1
|
Shmueli S, Cohen Jungerman M, Shekhter P, Selzer Y. Efficient Molecular Rectification in Metal-Molecules-Semimetal Junctions. J Phys Chem Lett 2024; 15:10602-10608. [PMID: 39404737 PMCID: PMC11514003 DOI: 10.1021/acs.jpclett.4c02900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Molecular rectification is expected to be observed in metal-molecule-metal tunnel junctions in which the resonance levels responsible for their transport properties are spatially localized asymmetrically with respect to the leads. Yet, effects such as electrostatic screening and formation of metal induced gap states reduce the magnitude of rectification that can be realized in such junctions. Here we suggest that junctions of the form metal-molecule(s)-semimetal mitigate these interfacial effects. We report current rectification in junctions based on the semimetal bismuth (Bi) with high rectification ratios (>102) at 1.0 V using alkanethiols, molecules for which rectification has never been observed. In addition to the alleviation of screening and surface states, the efficient rectification is argued to be related to symmetry breaking of the applied bias in these junctions because of a built-in potential within the Bi lead. The significance of this built-in potential and its implications for the future and other applications are discussed.
Collapse
Affiliation(s)
- Shachar Shmueli
- School
of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Pini Shekhter
- The
Tel Aviv Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Yoram Selzer
- School
of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
2
|
Chen LC, Shi J, Lu ZX, Lin RJ, Lu TG, Zou YL, Liang QM, Huang R, Shi J, Xiao ZY, Zhang Y, Liu J, Yang Y, Hong W. Highly Reversible Molecular Photoswitches with Transition Metal Dichalcogenides Electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305607. [PMID: 37817357 DOI: 10.1002/smll.202305607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Indexed: 10/12/2023]
Abstract
The molecule-electrode coupling plays an essential role in photoresponsive devices with photochromic molecules, and the strong coupling between the molecule and the conventional electrodes leads to/ the quenching effect and limits the reversibility of molecular photoswitches. In this work, we developed a strategy of using transition metal dichalcogenides (TMDCs) electrodes to fabricate the thiol azobenzene (TAB) self-assembled monolayers (SAMs) junctions with the eutectic gallium-indium (EGaIn) technique. The current-voltage characteristics of the EGaIn/GaOx //TAB/TMDCs photoswitches showed an almost 100% reversible photoswitching behavior, which increased by ∼28% compared to EGaIn/GaOx //TAB/AuTS photoswitches. Density functional theory (DFT) calculations showed the coupling strength of the TAB-TMDCs electrode decreased by 42% compared to that of the TAB-AuTS electrode, giving rise to improved reversibility. our work demonstrated the feasibility of 2D TMDCs for fabricating SAMs-based photoswitches with unprecedentedly high reversibility.
Collapse
Affiliation(s)
- Li-Chuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jie Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Zhi-Xing Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Rong-Jian Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Tai-Ge Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yu-Ling Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Qing-Man Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Ruiyun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Zong-Yuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yanxi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
3
|
Chen L, Yang Z, Lin Q, Li X, Bai J, Hong W. Evolution of Single-Molecule Electronic Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1988-2004. [PMID: 38227964 DOI: 10.1021/acs.langmuir.3c03104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Single-molecule electronics can fabricate single-molecule devices via the construction of molecule-electrode interfaces and also provide a unique tool to investigate single-molecule scale physicochemical processes at these interfaces. To investigate single-molecule electronic devices with desired functionalities, an understanding of the interface evolution processes in single-molecule devices is essential. In this review, we focus on the evolution of molecule-electrode interface properties, including the background of interface evolution in single-molecule electronics, the construction of different types of single-molecule interfaces, and the regulation methods. Finally, we discuss the perspective of future characterization techniques and applications for single-molecule electronic interfaces.
Collapse
Affiliation(s)
- Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Zixian Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Qichao Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Jie Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| |
Collapse
|
4
|
Li T, Bandari VK, Schmidt OG. Molecular Electronics: Creating and Bridging Molecular Junctions and Promoting Its Commercialization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209088. [PMID: 36512432 DOI: 10.1002/adma.202209088] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Indexed: 06/02/2023]
Abstract
Molecular electronics is driven by the dream of expanding Moore's law to the molecular level for next-generation electronics through incorporating individual or ensemble molecules into electronic circuits. For nearly 50 years, numerous efforts have been made to explore the intrinsic properties of molecules and develop diverse fascinating molecular electronic devices with the desired functionalities. The flourishing of molecular electronics is inseparable from the development of various elegant methodologies for creating nanogap electrodes and bridging the nanogap with molecules. This review first focuses on the techniques for making lateral and vertical nanogap electrodes by breaking, narrowing, and fixed modes, and highlights their capabilities, applications, merits, and shortcomings. After summarizing the approaches of growing single molecules or molecular layers on the electrodes, the methods of constructing a complete molecular circuit are comprehensively grouped into three categories: 1) directly bridging one-molecule-electrode component with another electrode, 2) physically bridging two-molecule-electrode components, and 3) chemically bridging two-molecule-electrode components. Finally, the current state of molecular circuit integration and commercialization is discussed and perspectives are provided, hoping to encourage the community to accelerate the realization of fully scalable molecular electronics for a new era of integrated microsystems and applications.
Collapse
Affiliation(s)
- Tianming Li
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Vineeth Kumar Bandari
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
- Nanophysics, Dresden University of Technology, 01069, Dresden, Germany
| |
Collapse
|
5
|
Gupta R, Fereiro JA, Bayat A, Pritam A, Zharnikov M, Mondal PC. Nanoscale molecular rectifiers. Nat Rev Chem 2023; 7:106-122. [PMID: 37117915 DOI: 10.1038/s41570-022-00457-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2022] [Indexed: 01/15/2023]
Abstract
The use of molecules bridged between two electrodes as a stable rectifier is an important goal in molecular electronics. Until recently, however, and despite extensive experimental and theoretical work, many aspects of our fundamental understanding and practical challenges have remained unresolved and prevented the realization of such devices. Recent advances in custom-designed molecular systems with rectification ratios exceeding 105 have now made these systems potentially competitive with existing silicon-based devices. Here, we provide an overview and critical analysis of recent progress in molecular rectification within single molecules, self-assembled monolayers, molecular multilayers, heterostructures, and metal-organic frameworks and coordination polymers. Examples of conceptually important and best-performing systems are discussed, alongside their rectification mechanisms. We present an outlook for the field, as well as prospects for the commercialization of molecular rectifiers.
Collapse
|
6
|
Shin J, Yang S, Eo JS, Jeon T, Lee J, Lee CH, Wang G. Molecular Van Der Waals Heterojunction Photodiodes Enabling Dipole-Induced Polarity Switching. SMALL METHODS 2022; 6:e2200646. [PMID: 36055777 DOI: 10.1002/smtd.202200646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Solid-state devices capable of controlling light-responsive charge transport at the molecular scale are essential for developing molecular optoelectronic technology. Here, a solid-state molecular photodiode device constructed by forming van der Waals (vdW) heterojunctions between standard molecular self-assembled monolayers and two-dimensional semiconductors such as WSe2 is reported. In particular, two non-functionalized molecular species used herein (i.e., tridecafluoro-1-octanethiol and 1-octanethiol) enable bidirectional modulation of the interface band alignment with WSe2 , depending on their dipole orientations. This dipole-induced band modulation at the vdW heterointerface leads to the opposite change of both photoswitching polarity and rectifying characteristics. Furthermore, compared with other molecular or 2D photodiodes at a similar scale, these heterojunction devices exhibit significantly enhanced photo-responsive performances in terms of photocurrent magnitude, open-circuit potential, and switching speed. This study proposes a novel concept of the solid-state molecular optoelectronic device with controlled functions and enhanced performances.
Collapse
Affiliation(s)
- Jaeho Shin
- Department of Chemistry, Rice University, Houston, Texas, 77005, USA
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seunghoon Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jung Sun Eo
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Takgyeong Jeon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jaeho Lee
- Department of Chemistry, Rice University, Houston, Texas, 77005, USA
| | - Chul-Ho Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gunuk Wang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology, Seoul, 02792, Korea
| |
Collapse
|
7
|
Shin J, Eo JS, Jeon T, Lee T, Wang G. Advances of Various Heterogeneous Structure Types in Molecular Junction Systems and Their Charge Transport Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202399. [PMID: 35975456 PMCID: PMC9596861 DOI: 10.1002/advs.202202399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Indexed: 05/31/2023]
Abstract
Molecular electronics that can produce functional electronic circuits using a single molecule or molecular ensemble remains an attractive research field because it not only represents an essential step toward realizing ultimate electronic device scaling but may also expand our understanding of the intrinsic quantum transports at the molecular level. Recently, in order to overcome the difficulties inherent in the conventional approach to studying molecular electronics and developing functional device applications, this field has attempted to diversify the electrical characteristics and device architectures using various types of heterogeneous structures in molecular junctions. This review summarizes recent efforts devoted to functional devices with molecular heterostructures. Diverse molecules and materials can be combined and incorporated in such two- and three-terminal heterojunction structures, to achieve desirable electronic functionalities. The heterojunction structures, charge transport mechanisms, and possible strategies for implementing electronic functions using various hetero unit materials are presented sequentially. In addition, the applicability and merits of molecular heterojunction structures, as well as the anticipated challenges associated with their implementation in device applications are discussed and summarized. This review will contribute to a deeper understanding of charge transport through molecular heterojunction, and it may pave the way toward desirable electronic functionalities in molecular electronics applications.
Collapse
Affiliation(s)
- Jaeho Shin
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
- Department of ChemistryRice University6100 Main StreetHoustonTexas77005United States
| | - Jung Sun Eo
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
| | - Takgyeong Jeon
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
| | - Takhee Lee
- Department of Physics and AstronomyInstitute of Applied PhysicsSeoul National UniversitySeoul08826Korea
| | - Gunuk Wang
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
- Department of Integrative Energy EngineeringKorea UniversitySeoul02841Korea
- Center for Neuromorphic EngineeringKorea Institute of Science and TechnologySeoul02792Korea
| |
Collapse
|
8
|
Eo JS, Shin J, Yang S, Jeon T, Lee J, Choi S, Lee C, Wang G. Tailoring the Interfacial Band Offset by the Molecular Dipole Orientation for a Molecular Heterojunction Selector. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101390. [PMID: 34499429 PMCID: PMC8564428 DOI: 10.1002/advs.202101390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2021] [Indexed: 06/01/2023]
Abstract
Understanding and designing interfacial band alignment in a molecular heterojunction provides a foundation for realizing its desirable electronic functionality. In this study, a tailored molecular heterojunction selector is implemented by controlling its interfacial band offset between the molecular self-assembled monolayer with opposite dipole orientations and the 2D semiconductor (1L -MoS2 or 1L -WSe2 ). The molecular dipole moment direction determines the direction of the band bending of the 2D semiconductors, affecting the dominant transport pathways upon voltage application. Notably, in the molecular heterostructure with 1L -WSe2 , the opposite rectification direction is observed depending on the molecular dipole moment direction, which does not hold for the case with 1L -MoS2 . In addition, the nonlinearity of the molecular heterojunction selector can be significantly affected by the molecular dipole moment direction, type of 2D semiconductor, and metal work function. According to the choice of these heterojunction constituents, the nonlinearity is widely tuned from 1.0 × 101 to 3.6 × 104 for the read voltage scheme and from 0.4 × 101 to 2.0 × 105 for the half-read voltage scheme, which can be scaled up to an ≈482 Gbit crossbar array.
Collapse
Affiliation(s)
- Jung Sun Eo
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145, Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Jaeho Shin
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145, Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Seunghoon Yang
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145, Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Takgyeong Jeon
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145, Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Jaeho Lee
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145, Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Sanghyeon Choi
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145, Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Chul‐Ho Lee
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145, Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
- Department of Integrative Energy EngineeringKorea University145, Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Gunuk Wang
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145, Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
- Department of Integrative Energy EngineeringKorea University145, Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| |
Collapse
|
9
|
Xie Z, Bâldea I, Nguyen QV, Frisbie CD. Quantitative analysis of weak current rectification in molecular tunnel junctions subject to mechanical deformation reveals two different rectification mechanisms for oligophenylene thiols versus alkane thiols. NANOSCALE 2021; 13:16755-16768. [PMID: 34604892 DOI: 10.1039/d1nr04410a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-molecule-metal junctions based on alkane thiol (CnT) and oligophenylene thiol (OPTn) self-assembled monolayers (SAMs) and Au electrodes are expected to exhibit similar electrical asymmetry, as both junctions have one chemisorbed Au-S contact and one physisorbed, van der Waals contact. Asymmetry is quantified by the current rectification ratio RR apparent in the current-voltage (I-V) characteristics. Here we show that RR < 1 for CnT and RR > 1 for OPTn junctions, in contrast to expectation, and further, that RR behaves very differently for CnT and OPTn junctions under mechanical extension using the conducting probe atomic force microscopy (CP-AFM) testbed. The analysis presented in this paper, which leverages results from the previously validated single level model and ab initio quantum chemical calculations, allows us to explain the puzzling experimental findings for CnT and OPTn in terms of different current rectification mechanisms. Specifically, in CnT-based junctions the Stark effect creates the HOMO level shifting necessary for rectification, while for OPTn junctions the level shift arises from position-dependent coupling of the HOMO wavefunction with the junction electrostatic potential profile. On the basis of these mechanisms, our quantum chemical calculations allow quantitative description of the impact of mechanical deformation on the measured current rectification. Additionally, our analysis, matched to experiment, facilitates direct estimation of the impact of intramolecular electrostatic screening on the junction potential profile. Overall, our examination of current rectification in benchmark molecular tunnel junctions illuminates key physical mechanisms at play in single step tunneling through molecules, and demonstrates the quantitative agreement that can be obtained between experiment and theory in these systems.
Collapse
Affiliation(s)
- Zuoti Xie
- Department of Materials Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, China.
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| | - Ioan Bâldea
- Theoretical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
| | - Quyen Van Nguyen
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| |
Collapse
|
10
|
Zhang Y, Su P, Mu Y, Zhang G, Luo Y, Jiang J, Hu W. Mechanism Study of Molecular Deformation of 2,2',5',2″-Tetramethylated p-Terphenyl-4,4″-dithiol Trapped in Gold Junctions. J Phys Chem Lett 2020; 11:4456-4461. [PMID: 32419469 DOI: 10.1021/acs.jpclett.0c01102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Molecular junctions hold great potential for future microelectronics, while the practical utilization has long been limited by the problem of conformational deformation during charge transport. Here we present a first-principles theoretical study on the surface-enhanced Raman spectroscopy (SERS) characterization of the p-terphenyl-4,4″-dithiol molecule and its 2,2',5',2″-tetramethylated analogue in gold junctions to investigate the molecular deformation mechanism. The effects of charge injection and external electric field were examined, both of which could change π-conjugation by varying the dihedral angle between the central and ending rings (DIPT). The induced significant structural deformations then change SERS responses. Only the SERS responses under an external electric field can account for the experimentally observed Raman spectra, and those of charge injections cannot. Moreover, applying a strong electric field could enlarge the conductivities of the two molecular junctions, agreeing well with experiments. This information not only elaborates that the electric field effect constitutes one important mechanism for molecular deformation but also provides useful insights for the control of charge transport in molecular junctions.
Collapse
Affiliation(s)
- Yujin Zhang
- School of Electronic and Information Engineering (Department of Physics), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, P.R. China
| | - Pingping Su
- School of Electronic and Information Engineering (Department of Physics), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, P.R. China
| | - Yanqi Mu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Guangping Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, Stockholm S-106 91, Sweden
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Wei Hu
- School of Electronic and Information Engineering (Department of Physics), Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, P.R. China
| |
Collapse
|