1
|
Liu P, Dong H, Gong B, Gao S, Lin A, Yao H. Palladium-Catalyzed Asymmetric Tandem Carbonylation-Heck Reaction of Cyclopentenes to Access Chiral Bicyclo[3.2.1]octenes. Org Lett 2024; 26:8244-8248. [PMID: 39311415 DOI: 10.1021/acs.orglett.4c02719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A palladium-catalyzed asymmetric tandem carbonylation-Heck reaction of cyclopentenes with carbon monoxide (CO) has been disclosed. This desymmetrization procedure afforded a series of bicyclo[3.2.1]octenes with one chiral quaternary and one tertiary carbon center in good yields with good enantioselectivities. This reaction proceeds via an acyl-palladium intermediate, followed by migratory insertion of the alkenes.
Collapse
Affiliation(s)
- Pengyun Liu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hongyue Dong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Baihui Gong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shang Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
2
|
Hu S, Wang X, Wu T, Ding Z, Wang M, Kong W. Ni-Catalyzed Enantioselective Reductive Cyclization/Amidation and Amination of 1,6-Enynes and 1,7-Enynes. Angew Chem Int Ed Engl 2024:e202413892. [PMID: 39193806 DOI: 10.1002/anie.202413892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
Transition-metal-catalyzed hydroamination of unsaturated hydrocarbons is an appealing synthetic tool for the construction of high value-added chiral amines. Despite significant progress in the asymmetric hydroamination of alkenes, allenes, and 1,3-dienes, asymmetric hydroamination of 1,6-enynes or 1,7-enynes remains rather limited due to the enormous challenges in controlling the chemoselectivity and stereoselectivity of the reaction. Herein, we report a Ni-catalyzed chemo- and enantioselective reductive cyclization/amidation and amination of 1,6-enynes and 1,7-enynes using dioxazolones or anthranils as nitrene-transfer reagents. This mild, modular, and practical protocol provides rapid access to a variety of enantioenriched 2-pyrrolidone and 2-piperidone derivatives bearing an aminomethylene group at the 4-position in good yields (up to 83 %) with excellent enantioselectivities (46 examples, up to 99 % ee). Mechanistic experiments and density functional theory calculations indicate that the reaction is initiated by hydronickelation of alkynes followed by migratory insertion into alkenes, rather than by a [2+2+1] oxidative addition process of nickel to alkenes and alkynes.
Collapse
Affiliation(s)
- Shengwei Hu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Xiaoqin Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Tianbao Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhengtian Ding
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| |
Collapse
|
3
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
4
|
Huang S, Zhou JS. Nickel-Catalyzed Enantioselective Reductive Arylation of Common Ketones. J Am Chem Soc 2024; 146:12895-12900. [PMID: 38696162 DOI: 10.1021/jacs.4c02818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A nickel complex of chiral bisoxazolines catalyzed the stereoselective reductive arylation of ketones in high enantioselectivity. A range of common acyclic and cyclic ketones reacted without the aid of directing groups. Mechanistic studies using isolated complex of a chiral bis(oxazoline) (L)Ni(Ar)Br revealed that Mn reduction was not needed, while Lewis acidic titanium alkoxides were critical to ketone insertion.
Collapse
Affiliation(s)
- Shuai Huang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
5
|
Zhan LW, Lu CJ, Feng J, Liu RR. Atroposelective Synthesis of C-N Vinylindole Atropisomers by Palladium-Catalyzed Asymmetric Hydroarylation of 1-Alkynylindoles. Angew Chem Int Ed Engl 2023; 62:e202312930. [PMID: 37747364 DOI: 10.1002/anie.202312930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
Transition-metal-catalyzed hydroarylation of unsymmetrical internal alkynes remains challenging because of the difficulty in controlling regioselectivity and stereoselectivity. Moreover, the enantioselective hydroarylation of alkynes using organoboron reagents has not been reported. Herein, we report for the first time that palladium compounds can catalyze the hydroarylation of 1-alkynylindoles with organoborons for the synthesis of chiral C-N atropisomers. A series of rarely reported vinylindole atropisomers was synthesized with excellent regio-, stereo- (Z-selectivity), and enantioselectivity under mild reaction conditions. The ready availability of organoborons and alkynes and the simplicity, high stereoselectivity, and good functional group tolerance of this catalytic system make it highly attractive.
Collapse
Affiliation(s)
- Li-Wen Zhan
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Jia Feng
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| |
Collapse
|
6
|
Li Q, Li J, Zhang J, Wu S, Zhang Y, Lin A, Yao H. Enantioselective Synthesis of Bicyclo[3.2.1]octadienes via Palladium-Catalyzed Intramolecular Alkene-Alkyne Coupling Reaction. Angew Chem Int Ed Engl 2023:e202313404. [PMID: 37921257 DOI: 10.1002/anie.202313404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
Bicyclo[3.2.1]octadiene compounds and derivatives exist in a number of natural products and bioactive compounds. Nevertheless, catalytic enantioselective protocols for the synthesis of these skeletons have not been disclosed. Herein we reported a palladium-catalyzed asymmetric intramolecular alkene-alkyne coupling of alkyne-tethered cyclopentenes, affording a library of enantionenriched bicyclo[3.2.1]octadienes in excellent yields and enantioselectivities (mostly >99 % ee). Moreover, the products could undergo an unusual iodination-induced 1,2-acyl migration, forming iodinated bicyclo[3.2.1]octadienes with three vicinal stereocenters. The enone and isolated olefin motifs embedded in the products provide useful handles for downstream elaboration.
Collapse
Affiliation(s)
- Qiuyu Li
- State Key Laboratory of Natural Medicines (SKLNM), Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Jiajia Li
- State Key Laboratory of Natural Medicines (SKLNM), Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Jie Zhang
- State Key Laboratory of Natural Medicines (SKLNM), Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Shu Wu
- State Key Laboratory of Natural Medicines (SKLNM), Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yu Zhang
- State Key Laboratory of Natural Medicines (SKLNM), Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM), Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM), Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| |
Collapse
|
7
|
Zou L, Gao Y, Zhang Q, Ye XY, Xie T, Wang LW, Ye Y. Recent Progress in Asymmetric Domino Intramolecular Cyclization/Cascade Reactions of Substituted Olefins. Chem Asian J 2023; 18:e202300617. [PMID: 37462417 DOI: 10.1002/asia.202300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The domino cyclization/coupling strategy is one of the most effective methods to produce cyclized and multi-functionalized compounds from olefins, which has attracted huge attention from chemists and biochemists especially for its considerable potential of enantiocontrol. Nowadays, more and more studies are developed to achieve difunctionalization of substituted olefins through an asymmetric domino intramolecular cyclization/cascade reaction, which is still an elegant choice to accomplish several synthetic ideas such as complex natural products and drugs. This review surveys the recent advances in this field through reaction type classification. It might serve as useful knowledge desktop for the community and accelerate their research.
Collapse
Affiliation(s)
- Liang Zou
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yuan Gao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, P. R. China
| | - Qiaoman Zhang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
8
|
Zhang L, Wang X, Pu M, Chen C, Yang P, Wu YD, Chi YR, Zhou JS. Nickel-Catalyzed Enantioselective Reductive Arylation and Heteroarylation of Aldimines via an Elementary 1,4-Addition. J Am Chem Soc 2023. [PMID: 37023358 DOI: 10.1021/jacs.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Nickel catalysts of chiral pyrox ligands promoted enantioselective reductive arylation and heteroarylation of aldimines, using directly (hetero)aryl halides and sulfonates. The catalytic arylation can also be conducted with crude aldimines generated from condensation of aldehydes and azaaryl amines. Mechanistically, density functional theory (DFT) calculations and experiments pointed to an elementary step of 1,4-addition of aryl nickel(I) complexes to N-azaaryl aldimines.
Collapse
Affiliation(s)
- Luoqiang Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Xiuhua Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518107, China
| | - Caiyou Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518107, China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yonggui Robin Chi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
9
|
Liu WM, Lu Z, Wei Q, Liu WB. Enantioselective Nickel-Catalyzed Reductive anti-Arylative Annulation of Alkyne-Tethered Malononitriles to Construct Quaternary Stereocenters. Org Lett 2023; 25:1811-1816. [PMID: 36919903 DOI: 10.1021/acs.orglett.3c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A nickel-catalyzed reductive desymmetrizing annulation of alkyne-tethered malononitriles and (hetero)aryl iodides is reported for the access of cyclohexenones containing an α-all-carbon quaternary stereocenter. The use of a nickel catalyst derived from an electron-rich phosphinooxazoline ligand combined with iron powder as a reductant is crucial to the success of this transformation.
Collapse
Affiliation(s)
- Wei-Min Liu
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, 430072 Hubei, China
| | - Zhiwu Lu
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, 430072 Hubei, China
| | - Qiang Wei
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, 430072 Hubei, China
| | - Wen-Bo Liu
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, 430072 Hubei, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Etling C, Tedesco G, Di Marco A, Kalesse M. Asymmetric Total Synthesis of Illisimonin A. J Am Chem Soc 2023; 145:7021-7029. [PMID: 36926847 PMCID: PMC10064331 DOI: 10.1021/jacs.3c01262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The discovery of illisimonin A in 2017 extended the structural repertoire of the Illicium sesquiterpenoids─a class of natural products known for their high oxidation levels and neurotrophic properties─with a new carbon backbone combining the strained trans-pentalene and norbornane substructures. We report an asymmetric total synthesis of (-)-illisimonin A that traces its tricyclic carbon framework back to a spirocyclic precursor, generated by a tandem-Nazarov/ene cyclization. As crucial link between the spirocyclic key intermediate and illisimonin A, a novel approach for the synthesis of tricyclo[5.2.1.01,5]decanes via radical cyclization was explored. This approach was applied in a two-stage strategy consisting of Ti(III)-mediated cyclization and semipinacol rearrangement to access the natural product's carbon backbone. These key steps were combined with carefully orchestrated C-H oxidations to establish the dense oxidation pattern.
Collapse
Affiliation(s)
- Christoph Etling
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Giada Tedesco
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Anna Di Marco
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Markus Kalesse
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| |
Collapse
|
11
|
Maurya RK, Bhukta S, Kishor K, Chatterjee R, Burra AG, Khatravath M, Dandela R. Recent progress towards transition-metal-catalyzed arylative cyclization/annulation reactions with boronic acids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Zhang L, Zhao M, Pu M, Ma Z, Zhou J, Chen C, Wu YD, Chi YR, Zhou JS. Nickel-Catalyzed Enantioselective Reductive Conjugate Arylation and Heteroarylation via an Elementary Mechanism of 1,4-Addition. J Am Chem Soc 2022; 144:20249-20257. [DOI: 10.1021/jacs.2c05678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Luoqiang Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Mengxin Zhao
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road,
Guangming District, Shenzhen 518107, China
| | - Zhaoming Ma
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Jingsong Zhou
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Caiyou Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road,
Guangming District, Shenzhen 518107, China
- Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Yonggui Robin Chi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
13
|
Xu P, Shen C, Xu A, Low K, Huang Z. Desymmetric Cyanosilylation of Acyclic 1,3‐Diketones. Angew Chem Int Ed Engl 2022; 61:e202208443. [DOI: 10.1002/anie.202208443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Pan Xu
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| | - Chang Shen
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| | - Aiqing Xu
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| | - Kam‐Hung Low
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| | - Zhongxing Huang
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| |
Collapse
|
14
|
Xu P, Shen C, Xu A, Low KH, Huang Z. Desymmetric Cyanosilylation of Acyclic 1,3‐Diketones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pan Xu
- University of Hong Kong Department of Chemistry HONG KONG
| | - Chang Shen
- University of Hong Kong Department of Chemistry HONG KONG
| | - Aiqing Xu
- University of Hong Kong Department of Chemistry HONG KONG
| | - Kam-Hung Low
- University of Hong Kong Department of Chemistry HONG KONG
| | - Zhongxing Huang
- University of Hong Kong Chemistry RM 608 Chong Yuet Ming Chemistry Building na Hong Kong HONG KONG
| |
Collapse
|
15
|
Tambe SD, Ka CH, Hwang HS, Bae J, Iqbal N, Cho EJ. Nickel‐Catalyzed Enantioselective Synthesis of 2,3,4‐Trisubstituted 3‐Pyrrolines. Angew Chem Int Ed Engl 2022; 61:e202203494. [DOI: 10.1002/anie.202203494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Shrikant D. Tambe
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Cheol Hyeon Ka
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Ho Seong Hwang
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Jaehan Bae
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Naeem Iqbal
- Department of Chemistry University of York Heslington, York YO10 5DD UK
| | - Eun Jin Cho
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| |
Collapse
|
16
|
Tambe SD, Ka CH, Hwang HS, Bae J, Iqbal N, Cho EJ. Nickel‐Catalyzed Enantioselective Synthesis of 2,3,4‐Trisubstituted 3‐Pyrrolines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shrikant D. Tambe
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Cheol Hyeon Ka
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Ho Seong Hwang
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Jaehan Bae
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Naeem Iqbal
- Department of Chemistry University of York Heslington, York YO10 5DD UK
| | - Eun Jin Cho
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| |
Collapse
|
17
|
Gillbard SM, Lam HW. Nickel-Catalyzed Arylative Cyclizations of Alkyne- and Allene-Tethered Electrophiles using Arylboron Reagents. Chemistry 2022; 28:e202104230. [PMID: 34986277 PMCID: PMC9302687 DOI: 10.1002/chem.202104230] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/14/2022]
Abstract
The use of arylboron reagents in metal‐catalyzed domino addition–cyclization reactions is a well‐established strategy for the preparation of diverse, highly functionalized carbo‐ and heterocyclic products. Although rhodium‐ and palladium‐based catalysts have been commonly used for these reactions, more recent work has demonstrated nickel catalysis is also highly effective, in many cases offering unique reactivity and access to products that might otherwise not be readily available. This review gives an overview of nickel‐catalyzed arylative cyclizations of alkyne‐ and allene‐tethered electrophiles using arylboron reagents. The scope of the reactions is discussed in detail, and general mechanistic concepts underpinning the processes are described.
Collapse
Affiliation(s)
- Simone M Gillbard
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, NG7 2TU, Nottingham, UK.,School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, NG7 2TU, Nottingham, UK.,School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| |
Collapse
|
18
|
Lin J, Liang G, Wu C, Tian X. Direct Synthesis of Napthalenes by Nickel‐Catalyzed Cascade Cyclization of
o
‐Vinyl Chlorobenzenes with Internal Alkynes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jin Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 China
| | - Guanfeng Liang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 China
| | - Chaoyi Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 China
| | - Xu Tian
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 China
| |
Collapse
|
19
|
Wang G, Zhang M, Guan Y, Zhang Y, Hong X, Wei C, Zheng P, Wei D, Fu Z, Chi YR, Huang W. Desymmetrization of Cyclic 1,3-Diketones under N-Heterocyclic Carbene Organocatalysis: Access to Organofluorines with Multiple Stereogenic Centers. RESEARCH 2021; 2021:9867915. [PMID: 34549186 PMCID: PMC8422277 DOI: 10.34133/2021/9867915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022]
Abstract
Symmetric 1,3-diketones with fluorine or fluorinated substituents on the prochiral carbon remain to be established. Herein, we have developed a novel prochiral fluorinated oxindanyl 1,3-diketone and successfully applied these substrates in carbene-catalyzed asymmetric desymmetrization. Accordingly, a versatile strategy for asymmetric generation of organofluorines with fluorine or fluorinated methyl groups has been developed. Multiple stereogenic centers were selectively constructed with satisfactory outcomes. Structurally diverse enantioenriched organofluorines were generated with excellent results in terms of yields, diastereoselectivities, and enantioselectivities. Notably, exchanging fluorinated methyl groups to fluorine for this prochiral 1,3-diketones leads to switchable stereoselectivity. Mechanistic aspects and origin of stereoselectivity were studied by DFT calculations. Notably, some of the prepared organofluorines demonstrated competitive antibacterial activities.
Collapse
Affiliation(s)
- Guanjie Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Min Zhang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yezhi Guan
- School of Chemistry and Molecular Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Ye Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xianfang Hong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Chenlong Wei
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Pengcheng Zheng
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Donghui Wei
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.,Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
20
|
Ghosh S, Chakrabortty R, Ganesh V. Dual Functionalization of Alkynes Utilizing the Redox Characteristics of Transition Metal Catalysts. ChemCatChem 2021. [DOI: 10.1002/cctc.202100838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sudipta Ghosh
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 West Bengal India
| | - Rajesh Chakrabortty
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 West Bengal India
| | - Venkataraman Ganesh
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 West Bengal India
| |
Collapse
|
21
|
Corpas J, Mauleón P, Arrayás RG, Carretero JC. Transition-Metal-Catalyzed Functionalization of Alkynes with Organoboron Reagents: New Trends, Mechanistic Insights, and Applications. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01421] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Pablo Mauleón
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Juan C. Carretero
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
22
|
Gillbard SM, Green H, Argent SP, Lam HW. Enantioselective nickel-catalyzed anti-arylmetallative cyclizations onto acyclic electron-deficient alkenes. Chem Commun (Camb) 2021; 57:4436-4439. [PMID: 33949471 DOI: 10.1039/d1cc01166a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enantioselective nickel-catalyzed reactions of (hetero)arylboronic acids or alkenylboronic acids with substrates containing an alkyne tethered to various acyclic electron-deficient alkenes are described.
Collapse
Affiliation(s)
- Simone M Gillbard
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, UK. and School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Harley Green
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, UK. and School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Stephen P Argent
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, UK. and School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
23
|
Green H, Argent SP, Lam HW. Enantioselective Nickel-Catalyzed anti-Arylmetallative Cyclizations onto Acyclic Ketones. Chemistry 2021; 27:5897-5900. [PMID: 33533065 PMCID: PMC8048927 DOI: 10.1002/chem.202100143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Domino reactions involving nickel-catalyzed additions of (hetero)arylboronic acids to alkynes, followed by cyclization of the alkenylnickel intermediates onto tethered acyclic ketones to give chiral tertiary-alcohol-containing products in high enantioselectivities, are described. The reversible E/Z isomerization of the alkenylnickel intermediates enables overall anti-arylmetallative cyclization to occur. The ring system of the products are substructures of certain diarylindolizidine alkaloids.
Collapse
Affiliation(s)
- Harley Green
- The GlaxoSmithKline Carbon Neutral Laboratories for, Sustainable ChemistryUniversity of NottinghamJubilee Campus, Triumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Stephen P. Argent
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for, Sustainable ChemistryUniversity of NottinghamJubilee Campus, Triumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| |
Collapse
|
24
|
Yang B, Dai J, Luo Y, Lau KK, Lan Y, Shao Z, Zhao Y. Desymmetrization of 1,3-Diones by Catalytic Enantioselective Condensation with Hydrazine. J Am Chem Soc 2021; 143:4179-4186. [DOI: 10.1021/jacs.1c01366] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Binmiao Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, No. 2 North Cuihu Road, 650091 Kunming, China
| | - Jun Dai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, No. 2 North Cuihu Road, 650091 Kunming, China
| | - Yixin Luo
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Kai Kiat Lau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Republic of Singapore, 117543
| | - Yu Lan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, No. 2 North Cuihu Road, 650091 Kunming, China
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Republic of Singapore, 117543
| |
Collapse
|
25
|
Xue W, Jia X, Wang X, Tao X, Yin Z, Gong H. Nickel-catalyzed formation of quaternary carbon centers using tertiary alkyl electrophiles. Chem Soc Rev 2021; 50:4162-4184. [DOI: 10.1039/d0cs01107j] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review provides a comprehensive summary of recent advances in nickel-catalyzed reactions employing tertiary alkyl electrophiles for the construction of quaternary carbon centers.
Collapse
Affiliation(s)
- Weichao Xue
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
| | - Xiao Jia
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
| | - Xuan Wang
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
| | - Xianghua Tao
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
| | - Zhigang Yin
- School of Materials & Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- China
| | - Hegui Gong
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
26
|
Ding Z, Wang Y, Liu W, Chen Y, Kong W. Diastereo- and Enantioselective Construction of Spirocycles by Nickel-Catalyzed Cascade Borrowing Hydrogen Cyclization. J Am Chem Soc 2020; 143:53-59. [PMID: 33356186 DOI: 10.1021/jacs.0c10055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhengtian Ding
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Yiming Wang
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Wenfeng Liu
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Yate Chen
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Wangqing Kong
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
27
|
Zhou Z, Chen J, Chen H, Kong W. Stereoselective synthesis of pentasubstituted 1,3-dienes via Ni-catalyzed reductive coupling of unsymmetrical internal alkynes. Chem Sci 2020; 11:10204-10211. [PMID: 34094285 PMCID: PMC8162379 DOI: 10.1039/d0sc04173d] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The reductive coupling of alkynes represents a powerful strategy for the rapid synthesis of highly substituted 1,3-dienes. This method has the advantages of high atom and step economy, and readily available substrates. Unfortunately, the intermolecular coupling of unsymmetrical internal alkynes remains extremely challenging due to the difficulty in controlling self-dimerization and cross-coupling, as well as stereo- and regioselectivity. Previous reports are still limited to intramolecular processes or the use of stoichiometric amounts of metal catalyst. Herein, we report that nickel-catalyzed reductive coupling of two unsymmetrical internal alkynes can overcome the above-mentioned limitations by using a hemilabile directing group strategy to control the regioselectivity. A series of synthetically challenging penta-substituted 1,3-dienes are obtained in good yields with high regio- and enantioselectivity (mostly > 20/1 rr, >90% ee). The reductive coupling of alkynes represents a powerful strategy for the rapid synthesis of highly substituted 1,3-dienes.![]()
Collapse
Affiliation(s)
- Zhijun Zhou
- Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 P. R. China
| | - Jiachang Chen
- Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 P. R. China
| | - Herong Chen
- Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 P. R. China
| | - Wangqing Kong
- Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 P. R. China
| |
Collapse
|
28
|
Abstract
A new catalyst system for the antiarylative cyclization of alkynones and aryl halides through a reductive cross-coupling strategy is developed. The transformation proceeds smoothly in the absence of organometallic reagents and features high functional group tolerance. This method provides an effective platform to access a wide variety of synthetically useful endocyclic tetrasubstituted allylic alcohols in a stereoselective manner.
Collapse
Affiliation(s)
- Zhijun Zhou
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan, Hubei 430072, P.R. China
| | - Wenfeng Liu
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan, Hubei 430072, P.R. China
| | - Wangqing Kong
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
29
|
Chen J, Hayashi T. Asymmetric Synthesis of Alkylzincs by Rhodium‐Catalyzed Enantioselective Arylative Cyclization of 1,6‐Enynes with Arylzincs. Angew Chem Int Ed Engl 2020; 59:18510-18514. [DOI: 10.1002/anie.202008770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Jiahua Chen
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Tamio Hayashi
- Department of Chemistry National Tsing-Hua University Hsinchu 30013 Taiwan
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
30
|
Chen J, Hayashi T. Asymmetric Synthesis of Alkylzincs by Rhodium‐Catalyzed Enantioselective Arylative Cyclization of 1,6‐Enynes with Arylzincs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jiahua Chen
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Tamio Hayashi
- Department of Chemistry National Tsing-Hua University Hsinchu 30013 Taiwan
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
31
|
Affiliation(s)
- Yun‐Cheng Luo
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Chang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
32
|
Abstract
We summarize the progress of the nickel-catalyzed alkyne difunctionalization reaction for the synthesis of tri- and tetrasubstituted olefins, with an emphasis on the strategy and control of stereochemistry.
Collapse
Affiliation(s)
- Wenfeng Liu
- The Center for Precision Synthesis (CPS)
- Institute for Advanced Studies (IAS)
- Wuhan University
- Wuhan
- P. R. China
| | - Wangqing Kong
- The Center for Precision Synthesis (CPS)
- Institute for Advanced Studies (IAS)
- Wuhan University
- Wuhan
- P. R. China
| |
Collapse
|