)
- Olanrewaju Raji
- Department of Chemical Engineering and Applied Science, University of Toronto, ON, Canada
| | - Jenny Arnling Bååth
- Department of Biology and Biological Engineering, Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden
| | - Thu V Vuong
- Department of Chemical Engineering and Applied Science, University of Toronto, ON, Canada
| | - Johan Larsbrink
- Department of Biology and Biological Engineering, Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden
| | - Emma R Master
- Department of Chemical Engineering and Applied Science, University of Toronto, ON, Canada.,Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| |
Collapse
|
18
|
Østby H, Hansen LD, Horn SJ, Eijsink VGH, Várnai A. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. J Ind Microbiol Biotechnol 2020; 47:623-657. [PMID: 32840713 PMCID: PMC7658087 DOI: 10.1007/s10295-020-02301-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Efficient saccharification of lignocellulosic biomass requires concerted development of a pretreatment method, an enzyme cocktail and an enzymatic process, all of which are adapted to the feedstock. Recent years have shown great progress in most aspects of the overall process. In particular, increased insights into the contributions of a wide variety of cellulolytic and hemicellulolytic enzymes have improved the enzymatic processing step and brought down costs. Here, we review major pretreatment technologies and different enzyme process setups and present an in-depth discussion of the various enzyme types that are currently in use. We pay ample attention to the role of the recently discovered lytic polysaccharide monooxygenases (LPMOs), which have led to renewed interest in the role of redox enzyme systems in lignocellulose processing. Better understanding of the interplay between the various enzyme types, as they may occur in a commercial enzyme cocktail, is likely key to further process improvements.
Collapse
Affiliation(s)
- Heidi Østby
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Line Degn Hansen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway.
| |
Collapse
|