1
|
Fachrial E, Ismawati, Jati AP, Nugroho TT, Saryono. Isolation and Characterization of Lactic Acid Bacteria From " Trites" Having the Ability to Produce α-Glucosidase Inhibitors. Int J Microbiol 2025; 2025:8864668. [PMID: 39810844 PMCID: PMC11732287 DOI: 10.1155/ijm/8864668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Alpha-glucosidase inhibitors are one of the therapies used for treating type 2 diabetes by inhibiting the absorption of carbohydrates in the gastrointestinal tract. In addition to antimicrobial activity, some probiotic species show α-glucosidase inhibitor activity, making them potential alternative therapies for type 2 diabetes. This study aimed to characterize probiotics from "trites," a traditional food from North Sumatra, Indonesia, that exhibit α-glucosidase inhibition, potentially useful for type 2 diabetes treatment. The probiotic potential of the isolates was evaluated through antagonistic activity, acid tolerance, bile tolerance, and susceptibility to antimicrobial agents. α-Glucosidase inhibition was tested with acarbose as a control. The best-performing isolate, LBSU8, was identified as Pediococcus acidilactici through 16S rRNA gene sequencing. Gene analysis using genome sequencing for LBSU8 revealed antimicrobial secondary metabolites, including RiPPs, polyketide, and NRP, while capsular polysaccharide might contribute to its antidiabetic activity. Though no specific α-glucosidase inhibitory secondary metabolites were identified, enzymes like dTDP-glucose 4,6-dehydratase, transketolase, and glucose-1-phosphate thymidylyltransferase may contribute to this activity. P. acidilactici LBSU8 shows potential as an alternative diabetes therapy in the food and drug industries. Further studies are needed to elucidate the exact mechanism behind its α-glucosidase inhibitory activity and to explore its efficacy in clinical settings.
Collapse
Affiliation(s)
- Edy Fachrial
- Doctoral Program of Chemistry, Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Riau, Pekanbaru, Riau 28293, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Dentistry, and Health Sciences, Universitas Prima Indonesia, Medan, Indonesia
| | - Ismawati
- Department of Biochemistry, Faculty of Medicine, Universitas Riau, Pekanbaru, Riau 28293, Indonesia
| | - Afif Pranaya Jati
- Indonesian Society of Bioinformatics and Biodiversity, Malang, Indonesia
- Synthetic Biology Division, Bioinformatics Research Center, Indonesian Institute of Bioinformatics, Malang, Indonesia
| | - Titania Tjandrawati Nugroho
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Riau, Pekanbaru, Riau 28293, Indonesia
| | - Saryono
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Riau, Pekanbaru, Riau 28293, Indonesia
| |
Collapse
|
2
|
Dymek S, Jacob L, Pühler A, Kalinowski J. Targeting Transcriptional Regulators Affecting Acarbose Biosynthesis in Actinoplanes sp. SE50/110 Using CRISPRi Silencing. Microorganisms 2024; 13:1. [PMID: 39858769 PMCID: PMC11767292 DOI: 10.3390/microorganisms13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025] Open
Abstract
Acarbose, a pseudo-tetrasaccharide produced by Actinoplanes sp. SE50/110, is an α-glucosidase inhibitor and is used as a medication to treat type 2 diabetes. While the biosynthesis of acarbose has been elucidated, little is known about its regulation. Gene silencing using CRISPRi allows for the identification of potential regulators influencing acarbose formation. For this purpose, two types of CRISPRi vectors were established for application in Actinoplanes sp. SE50/110. The pCRISPomyces2i vector allows for reversible silencing, while the integrative pSETT4i vector provides a rapid screening approach for many targets due to its shorter conjugation time into Actinoplanes sp. These vectors were validated by silencing the known acarbose biosynthesis genes acbB and acbV, as well as their regulator, CadC. The reduction in product formation and the diminished relative transcript abundance of the respective genes served as evidence of successful silencing. The vectors were used to create a CRISPRi-based strain library, silencing 50 transcriptional regulators, to investigate their potential influence in acarbose biosynthesis. These transcriptional regulatory genes were selected from previous experiments involving protein-DNA interaction studies or due to their expression profiles. Eleven genes affecting the yield of acarbose were identified. The CRISPRi-mediated knockdown of seven of these genes significantly reduced acarbose biosynthesis, whereas the knockdown of four genes enhanced acarbose production.
Collapse
Affiliation(s)
- Saskia Dymek
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany; (S.D.); (L.J.)
| | - Lucas Jacob
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany; (S.D.); (L.J.)
| | - Alfred Pühler
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany; (S.D.); (L.J.)
| |
Collapse
|
3
|
Wang S, Zeng X, Jiang Y, Wang W, Bai L, Lu Y, Zhang L, Tan GY. Unleashing the potential: type I CRISPR-Cas systems in actinomycetes for genome editing. Nat Prod Rep 2024; 41:1441-1455. [PMID: 38888887 DOI: 10.1039/d4np00010b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Covering: up to the end of 2023Type I CRISPR-Cas systems are widely distributed, found in over 40% of bacteria and 80% of archaea. Among genome-sequenced actinomycetes (particularly Streptomyces spp.), 45.54% possess type I CRISPR-Cas systems. In comparison to widely used CRISPR systems like Cas9 or Cas12a, these endogenous CRISPR-Cas systems have significant advantages, including better compatibility, wide distribution, and ease of operation (since no exogenous Cas gene delivery is needed). Furthermore, type I CRISPR-Cas systems can simultaneously edit and regulate genes by adjusting the crRNA spacer length. Meanwhile, most actinomycetes are recalcitrant to genetic manipulation, hindering the discovery and engineering of natural products (NPs). The endogenous type I CRISPR-Cas systems in actinomycetes may offer a promising alternative to overcome these barriers. This review summarizes the challenges and recent advances in CRISPR-based genome engineering technologies for actinomycetes. It also presents and discusses how to establish and develop genome editing tools based on type I CRISPR-Cas systems in actinomycetes, with the aim of their future application in gene editing and the discovery of NPs in actinomycetes.
Collapse
Affiliation(s)
- Shuliu Wang
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Xiaoqian Zeng
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Yue Jiang
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| |
Collapse
|
4
|
Karimian S, Farahmandzad N, Mohammadipanah F. Manipulation and epigenetic control of silent biosynthetic pathways in actinobacteria. World J Microbiol Biotechnol 2024; 40:65. [PMID: 38191749 DOI: 10.1007/s11274-023-03861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Most biosynthetic gene clusters (BGCs) of Actinobacteria are either silent or expressed less than the detectable level. The non-genetic approaches including biological interactions, chemical agents, and physical stresses that can be used to awaken silenced pathways are compared in this paper. These non-genetic induction strategies often need screening approaches, including one strain many compounds (OSMAC), reporter-guided mutant selection, and high throughput elicitor screening (HiTES) have been developed. Different types of genetic manipulations applied in the induction of cryptic BGCs of Actinobacteria can be categorized as genome-wide pleiotropic and targeted approaches like manipulation of global regulatory systems, modulation of regulatory genes, ribosome and engineering of RNA polymerase or phosphopantheteine transferases. Targeted approaches including genome editing by CRISPR, mutation in transcription factors and modification of BGCs promoters, inactivation of the highly expressed biosynthetic pathways, deleting the suppressors or awakening the activators, heterologous expression, or refactoring of gene clusters can be applied for activation of pathways which are predicted to synthesize new bioactive structures in genome mining studies of Acinobacteria. In this review, the challenges and advantages of employing these approaches in induction of Actinobacteria BGCs are discussed. Further, novel natural products needed as drug for pharmaceutical industry or as biofertilizers in agricultural industry can be discovered even from known species of Actinobactera by the innovative approaches of metabolite biosynthesis elicitation.
Collapse
Affiliation(s)
- Sanaz Karimian
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | - Navid Farahmandzad
- Department of Biosystems Engineering, Auburn university, Auburn, AL 36849, USA
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| |
Collapse
|
5
|
Lin CY, Ru Y, Jin Y, Lin Q, Zhao GR. PAS domain containing regulator SLCG_7083 involved in morphological development and glucose utilization in Streptomyces lincolnensis. Microb Cell Fact 2023; 22:257. [PMID: 38093313 PMCID: PMC10717218 DOI: 10.1186/s12934-023-02263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Streptomyces lincolnensis is well known for producing the clinically important antimicrobial agent lincomycin. The synthetic and regulatory mechanisms on lincomycin biosynthesis have been deeply explored in recent years. However, the regulation involved in primary metabolism have not been fully addressed. RESULTS SLCG_7083 protein contains a Per-Arnt-Sim (PAS) domain at the N-terminus, whose homologous proteins are highly distributed in Streptomyces. The inactivation of the SLCG_7083 gene indicated that SLCG_7083 promotes glucose utilization, slows mycelial growth and affects sporulation in S. lincolnensis. Comparative transcriptomic analysis further revealed that SLCG_7083 represses eight genes involved in sporulation, cell division and lipid metabolism, and activates two genes involved in carbon metabolism. CONCLUSIONS SLCG_7083 is a PAS domain-containing regulator on morphological development and glucose utilization in S. lincolnensis. Our results first revealed the regulatory function of SLCG_7083, and shed new light on the transcriptional effects of SLCG_7083-like family proteins in Streptomyces.
Collapse
Affiliation(s)
- Chun-Yan Lin
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China
| | - Yixian Ru
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China
| | - Yanchao Jin
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Qi Lin
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China.
| | - Guang-Rong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Nölting S, März C, Jacob L, Persicke M, Schneiker-Bekel S, Kalinowski J. The 4-α-Glucanotransferase AcbQ Is Involved in Acarbose Modification in Actinoplanes sp. SE50/110. Microorganisms 2023; 11:microorganisms11040848. [PMID: 37110271 PMCID: PMC10146171 DOI: 10.3390/microorganisms11040848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The pseudo-tetrasaccharide acarbose, produced by Actinoplanes sp. SE50/110, is a α-glucosidase inhibitor used for treatment of type 2 diabetes patients. In industrial production of acarbose, by-products play a relevant role that complicates the purification of the product and reduce yields. Here, we report that the acarbose 4-α-glucanotransferase AcbQ modifies acarbose and the phosphorylated version acarbose 7-phosphate. Elongated acarviosyl metabolites (α-acarviosyl-(1,4)-maltooligosaccharides) with one to four additional glucose molecules were identified performing in vitro assays with acarbose or acarbose 7-phosphate and short α-1,4-glucans (maltose, maltotriose and maltotetraose). High functional similarities to the 4-α-glucanotransferase MalQ, which is essential in the maltodextrin pathway, are revealed. However, maltotriose is a preferred donor and acarbose and acarbose 7-phosphate, respectively, serve as specific acceptors for AcbQ. This study displays the specific intracellular assembly of longer acarviosyl metabolites catalyzed by AcbQ, indicating that AcbQ is directly involved in the formation of acarbose by-products of Actinoplanes sp. SE50/110.
Collapse
|
7
|
Li Z, Yang S, Zhang Z, Wu Y, Tang J, Wang L, Chen S. Enhancement of acarbose production by genetic engineering and fed-batch fermentation strategy in Actinoplanes sp. SIPI12-34. Microb Cell Fact 2022; 21:240. [DOI: 10.1186/s12934-022-01969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
Abstract
Background
Acarbose, as an alpha-glucosidase inhibitor, is widely used clinically to treat type II diabetes. In its industrial production, Actinoplanes sp. SE50/110 is used as the production strain. Lack of research on its regulatory mechanisms and unexplored gene targets are major obstacles to rational strain design. Here, transcriptome sequencing was applied to uncover more gene targets and rational genetic engineering was performed to increase acarbose production.
Results
In this study, with the help of transcriptome information, a TetR family regulator (TetR1) was identified and confirmed to have a positive effect on the synthesis of acarbose by promoting the expression of acbB and acbD. Some genes with low expression levels in the acarbose biosynthesis gene cluster were overexpressed and this resulted in a significant increase in acarbose yield. In addition, the regulation of metabolic pathways was performed to retain more glucose-1-phosphate for acarbose synthesis by weakening the glycogen synthesis pathway and strengthening the glycogen degradation pathway. Eventually, with a combination of multiple strategies and fed-batch fermentation, the yield of acarbose in the engineered strain increased 58% compared to the parent strain, reaching 8.04 g/L, which is the highest fermentation titer reported.
Conclusions
In our research, acarbose production had been effectively and steadily improved through genetic engineering based on transcriptome analysis and fed-batch culture strategy.
Graphical Abstract
Collapse
|
8
|
Tsunoda T, Asamizu S, Mahmud T. Biochemical Characterization of GacI, a Bifunctional Glycosyltransferase-Phosphatase Enzyme Involved in Acarbose Biosynthesis in Streptomyces glaucescens GLA.O. Biochemistry 2022; 61:2628-2635. [PMID: 36288494 PMCID: PMC9669214 DOI: 10.1021/acs.biochem.2c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acarbose, a pseudotetrasaccharide produced by several strains of Actinoplanes and Streptomyces, is an α-glucosidase inhibitor clinically used to control type II diabetes. Bioinformatic analysis of the biosynthetic gene clusters of acarbose in Actinoplanes sp. SE50/110 (the acb cluster) and Streptomyces glaucescens GLA.O (the gac cluster) revealed their distinct genetic organizations and presumably biosynthetic pathways. However, to date, only the acarbose pathway in the SE50/110 strain has been extensively studied. Here, we report that GacI, one of the proteins that appear to be different between the two pathways, is a bifunctional glycosyltransferase family 5 (GT5)-phosphatase (PP) enzyme that functions at two different steps in acarbose biosynthesis in S. glaucescens GLA.O. In the acb pathway, the GT and the PP reactions are performed by two different enzymes. Truncated GacI proteins having only the GT or the PP domain showed comparable catalytic activity with the full-length GacI, indicating that domain separation does not significantly affect their respective catalytic activity. GacI, which is widely distributed in many Streptomyces, represents the first example of naturally occurring GT5-PP bifunctional enzymes biochemically characterized.
Collapse
Affiliation(s)
- Takeshi Tsunoda
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | - Shumpei Asamizu
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| |
Collapse
|
9
|
Kudo F, Eguchi T. Biosynthesis of cyclitols. Nat Prod Rep 2022; 39:1622-1642. [PMID: 35726901 DOI: 10.1039/d2np00024e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Review covering up to 2021Cyclitols derived from carbohydrates are naturally stable hydrophilic substances under ordinary physiological conditions, increasing the water solubility of whole molecules in cells. The stability of cyclitols is derived from their carbocyclic structures bearing no acetal groups, in contrast to sugar molecules. Therefore, carbocycle-forming reactions are critical for the biosynthesis of cyclitols. Herein, we review naturally occurring cyclitols that have been identified to date and categorize them according to the type of carbocycle-forming enzymatic reaction. Furthermore, the cyclitol-forming enzymatic reaction mechanisms and modification pathways of the initially generated cyclitols are reviewed.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, Japan.
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
10
|
Tsunoda T, Samadi A, Burade S, Mahmud T. Complete biosynthetic pathway to the antidiabetic drug acarbose. Nat Commun 2022; 13:3455. [PMID: 35705566 PMCID: PMC9200736 DOI: 10.1038/s41467-022-31232-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/30/2022] [Indexed: 11/11/2022] Open
Abstract
Acarbose is a bacterial-derived α-glucosidase inhibitor clinically used to treat patients with type 2 diabetes. As type 2 diabetes is on the rise worldwide, the market demand for acarbose has also increased. Despite its significant therapeutic importance, how it is made in nature is not completely understood. Here, we report the complete biosynthetic pathway to acarbose and its structural components, GDP-valienol and O-4-amino-(4,6-dideoxy-α-D-glucopyranosyl)-(1→4)-O-α-D-glucopyranosyl-(1→4)-D-glucopyranose. GDP-valienol is derived from valienol 7-phosphate, catalyzed by three cyclitol modifying enzymes, whereas O-4-amino-(4,6-dideoxy-α-D-glucopyranosyl)-(1→4)-O-α-D-glucopyranosyl-(1→4)-D-glucopyranose is produced from dTDP-4-amino-4,6-dideoxy-D-glucose and maltose by the glycosyltransferase AcbI. The final assembly process is catalyzed by a pseudoglycosyltransferase enzyme, AcbS, which is a homologue of AcbI but catalyzes the formation of a non-glycosidic C-N bond. This study clarifies all previously unknown steps in acarbose biosynthesis and establishes a complete pathway to this high value pharmaceutical. The market demand for acarbose, a drug used for treatment of patients affected by type-2 diabetes, has increased. In this article, the authors report the acarbose complete biosynthetic pathway, clarifying previously unknown steps and identifying a pseudoglycosyltransferase enzyme, AcbS, a homologue of AcbI that catalyzes the formation of a non-glycosidic C-N bond.
Collapse
Affiliation(s)
- Takeshi Tsunoda
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331-3507, USA
| | - Arash Samadi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331-3507, USA
| | - Sachin Burade
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331-3507, USA
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331-3507, USA.
| |
Collapse
|
11
|
Ren G, Ma X, Jiao P. Effect of liraglutide combined with metformin or acarbose on glucose control in type 2 diabetes mellitus and risk factors of gastrointestinal adverse reactions. Am J Transl Res 2022; 14:3207-3215. [PMID: 35702127 PMCID: PMC9185051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate the effect of liraglutide combined with metformin or acarbose on glucose control in patients with type 2 diabetes mellitus (T2DM) and to analyze the risk factors of gastrointestinal adverse reactions. METHODS This retrospective study was conducted on 88 T2DM patients who were treated in our hospital from February 2019 to August 2021. The patients were divided into Group A (n=40) and Group B (n=48) according to different treatment methods. Group A was treated with liraglutide and metformin, while Group B was given liraglutide and acarbose. The effects of glucose control (FPG, 2hPG, HbA1c), inflammatory indexes (IL-6, CRP, SAA), fasting C-peptide, 2-h postprandial C-peptide levels and adverse reactions were compared. Afterwards, The risk factors of gastrointestinal adverse reactions were assessed via logistics regression. RESULTS It was found that the FPG, 2hPG and HbA1c levels after treatment were lower than those before treatment (P<0.05), and the levels in group A were lower than those in group B (P<0.05). The serum IL-6, CRP and SAA levels after treatment were lower than those before treatment (P<0.05), but there was no marked difference between the two groups after treatment (P>0.05). The fasting C-peptide and 2-h postprandial C-peptide levels in group A after treatment were higher than those in group B (P<0.05). Logistics regression analysis revealed that complicated digestive system diseases and combined use of acarbose were independent risk factors. CONCLUSION Compared with liraglutide and acarbose, liraglutide and metformin has better glucose control effect in T2DM. Although there is no obvious difference in eliminating inflammation, liraglutide combined with acarbose will increase the incidence of gastrointestinal adverse reactions in patients. So, liraglutide combined with metformin is recommended for T2DM treatment.
Collapse
Affiliation(s)
- Gaofei Ren
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Xiaojun Ma
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Pengfei Jiao
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| |
Collapse
|
12
|
Saeedi M, Mehranfar F, Ghorbani F, Eskandari M, Ghorbani M, Babaeizad A. Review of pharmaceutical and therapeutic approaches for type 2 diabetes and related disorders. Recent Pat Biotechnol 2022; 16:188-213. [PMID: 35088682 DOI: 10.2174/1872208316666220128102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/05/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022]
Abstract
One of the essential diseases that are increasing in the world is type 2 diabetes (T2D), which many people around the world live with this disease. Various studies have revealed that insulin resistance, lessened insulin production has been associated with T2D, and they also show that this disease can have a genetic origin and is associated with different genes such as KCNQ1, PPAR-γ, calpain-10, ADIPOR2, TCF7L2 that can be utilized as a therapeutic target. Different therapeutic approaches and strategies such as exercise and diet, pharmacological approaches, and utilization of nanoparticles in drug delivery and gene therapy can be effective in the treatment and control of T2D. Glucagon-like peptide 1 (GLP-1) and sodium glucose cotransporter-2 (SGLT2) have both been considered as drug classes in the treatment of T2D and T2D-related diseases such as cardiovascular disease and renal disease, and have considerable influences such as diminished cardiovascular mortality in individuals with T2D, ameliorate postprandial glycaemia, ameliorate fasting glycaemia, and diminish body weight on disease treatment and improvement process. In the present review article, we have made an attempt to explore the risk factors, Genes, and diseases associated with T2D, therapeutic approaches in T2D, the influences of drugs such as Dapagliflozin, Metformin, Acarbose, Januvia (Sitagliptin), and Ertugliflozin on T2D in clinical trials and animal model studies. Research in clinical trials has promising results that support the role of these drug approaches in T2D prophylaxis and ameliorate safety even though additional clinical research is still obligatory.
Collapse
Affiliation(s)
- Mohammad Saeedi
- Department of Hematology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mehranfar
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fateme Ghorbani
- Department of immunology, Semnan university of Medical sciences, Semnan, Iran
| | - Mohammadali Eskandari
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Ghorbani
- Department of Hematology, Mashhad University of Medical sciences, Mashhad, Iran
| | - Ali Babaeizad
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
13
|
Rational engineering strategies for achieving high-yield, high-quality and high-stability of natural product production in actinomycetes. Metab Eng 2021; 67:198-215. [PMID: 34166765 DOI: 10.1016/j.ymben.2021.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/30/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022]
Abstract
Actinomycetes are recognized as excellent producers of microbial natural products, which have a wide range of applications, especially in medicine, agriculture and stockbreeding. The three main indexes of industrialization (titer, purity and stability) must be taken into overall consideration in the manufacturing process of natural products. Over the past decades, synthetic biology techniques have expedited the development of industrially competitive strains with excellent performances. Here, we summarize various rational engineering strategies for upgrading the performance of industrial actinomycetes, which include enhancing the yield of natural products, eliminating the by-products and improving the genetic stability of engineered strains. Furthermore, the current challenges and future perspectives for optimizing the industrial strains more systematically through combinatorial engineering strategies are also discussed.
Collapse
|
14
|
Microbial Oligosaccharides with Biomedical Applications. Mar Drugs 2021; 19:md19060350. [PMID: 34205503 PMCID: PMC8234114 DOI: 10.3390/md19060350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
Microbial oligosaccharides have been regarded as one of the most appealing natural products attributable to their potent and selective bioactivities, such as antimicrobial activity, inhibition of α-glucosidases and lipase, interference of cellular recognition and signal transduction, and disruption of cell wall biosynthesis. Accordingly, a handful of bioactive oligosaccharides have been developed for the treatment of bacterial infections and type II diabetes mellitus. Given that naturally occurring oligosaccharides have increasingly gained recognition in recent years, a comprehensive review is needed. The current review highlights the chemical structures, biological activities and divergent biosynthetic origins of three subgroups of oligomers including the acarviosine-containing oligosaccharides, saccharomicins, and orthosomycins.
Collapse
|
15
|
Weng CY, Zhu MH, Dai KL, Mi ZY, Wang YS, Liu ZQ, Zheng YG. Gene Cascade Shift and Pathway Enrichment in Rat Kidney Induced by Acarbose Through Comparative Analysis. Front Bioeng Biotechnol 2021; 9:659700. [PMID: 34095098 PMCID: PMC8176958 DOI: 10.3389/fbioe.2021.659700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/12/2021] [Indexed: 01/02/2023] Open
Abstract
Acarbose is an effective anti-diabetic drug to treat type 2 diabetes mellitus (T2DM), a chronic degenerative metabolic disease caused by insulin resistance. The beneficial effects of acarbose on blood sugar control in T2DM patients have been confirmed by many studies. However, the effect of acarbose on patient kidney has yet to be fully elucidated. In this study, we report in detail the gene expression cascade shift, pathway and module enrichment, and interrelation network in acarbose-treated Rattus norvegicus kidneys based on the in-depth analysis of the GSE59913 microarray dataset. The significantly differentially expressed genes (DEGs) in the kidneys of acarbose-treated rats were initially screened out by comparative analysis. The enriched pathways for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were further identified. The protein-protein interaction (PPI) analysis for DEGs was achieved through the STRING database mining. Pathway interrelation and hub genes for enriched pathways were further examined to uncover key biological effects of acarbose. Results revealed 44 significantly up-regulated genes and 86 significantly down-regulated genes (130 significant differential genes in total) in acarbose-treated rat kidneys. Lipid metabolism pathways were considerably improved by acarbose, and the physical conditions in chronic kidney disease (CKD) patients were improved possibly through the increase of the level of high-density lipoprotein (HDL) by lecithin-cholesterol acyl-transferase (LCAT). These findings suggested that acarbose may serve as an ideal drug for CKD patients, since it not only protects the kidney, but also may relieve the complications caused by CKD.
Collapse
Affiliation(s)
- Chun-Yue Weng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Mo-Han Zhu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Ke-Lei Dai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Zhe-Yan Mi
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yuan-Shan Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
16
|
Droste J, Ortseifen V, Schaffert L, Persicke M, Schneiker-Bekel S, Pühler A, Kalinowski J. The expression of the acarbose biosynthesis gene cluster in Actinoplanes sp. SE50/110 is dependent on the growth phase. BMC Genomics 2020; 21:818. [PMID: 33225887 PMCID: PMC7682106 DOI: 10.1186/s12864-020-07194-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/26/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Actinoplanes sp. SE50/110 is the natural producer of the diabetes mellitus drug acarbose, which is highly produced during the growth phase and ceases during the stationary phase. In previous works, the growth-dependency of acarbose formation was assumed to be caused by a decreasing transcription of the acarbose biosynthesis genes during transition and stationary growth phase. RESULTS In this study, transcriptomic data using RNA-seq and state-of-the-art proteomic data from seven time points of controlled bioreactor cultivations were used to analyze expression dynamics during growth of Actinoplanes sp. SE50/110. A hierarchical cluster analysis revealed co-regulated genes, which display similar transcription dynamics over the cultivation time. Aside from an expected metabolic switch from primary to secondary metabolism during transition phase, we observed a continuously decreasing transcript abundance of all acarbose biosynthetic genes from the early growth phase until stationary phase, with the strongest decrease for the monocistronically transcribed genes acbA, acbB, acbD and acbE. Our data confirm a similar trend for acb gene transcription and acarbose formation rate. Surprisingly, the proteome dynamics does not follow the respective transcription for all acb genes. This suggests different protein stabilities or post-transcriptional regulation of the Acb proteins, which in turn could indicate bottlenecks in the acarbose biosynthesis. Furthermore, several genes are co-expressed with the acb gene cluster over the course of the cultivation, including eleven transcriptional regulators (e.g. ACSP50_0424), two sigma factors (ACSP50_0644, ACSP50_6006) and further genes, which have not previously been in focus of acarbose research in Actinoplanes sp. SE50/110. CONCLUSION In conclusion, we have demonstrated, that a genome wide transcriptome and proteome analysis in a high temporal resolution is well suited to study the acarbose biosynthesis and the transcriptional and post-transcriptional regulation thereof.
Collapse
Affiliation(s)
- Julian Droste
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Sequenz 1, Bielefeld, 33615, Germany
| | - Vera Ortseifen
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany
| | - Lena Schaffert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Sequenz 1, Bielefeld, 33615, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Sequenz 1, Bielefeld, 33615, Germany
| | - Susanne Schneiker-Bekel
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany
| | - Alfred Pühler
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Sequenz 1, Bielefeld, 33615, Germany.
| |
Collapse
|
17
|
Xiang M, Kang Q, Zhang D. Advances on systems metabolic engineering of Bacillus subtilis as a chassis cell. Synth Syst Biotechnol 2020; 5:245-251. [PMID: 32775709 PMCID: PMC7394859 DOI: 10.1016/j.synbio.2020.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
The Gram-positive model bacterium Bacillus subtilis, has been broadly applied in various fields because of its low pathogenicity and strong protein secretion ability, as well as its well-developed fermentation technology. B. subtilis is considered as an attractive host in the field of metabolic engineering, in particular for protein expression and secretion, so it has been well studied and applied in genetic engineering. In this review, we discussed why B. subtilis is a good chassis cell for metabolic engineering. We also summarized the latest research progress in systematic biology, synthetic biology and evolution-based engineering of B. subtilis, and showed systemic metabolic engineering expedite the harnessing B. subtilis for bioproduction.
Collapse
Affiliation(s)
- Mengjie Xiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qian Kang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
18
|
Khan I, Zhang H, Liu W, Zhang L, Peng F, Chen Y, Zhang Q, Zhang G, Zhang W, Zhang C. Identification and bioactivity evaluation of secondary metabolites from Antarctic-derived Penicillium chrysogenum CCTCC M 2020019. RSC Adv 2020; 10:20738-20744. [PMID: 35517746 PMCID: PMC9054296 DOI: 10.1039/d0ra03529g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 02/01/2023] Open
Abstract
Extracts from Antarctic-derived Penicillium chrysogenum CCTCC M 2020019 showed potent antibacterial bioactivities. We report herein the isolation of chrysonin (1), a new compound containing a pair of enantiomers 6S- and 6R-chrysonin (1a and 1b) featuring an unprecedented eight-membered heterocycle fused with a benzene ring. Compound 2, a mixture consisting of a new zwitterionic compound chrysomamide (2a) and N-[2-trans-(4-hydroxyphenyl) ethenyl] formamide (2b) in a ratio around 1 : 2.8, was isolated together with seven known compounds 3-9. Chemical structures of all compounds were determined by comprehensive spectroscopic analyses. The isolated compounds were evaluated for antimicrobial, cytotoxic and alpha-glucosidase inhibition activities. Chrysonin (1) showed moderate alpha-glucosidase inhibitory activity. The dominant product xanthocillin X (4) displayed potent inhibition activities against Gram-negative pathogens Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa with MIC values at 0.125 μg mL-1. Xanthocillins X (4) and Y1 (5) also showed significant cytotoxicities against four cancer cell lines with IC50 values ranging from 0.26 to 5.04 μM. This study highlights that microorganisms from polar regions are emerging as a new resource for the discovery of natural products combating human pathogens.
Collapse
Affiliation(s)
- Imran Khan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd., Nansha District Guangzhou 511458 China
| | - Wei Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), School of Marine Sciences, Sun Yat-sen University Guangzhou 510006 China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd., Nansha District Guangzhou 511458 China
| | - Fang Peng
- Wuhan University, China Center for Type Culture Collection Wuhan 430072 China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology 100 Central Xianlie Road Guangzhou 510070 China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd., Nansha District Guangzhou 511458 China
| | - Guangtao Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd., Nansha District Guangzhou 511458 China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology 100 Central Xianlie Road Guangzhou 510070 China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences 164 West Xingang Road Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) 1119 Haibin Rd., Nansha District Guangzhou 511458 China
| |
Collapse
|