1
|
Yang S, Huang Y, Yang T, Li J, Tian J, Liu L. Electrochemical detection of poly(ADP-ribose) polymerase-1 with silver nanoparticles as signal labels by integrating the advantages of homogeneous reaction with surface-tethered detection. Talanta 2025; 281:126796. [PMID: 39226698 DOI: 10.1016/j.talanta.2024.126796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Poly(ADP-ribose)polymerase-1 (PARP1) could be activated by binding to nucleic acids with specific sequences, thus catalyzing the poly-ADP-ribosylation (PARylation) of target proteins including PARP1 itself. Most of the previously reported electrochemical methods for the determination of PARP1 were relied on the electrostatic interactions, which required the pre-immobilization of DNA on an electrode for the capture of PARP1. Herein, we reported an "immobilization-free" electrochemical strategy for the assays of PARP1 on the basic of avidin-biotin interaction. Once PARP1 was activated by binding with the specific double-stranded DNA (dsDNA) in a homogeneous solution, the biotinylated nicotinamide adenine dinucleotide (biotin-NAD+) was transferred onto PARP1, resulting in the formation of biotinylated PAR polymers. The resulting biotinylated PAR polymers were then captured by a neutravidin (NA)-modified electrode through avidin-biotin interactions. The rich biotin moieties in the PAR polymers allowed for the capture of NA-modified silver nanoparticles (NA-AgNPs) through the avidin-biotin interactions. The surface-tethered AgNPs produced a well-defined electrochemical signal due to the characteristic solid-state Ag/AgCl process. The "immobilization-free", electrostatic interaction-independent electrochemical biosensor exhibited low background current, high sensitivity, and good stability. It has achieved the determination of PARP1 with a detection limit down to 0.7 mU. The biosensor was further applied to determine the inhibition efficiency of potential inhibitors with a satisfactory result. This method shows promising potential applications in PARP1-related clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Suling Yang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, China
| | - Yaliang Huang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, China; School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Tingting Yang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, China
| | - Jingze Li
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiaxin Tian
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, China
| | - Lin Liu
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, China.
| |
Collapse
|
2
|
Baù E, Gölz T, Benoit M, Tittl A, Keilmann F. Nanoscale Mechanical Manipulation of Ultrathin SiN Membranes Enabling Infrared Near-Field Microscopy of Liquid-Immersed samples. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402568. [PMID: 39148207 PMCID: PMC11579970 DOI: 10.1002/smll.202402568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/30/2024] [Indexed: 08/17/2024]
Abstract
Scattering scanning near-field optical microscopy (s-SNOM) is a powerful technique for mid-infrared spectroscopy at nanometer length scales. By investigating objects in aqueous environments through ultrathin membranes, s-SNOM has recently been extended toward label-free nanoscopy of the dynamics of living cells and nanoparticles, assessing both the optical and the mechanical interactions between the tip, the membrane and the liquid suspension underneath. Here, the study reports that the tapping AFM tip induces a reversible nanometric deformation of the membrane manifested as either an indentation or protrusion. This mechanism depends on the driving force of the tapping cantilever, which is exploited to minimize topographical deformations of the membrane to improve optical measurements. Furthermore, it is shown that the tapping phase delay between driving signal and tip oscillation is a highly sensitive observable to study the mechanics of adhering objects, exhibiting highest contrast at low tapping amplitudes where the membrane remains nearly flat. Mechanical responses are correlated with simultaneously recorded spectroscopy data to reveal the thickness of nanometric water layers between membrane and adhering objects. Besides a general applicability of depth profiling, the technique holds great promise for studying mechano-active biopolymers and living cells, biomaterials that exhibit complex behaviors when under a mechanical load.
Collapse
Affiliation(s)
- Enrico Baù
- Chair in Hybrid Nanosystems and Center for NanoScience, Nano‐Institute Munich, Faculty of PhysicsLudwig‐Maximilians‐UniversityKöniginstr. 1080539MünchenGermany
| | - Thorsten Gölz
- Chair in Hybrid Nanosystems and Center for NanoScience, Nano‐Institute Munich, Faculty of PhysicsLudwig‐Maximilians‐UniversityKöniginstr. 1080539MünchenGermany
| | - Martin Benoit
- Chair of Applied Physics, Molecular physics of life and Center for NanoScience, Faculty of PhysicsLudwig‐Maximilians‐UniversityAm Klopferspitz 1882152MartinsriedGermany
| | - Andreas Tittl
- Chair in Hybrid Nanosystems and Center for NanoScience, Nano‐Institute Munich, Faculty of PhysicsLudwig‐Maximilians‐UniversityKöniginstr. 1080539MünchenGermany
| | - Fritz Keilmann
- Chair in Hybrid Nanosystems and Center for NanoScience, Nano‐Institute Munich, Faculty of PhysicsLudwig‐Maximilians‐UniversityKöniginstr. 1080539MünchenGermany
| |
Collapse
|
3
|
Thomas A, Upadhyaya K, Bejan D, Adoff H, Cohen M, Schultz C. A Genetically Encoded Sensor for Real-Time Monitoring of Poly-ADP-Ribosylation Dynamics In Vitro and in Cells. ACS Sens 2024; 9:5246-5252. [PMID: 39351594 PMCID: PMC11520908 DOI: 10.1021/acssensors.4c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
ADP-ribosylation, the transfer of ADP-ribose (ADPr) from nicotinamide adenine dinucleotide (NAD+) groups to proteins, is a conserved post-translational modification (PTM) that occurs most prominently in response to DNA damage. ADP-ribosylation is a dynamic PTM regulated by writers (PARPs), erasers (ADPr hydrolases), and readers (ADPR binders). PARP1 is the primary DNA damage-response writer responsible for adding a polymer of ADPR to proteins (PARylation). Real-time monitoring of PARP1-mediated PARylation, especially in live cells, is critical for understanding the spatial and temporal regulation of this unique PTM. Here, we describe a genetically encoded FRET probe (pARS) for semiquantitative monitoring of PARylation dynamics. pARS feature a PAR-binding WWE domain flanked with turquoise and Venus. With a ratiometric readout and excellent signal-to-noise characteristics, we show that pARS can monitor PARP1-dependent PARylation temporally and spatially in real-time. pARS provided unique insights into PARP1-mediated PARylation kinetics in vitro and high-sensitivity detection of PARylation in live cells, even under mild DNA damage. We also show that pARS can be used to determine the potency of PARP inhibitors in vitro and, for the first time, in live cells in response to DNA damage. The robustness and ease of use of pARS make it an important tool for the PARP field.
Collapse
Affiliation(s)
- Alix Thomas
- Department of Chemical Physiology
and Biochemistry, Oregon Health and Science
University, 3181 SW Sam Jackson Park Rd., L334, Portland, Oregon 97239, United States
| | - Kapil Upadhyaya
- Department of Chemical Physiology
and Biochemistry, Oregon Health and Science
University, 3181 SW Sam Jackson Park Rd., L334, Portland, Oregon 97239, United States
| | - Daniel Bejan
- Department of Chemical Physiology
and Biochemistry, Oregon Health and Science
University, 3181 SW Sam Jackson Park Rd., L334, Portland, Oregon 97239, United States
| | - Hayden Adoff
- Department of Chemical Physiology
and Biochemistry, Oregon Health and Science
University, 3181 SW Sam Jackson Park Rd., L334, Portland, Oregon 97239, United States
| | - Michael Cohen
- Department of Chemical Physiology
and Biochemistry, Oregon Health and Science
University, 3181 SW Sam Jackson Park Rd., L334, Portland, Oregon 97239, United States
| | - Carsten Schultz
- Department of Chemical Physiology
and Biochemistry, Oregon Health and Science
University, 3181 SW Sam Jackson Park Rd., L334, Portland, Oregon 97239, United States
| |
Collapse
|
4
|
Maki K, Fukute J, Adachi T. Super-resolution imaging reveals nucleolar encapsulation by single-stranded DNA. J Cell Sci 2024; 137:jcs262039. [PMID: 39206638 PMCID: PMC11463959 DOI: 10.1242/jcs.262039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
In eukaryotic cell nuclei, specific sets of proteins gather in nuclear bodies and facilitate distinct genomic processes. The nucleolus, a nuclear body, functions as a factory for ribosome biogenesis by accumulating constitutive proteins, such as RNA polymerase I and nucleophosmin 1 (NPM1). Although in vitro assays have suggested the importance of liquid-liquid phase separation (LLPS) of constitutive proteins in nucleolar formation, how the nucleolus is structurally maintained with the intranuclear architecture remains unknown. This study revealed that the nucleolus is encapsulated by a single-stranded (ss)DNA-based molecular complex inside the cell nucleus. Super-resolution lattice-structured illumination microscopy (lattice-SIM) showed that there was a high abundance of ssDNA beyond the 'outer shell' of the nucleolus. Nucleolar disruption and the release of NPM1 were caused by in situ digestion of ssDNA, suggesting that ssDNA has a structural role in nucleolar encapsulation. Furthermore, we identified that ssDNA forms a molecular complex with histone H1 for nucleolar encapsulation. Thus, this study illustrates how an ssDNA-based molecular complex upholds the structural integrity of nuclear bodies to coordinate genomic processes such as gene transcription and replication.
Collapse
Affiliation(s)
- Koichiro Maki
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
| | - Jumpei Fukute
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
| | - Taiji Adachi
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
5
|
Vekariya U, Minakhin L, Chandramouly G, Tyagi M, Kent T, Sullivan-Reed K, Atkins J, Ralph D, Nieborowska-Skorska M, Kukuyan AM, Tang HY, Pomerantz RT, Skorski T. PARG is essential for Polθ-mediated DNA end-joining by removing repressive poly-ADP-ribose marks. Nat Commun 2024; 15:5822. [PMID: 38987289 PMCID: PMC11236980 DOI: 10.1038/s41467-024-50158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
DNA polymerase theta (Polθ)-mediated end-joining (TMEJ) repairs DNA double-strand breaks and confers resistance to genotoxic agents. How Polθ is regulated at the molecular level to exert TMEJ remains poorly characterized. We find that Polθ interacts with and is PARylated by PARP1 in a HPF1-independent manner. PARP1 recruits Polθ to the vicinity of DNA damage via PARylation dependent liquid demixing, however, PARylated Polθ cannot perform TMEJ due to its inability to bind DNA. PARG-mediated de-PARylation of Polθ reactivates its DNA binding and end-joining activities. Consistent with this, PARG is essential for TMEJ and the temporal recruitment of PARG to DNA damage corresponds with TMEJ activation and dissipation of PARP1 and PAR. In conclusion, we show a two-step spatiotemporal mechanism of TMEJ regulation. First, PARP1 PARylates Polθ and facilitates its recruitment to DNA damage sites in an inactivated state. PARG subsequently activates TMEJ by removing repressive PAR marks on Polθ.
Collapse
Affiliation(s)
- Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Leonid Minakhin
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Gurushankar Chandramouly
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Mrityunjay Tyagi
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Tatiana Kent
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Katherine Sullivan-Reed
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jessica Atkins
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Douglas Ralph
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Anna-Mariya Kukuyan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Richard T Pomerantz
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA.
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Thomas A, Upadhyaya K, Bejan D, Adoff H, Cohen MS, Schultz C. A genetically encoded sensor for real-time monitoring of poly-ADP-ribosylation dynamics in-vitro and in cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598597. [PMID: 38915511 PMCID: PMC11195289 DOI: 10.1101/2024.06.11.598597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
ADP-ribosylation, the transfer of ADP-ribose (ADPr) from nico-tinamide adenine dinucleotide (NAD+) groups to proteins, is a conserved post-translational modification (PTM) that occurs most prominently in response to DNA damage. ADP-ribosylation is a dynamic PTM regulated by writers (PARPs), erasers (ADPr hy-drolases), and readers (ADPR binders). PARP1 is the primary DNA damage-response writer responsible for adding a polymer of ADPR to proteins (PARylation). Real-time monitoring of PARP1-mediated PARylation, especially in live cells, is critical for under-standing the spatial and temporal regulation of this unique PTM. Here, we describe a genetically encoded FRET probe (pARS) for semi-quantitative monitoring of PARylation dynamics. pARS feature a PAR-binding WWE domain flanked with turquoise and Venus. With a ratiometric readout and excellent signal-to-noise characteristics, we show that pARS can monitor PARP1-dependent PARylation temporally and spatially in real-time. pARS provided unique insights into PARP1-mediated PARylation kinetics in vitro and high-sensitivity detection of PARylation in live cells, even under mild DNA damage. We also show that pARS can be used to determine the potency of PARP inhibitors in vitro and, for the first time, in live cells in response to DNA damage. The robustness and ease of use of pARS make it an important tool for the PARP field.
Collapse
|
7
|
McCarthy KA, Marcotte DJ, Parelkar S, McKinnon CL, Trammell LE, Stangeland EL, Jetson RR. Discovery of Potent Isoindolinone Inhibitors that Target an Active Conformation of PARP1 Using DNA-Encoded Libraries. ChemMedChem 2024; 19:e202400093. [PMID: 38482564 DOI: 10.1002/cmdc.202400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Indexed: 04/11/2024]
Abstract
Inhibition of poly (ADP-ribose) polymerase-1 (PARP1), a DNA repair enzyme, has proven to be a successful strategy for the treatment of various cancers. With the appropriate selection conditions and protein design, DNA-encoded library (DEL) technology provides a powerful avenue to identify small molecules with the desired mechanism of action towards a target of interest. However, DNA-binding proteins, such as PARP1, can be challenging targets for DEL screening due to non-specific protein-DNA interactions. To overcome this, we designed and screened a PARP1 catalytic domain construct without the autoinhibitory helical domain. This allowed us to interrogate an active, functionally-relevant form of the protein resulting in the discovery of novel isoindolinone PARP1 inhibitors with single-digit nanomolar potency. These inhibitors also demonstrated little to no PARP1-DNA trapping, a property that could be advantageous in the clinic.
Collapse
Affiliation(s)
- Kelly A McCarthy
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| | - Douglas J Marcotte
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| | - Sangram Parelkar
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| | - Crystal L McKinnon
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| | - Lindsay E Trammell
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| | - Eric L Stangeland
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| | - Rachael R Jetson
- Discovery Sciences, Valo Health, 75 Hayden Avenue, Lexington, MA, 02421, United States
| |
Collapse
|
8
|
Nosella ML, Kim TH, Huang SK, Harkness RW, Goncalves M, Pan A, Tereshchenko M, Vahidi S, Rubinstein JL, Lee HO, Forman-Kay JD, Kay LE. Poly(ADP-ribosyl)ation enhances nucleosome dynamics and organizes DNA damage repair components within biomolecular condensates. Mol Cell 2024; 84:429-446.e17. [PMID: 38215753 DOI: 10.1016/j.molcel.2023.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Nucleosomes, the basic structural units of chromatin, hinder recruitment and activity of various DNA repair proteins, necessitating modifications that enhance DNA accessibility. Poly(ADP-ribosyl)ation (PARylation) of proteins near damage sites is an essential initiation step in several DNA-repair pathways; however, its effects on nucleosome structural dynamics and organization are unclear. Using NMR, cryoelectron microscopy (cryo-EM), and biochemical assays, we show that PARylation enhances motions of the histone H3 tail and DNA, leaving the configuration of the core intact while also stimulating nuclease digestion and ligation of nicked nucleosomal DNA by LIG3. PARylation disrupted interactions between nucleosomes, preventing self-association. Addition of LIG3 and XRCC1 to PARylated nucleosomes generated condensates that selectively partition DNA repair-associated proteins in a PAR- and phosphorylation-dependent manner in vitro. Our results establish that PARylation influences nucleosomes across different length scales, extending from the atom-level motions of histone tails to the mesoscale formation of condensates with selective compositions.
Collapse
Affiliation(s)
- Michael L Nosella
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tae Hun Kim
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shuya Kate Huang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert W Harkness
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Monica Goncalves
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alisia Pan
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julie D Forman-Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Lewis E Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
9
|
Schwarz SD, Xu J, Gunasekera K, Schürmann D, Vågbø CB, Ferrari E, Slupphaug G, Hottiger MO, Schär P, Steinacher R. Covalent PARylation of DNA base excision repair proteins regulates DNA demethylation. Nat Commun 2024; 15:184. [PMID: 38167803 PMCID: PMC10762122 DOI: 10.1038/s41467-023-44209-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The intracellular ATP-ribosyltransferases PARP1 and PARP2, contribute to DNA base excision repair (BER) and DNA demethylation and have been implicated in epigenetic programming in early mammalian development. Recently, proteomic analyses identified BER proteins to be covalently poly-ADP-ribosylated by PARPs. The role of this posttranslational modification in the BER process is unknown. Here, we show that PARP1 senses AP-sites and SSBs generated during TET-TDG mediated active DNA demethylation and covalently attaches PAR to each BER protein engaged. Covalent PARylation dissociates BER proteins from DNA, which accelerates the completion of the repair process. Consistently, inhibition of PARylation in mESC resulted both in reduced locus-specific TET-TDG-targeted DNA demethylation, and in reduced general repair of random DNA damage. Our findings establish a critical function of covalent protein PARylation in coordinating molecular processes associated with dynamic DNA methylation.
Collapse
Affiliation(s)
- Simon D Schwarz
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jianming Xu
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Kapila Gunasekera
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - David Schürmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Cathrine B Vågbø
- Proteomics and Modomics Experimental Core Facility (PROMEC), Norwegian University of Science and Technology and St. Olavs Hospital, Trondheim, Norway
| | - Elena Ferrari
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Geir Slupphaug
- Proteomics and Modomics Experimental Core Facility (PROMEC), Norwegian University of Science and Technology and St. Olavs Hospital, Trondheim, Norway
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Roland Steinacher
- Department of Biomedicine, University of Basel, Basel, Switzerland.
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Mamontova EM, Clément MJ, Sukhanova MV, Joshi V, Bouhss A, Rengifo-Gonzalez JC, Desforges B, Hamon L, Lavrik OI, Pastré D. FUS RRM regulates poly(ADP-ribose) levels after transcriptional arrest and PARP-1 activation on DNA damage. Cell Rep 2023; 42:113199. [PMID: 37804508 DOI: 10.1016/j.celrep.2023.113199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/08/2023] [Accepted: 09/15/2023] [Indexed: 10/09/2023] Open
Abstract
PARP-1 activation at DNA damage sites leads to the synthesis of long poly(ADP-ribose) (PAR) chains, which serve as a signal for DNA repair. Here we show that FUS, an RNA-binding protein, is specifically directed to PAR through its RNA recognition motif (RRM) to increase PAR synthesis by PARP-1 in HeLa cells after genotoxic stress. Using a structural approach, we also identify specific residues located in the FUS RRM, which can be PARylated by PARP-1 to control the level of PAR synthesis. Based on the results of this work, we propose a model in which, following a transcriptional arrest that releases FUS from nascent mRNA, FUS can be recruited by PARP-1 activated by DNA damage to stimulate PAR synthesis. We anticipate that this model offers new perspectives to understand the role of FET proteins in cancers and in certain neurodegenerative diseases such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Evgeniya M Mamontova
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France; Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Av. 8, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Street, Novosibirsk 630090, Russia
| | - Marie-Jeanne Clément
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Av. 8, Novosibirsk 630090, Russia
| | - Vandana Joshi
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Ahmed Bouhss
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | | | - Bénédicte Desforges
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Loic Hamon
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Av. 8, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Street, Novosibirsk 630090, Russia.
| | - David Pastré
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France.
| |
Collapse
|
11
|
Maluchenko N, Saulina A, Geraskina O, Kotova E, Korovina A, Feofanov A, Studitsky V. Zinc-dependent Nucleosome Reorganization by PARP2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562808. [PMID: 37904948 PMCID: PMC10614866 DOI: 10.1101/2023.10.17.562808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Poly(ADP-ribose)polymerase 2 (PARP2) is a nuclear protein that acts as a DNA damage sensor; it recruits the repair enzymes to a DNA damage site and facilitates formation of the repair complex. Using single particle Förster resonance energy transfer microscopy and electrophoretic mobility shift assay (EMSA) we demonstrated that PARP2 forms complexes with a nucleosome containing different number of PARP2 molecules without altering conformation of nucleosomal DNA both in the presence and in the absence of Mg 2+ or Ca 2+ ions. In contrast, Zn 2+ ions directly interact with PARP2 inducing a local alteration of the secondary structure of the protein and PARP2-mediated, reversible structural reorganization of nucleosomal DNA. AutoPARylation activity of PARP2 is enhanced by Mg 2+ ions and modulated by Zn 2+ ions: suppressed or enhanced depending on the occupancy of two functionally different Zn 2+ binding sites. The data suggest that Zn 2+ /PARP2-induced nucleosome reorganization and transient changes in the concentration of the cations could modulate PARP2 activity and the DNA damage response. Significance Statement PARP2 recognizes and binds DNA damage sites, recruits the repair enzymes to these sites and facilitates formation of the repair complex. Zn 2+ -induced structural reorganization of nucleosomal DNA in the complex with PARP2, which is reported in the paper, could modulate the DNA damage response. The obtained data indicate the existence of specific binding sites of Mg 2+ and Zn 2+ ions in and/or near the catalytic domain of PARP2, which modulate strongly, differently and ion-specifically PARylation activity of PARP2, which is important for maintaining genome stability, adaptation of cells to stress, regulation of gene expression and antioxidant defense.
Collapse
|
12
|
Yang H, Lachtara EM, Ran X, Hopkins J, Patel PS, Zhu X, Xiao Y, Phoon L, Gao B, Zou L, Lawrence MS, Lan L. The RNA m5C modification in R-loops as an off switch of Alt-NHEJ. Nat Commun 2023; 14:6114. [PMID: 37777505 PMCID: PMC10542358 DOI: 10.1038/s41467-023-41790-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023] Open
Abstract
The roles of R-loops and RNA modifications in homologous recombination (HR) and other DNA double-stranded break (DSB) repair pathways remain poorly understood. Here, we find that DNA damage-induced RNA methyl-5-cytosine (m5C) modification in R-loops plays a crucial role to regulate PARP1-mediated poly ADP-ribosylation (PARylation) and the choice of DSB repair pathways at sites of R-loops. Through bisulfite sequencing, we discover that the methyltransferase TRDMT1 preferentially generates m5C after DNA damage in R-loops across the genome. In the absence of m5C, R-loops activate PARP1-mediated PARylation both in vitro and in cells. Concurrently, m5C promotes transcription-coupled HR (TC-HR) while suppressing PARP1-dependent alternative non-homologous end joining (Alt-NHEJ), favoring TC-HR over Alt-NHEJ in transcribed regions as the preferred repair pathway. Importantly, simultaneous disruption of both TC-HR and Alt-NHEJ with TRDMT1 and PARP or Polymerase θ inhibitors prevents alternative DSB repair and exhibits synergistic cytotoxic effects on cancer cells, suggesting an effective strategy to exploit genomic instability in cancer therapy.
Collapse
Affiliation(s)
- Haibo Yang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily M Lachtara
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaojuan Ran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jessica Hopkins
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Parasvi S Patel
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xueping Zhu
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yao Xiao
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Laiyee Phoon
- Departments of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Boya Gao
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Departments of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
13
|
Beddoe M, Gölz T, Barkey M, Bau E, Godejohann M, Maier SA, Keilmann F, Moldovan M, Prodan D, Ilie N, Tittl A. Probing the micro- and nanoscopic properties of dental materials using infrared spectroscopy: A proof-of-principle study. Acta Biomater 2023; 168:309-322. [PMID: 37479158 DOI: 10.1016/j.actbio.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
The preservation of oral health over a person's lifespan is a key factor for a high quality of life. Sustaining oral health requires high-end dental materials with a plethora of attributes such as durability, non-toxicity and ease of application. The combination of different requirements leads to increasing miniaturization and complexity of the material components such as the composite and adhesives, which makes the precise characterization of the material blend challenging. Here, we demonstrate how modern IR spectroscopy and imaging from the micro- to the nanoscale can provide insights on the chemical composition of the different material sections of a dental filling. We show how the recorded IR-images can be used for a fast and non-destructive porosity determination of the studied adhesive. Furthermore, the nanoscale study allows precise assessment of glass cluster structures and distribution within their characteristic organically modified ceramic (ORMOCER) matrix and an assessment of the interface between the composite and adhesive material. For the study we used a Fourier-Transform-IR (FTIR) microscope and a quantum cascade laser-based IR-microscope (QCL-IR) for the microscale analysis and a scattering-type scanning near-field optical microscopy (s-SNOM) for the nanoscale analysis. The paper ends with an in-depth discussion of the strengths and weaknesses of the different imaging methods to give the reader a clear picture for which scientific question the microscopes are best suited for. STATEMENT OF SIGNIFICANCE: Modern resin-based composites for dental restoration are complex multi-compound materials. In order to improve these high-end materials, it is important to investigate the molecular composition and morphology of the different parts. An emergent method to characterize these materials is infrared spectroscopic imaging, which combines the strength of infrared spectroscopy and an imaging approach known from optical microscopy. In this work, three state of the art methods are compared for investigating a dental filling including FTIR- and quantum cascade laser IR-imaging microscopy for the microscale and scattering-type scanning near-field optical microscopy for the nanoscale.
Collapse
Affiliation(s)
- Max Beddoe
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig Maximilians-University Munich, Munich 80539, Germany; Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena 07745, Germany; Institute of Solid State Physics, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Thorsten Gölz
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig Maximilians-University Munich, Munich 80539, Germany
| | - Martin Barkey
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig Maximilians-University Munich, Munich 80539, Germany
| | - Enrico Bau
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig Maximilians-University Munich, Munich 80539, Germany
| | | | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig Maximilians-University Munich, Munich 80539, Germany; School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia; Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Fritz Keilmann
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig Maximilians-University Munich, Munich 80539, Germany
| | - Marioara Moldovan
- Babes-Bolyai University, Institute of Chemistry Raluca Ripan, Cluj-Napoca, Romania
| | - Doina Prodan
- Babes-Bolyai University, Institute of Chemistry Raluca Ripan, Cluj-Napoca, Romania
| | - Nicoleta Ilie
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Germany.
| | - Andreas Tittl
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig Maximilians-University Munich, Munich 80539, Germany.
| |
Collapse
|
14
|
Beneyton A, Nonfoux L, Gagné JP, Rodrigue A, Kothari C, Atalay N, Hendzel M, Poirier G, Masson JY. The dynamic process of covalent and non-covalent PARylation in the maintenance of genome integrity: a focus on PARP inhibitors. NAR Cancer 2023; 5:zcad043. [PMID: 37609662 PMCID: PMC10440794 DOI: 10.1093/narcan/zcad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Poly(ADP-ribosylation) (PARylation) by poly(ADP-ribose) polymerases (PARPs) is a highly regulated process that consists of the covalent addition of polymers of ADP-ribose (PAR) through post-translational modifications of substrate proteins or non-covalent interactions with PAR via PAR binding domains and motifs, thereby reprogramming their functions. This modification is particularly known for its central role in the maintenance of genomic stability. However, how genomic integrity is controlled by an intricate interplay of covalent PARylation and non-covalent PAR binding remains largely unknown. Of importance, PARylation has caught recent attention for providing a mechanistic basis of synthetic lethality involving PARP inhibitors (PARPi), most notably in homologous recombination (HR)-deficient breast and ovarian tumors. The molecular mechanisms responsible for the anti-cancer effect of PARPi are thought to implicate both catalytic inhibition and trapping of PARP enzymes on DNA. However, the relative contribution of each on tumor-specific cytotoxicity is still unclear. It is paramount to understand these PAR-dependent mechanisms, given that resistance to PARPi is a challenge in the clinic. Deciphering the complex interplay between covalent PARylation and non-covalent PAR binding and defining how PARP trapping and non-trapping events contribute to PARPi anti-tumour activity is essential for developing improved therapeutic strategies. With this perspective, we review the current understanding of PARylation biology in the context of the DNA damage response (DDR) and the mechanisms underlying PARPi activity and resistance.
Collapse
Affiliation(s)
- Adèle Beneyton
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Louis Nonfoux
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Philippe Gagné
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Charu Kothari
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Nurgul Atalay
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AlbertaT6G 1Z2, Canada
| | - Guy G Poirier
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| |
Collapse
|
15
|
Kamaletdinova T, Zong W, Urbánek P, Wang S, Sannai M, Grigaravičius P, Sun W, Fanaei-Kahrani Z, Mangerich A, Hottiger MO, Li T, Wang ZQ. Poly(ADP-Ribose) Polymerase-1 Lacking Enzymatic Activity Is Not Compatible with Mouse Development. Cells 2023; 12:2078. [PMID: 37626888 PMCID: PMC10453916 DOI: 10.3390/cells12162078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP1) binds DNA lesions to catalyse poly(ADP-ribosyl)ation (PARylation) using NAD+ as a substrate. PARP1 plays multiple roles in cellular activities, including DNA repair, transcription, cell death, and chromatin remodelling. However, whether these functions are governed by the enzymatic activity or scaffolding function of PARP1 remains elusive. In this study, we inactivated in mice the enzymatic activity of PARP1 by truncating its C-terminus that is essential for ART catalysis (PARP1ΔC/ΔC, designated as PARP1-ΔC). The mutation caused embryonic lethality between embryonic day E8.5 and E13.5, in stark contrast to PARP1 complete knockout (PARP1-/-) mice, which are viable. Embryonic stem (ES) cell lines can be derived from PARP1ΔC/ΔC blastocysts, and these mutant ES cells can differentiate into all three germ layers, yet, with a high degree of cystic structures, indicating defects in epithelial cells. Intriguingly, PARP1-ΔC protein is expressed at very low levels compared to its full-length counterpart, suggesting a selective advantage for cell survival. Noticeably, PARP2 is particularly elevated and permanently present at the chromatin in PARP1-ΔC cells, indicating an engagement of PARP2 by non-enzymatic PARP1 protein at the chromatin. Surprisingly, the introduction of PARP1-ΔC mutation in adult mice did not impair their viability; yet, these mutant mice are hypersensitive to alkylating agents, similar to PARP1-/- mutant mice. Our study demonstrates that the catalytically inactive mutant of PARP1 causes the developmental block, plausibly involving PARP2 trapping.
Collapse
Affiliation(s)
- Tatiana Kamaletdinova
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany; (T.K.); (P.U.); (M.S.); (P.G.); (Z.F.-K.)
| | - Wen Zong
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (W.Z.); (S.W.); (W.S.); (T.L.)
| | - Pavel Urbánek
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany; (T.K.); (P.U.); (M.S.); (P.G.); (Z.F.-K.)
| | - Sijia Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (W.Z.); (S.W.); (W.S.); (T.L.)
| | - Mara Sannai
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany; (T.K.); (P.U.); (M.S.); (P.G.); (Z.F.-K.)
| | - Paulius Grigaravičius
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany; (T.K.); (P.U.); (M.S.); (P.G.); (Z.F.-K.)
| | - Wenli Sun
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (W.Z.); (S.W.); (W.S.); (T.L.)
| | - Zahra Fanaei-Kahrani
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany; (T.K.); (P.U.); (M.S.); (P.G.); (Z.F.-K.)
| | - Aswin Mangerich
- Molecular Toxicology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany;
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Michael O. Hottiger
- Department of Molecular Mechanisms of Disease, University of Zürich, 8057 Zürich, Switzerland;
| | - Tangliang Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (W.Z.); (S.W.); (W.S.); (T.L.)
| | - Zhao-Qi Wang
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany; (T.K.); (P.U.); (M.S.); (P.G.); (Z.F.-K.)
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (W.Z.); (S.W.); (W.S.); (T.L.)
- Faculty of Biological Sciences, Friedrich Schiller University of Jena, 07743 Jena, Germany
| |
Collapse
|
16
|
Irvin EM, Wang H. Single-molecule imaging of genome maintenance proteins encountering specific DNA sequences and structures. DNA Repair (Amst) 2023; 128:103528. [PMID: 37392578 PMCID: PMC10989508 DOI: 10.1016/j.dnarep.2023.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
DNA repair pathways are tightly regulated processes that recognize specific hallmarks of DNA damage and coordinate lesion repair through discrete mechanisms, all within the context of a three-dimensional chromatin landscape. Dysregulation or malfunction of any one of the protein constituents in these pathways can contribute to aging and a variety of diseases. While the collective action of these many proteins is what drives DNA repair on the organismal scale, it is the interactions between individual proteins and DNA that facilitate each step of these pathways. In much the same way that ensemble biochemical techniques have characterized the various steps of DNA repair pathways, single-molecule imaging (SMI) approaches zoom in further, characterizing the individual protein-DNA interactions that compose each pathway step. SMI techniques offer the high resolving power needed to characterize the molecular structure and functional dynamics of individual biological interactions on the nanoscale. In this review, we highlight how our lab has used SMI techniques - traditional atomic force microscopy (AFM) imaging in air, high-speed AFM (HS-AFM) in liquids, and the DNA tightrope assay - over the past decade to study protein-nucleic acid interactions involved in DNA repair, mitochondrial DNA replication, and telomere maintenance. We discuss how DNA substrates containing specific DNA sequences or structures that emulate DNA repair intermediates or telomeres were generated and validated. For each highlighted project, we discuss novel findings made possible by the spatial and temporal resolution offered by these SMI techniques and unique DNA substrates.
Collapse
Affiliation(s)
| | - Hong Wang
- Toxicology Program, North Carolina State University, Raleigh, NC, USA; Physics Department, North Carolina State University, Raleigh, NC, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
17
|
Gao F, Liu G, Qiao Y, Dong X, Liu L. Streptavidin-Conjugated DNA for the Boronate Affinity-Based Detection of Poly(ADP-Ribose) Polymerase-1 with Improved Sensitivity. BIOSENSORS 2023; 13:723. [PMID: 37504121 PMCID: PMC10377026 DOI: 10.3390/bios13070723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
This work reports the development of a fluorescence method for the detection of poly(ADP-ribose) polymerase-1 (PARP1), in which a phenylboronic acid-modified fluorescein isothiocyanate dye (FITC-PBA) was used to recognize the formed poly(ADP-ribose) (PAR) polymer. The detection system was designed by conjugating recombinant streptavidin (rSA) with PARP1-specific double-stranded DNA (dsDNA) through streptavidin-biotin interaction. Capture of PARP1 via rSA-biotin-dsDNA allowed for the poly-ADP-ribosylation (PARylation) of both rSA and PARP1 in a homogeneous solution. The resulting rSA-biotin-dsDNA/PAR conjugates were then captured and separated via the commercialized nitrilotriacetic acid-nickel ion-modified magnetic bead (MB-NTA-Ni) through the interaction between NTA-Ni on MB surface and oligohistidine (His6) tag in rSA. The PAR polymer could capture the dye of FITC-PBA through the borate ester interaction between the boronic acid moiety in PBA and the cis-diol group in ribose, thus causing a decrease in fluorescence signal. The PARylation of streptavidin and the influence of steric hindrance on PARylation efficiency were confirmed using reasonable detection strategies. The method showed a wide linear range (0.01~20 U) and a low detection limit (0.01 U). This work should be valuable for the development of novel biosensors for the detection of poly(ADP-ribose) polymerases and diol-containing species.
Collapse
Affiliation(s)
- Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yishu Qiao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xiuwen Dong
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
18
|
Gao F, Zhao R, Huang L, Yi X. Background-Quenched Aggregation-Induced Emission through Electrostatic Interactions for the Detection of Poly(ADP-ribose) Polymerase-1 Activity. Molecules 2023; 28:4759. [PMID: 37375313 DOI: 10.3390/molecules28124759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP1) is a potential biomarker and therapeutic target for cancers that can catalyze the poly-ADP-ribosylation of nicotinamide adenine dinucleotide (NAD+) onto the acceptor proteins to form long poly(ADP-ribose) (PAR) polymers. Through integration with aggregation-induced emission (AIE), a background-quenched strategy for the detection of PARP1 activity was designed. In the absence of PARP1, the background signal caused by the electrostatic interactions between quencher-labeled PARP1-specitic DNA and tetraphenylethene-substituted pyridinium salt (TPE-Py, a positively charged AIE fluorogen) was low due to the fluorescence resonance energy transfer effect. After poly-ADP-ribosylation, the TPE-Py fluorogens were recruited by the negatively charged PAR polymers to form larger aggregates through electrostatic interactions, thus enhancing the emission. The detection limit of this method for PARP1 detection was found to be 0.006 U with a linear range of 0.01~2 U. The strategy was used to evaluate the inhibition efficiency of inhibitors and the activity of PARP1 in breast cancer cells with satisfactory results, thus showing great potential for clinical diagnostic and therapeutic monitoring.
Collapse
Affiliation(s)
- Fengli Gao
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ruimin Zhao
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Liping Huang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
19
|
Löffler T, Krüger A, Zirak P, Winterhalder MJ, Müller AL, Fischbach A, Mangerich A, Zumbusch A. Influence of chain length and branching on poly(ADP-ribose)-protein interactions. Nucleic Acids Res 2023; 51:536-552. [PMID: 36625274 PMCID: PMC9881148 DOI: 10.1093/nar/gkac1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/16/2022] [Accepted: 12/10/2022] [Indexed: 01/11/2023] Open
Abstract
Hundreds of proteins interact with poly(ADP-ribose) (PAR) via multiple PAR interaction motifs, thereby regulating their physico-chemical properties, sub-cellular localizations, enzymatic activities, or protein stability. Here, we present a targeted approach based on fluorescence correlation spectroscopy (FCS) to characterize potential structure-specific interactions of PAR molecules of defined chain length and branching with three prime PAR-binding proteins, the tumor suppressor protein p53, histone H1, and the histone chaperone APLF. Our study reveals complex and structure-specific PAR-protein interactions. Quantitative Kd values were determined and binding affinities for all three proteins were shown to be in the nanomolar range. We report PAR chain length dependent binding of p53 and H1, yet chain length independent binding of APLF. For all three PAR binders, we found a preference for linear over hyperbranched PAR. Importantly, protein- and PAR-structure-specific binding modes were revealed. Thus, while the H1-PAR interaction occurred largely on a bi-molecular 1:1 basis, p53-and potentially also APLF-can form complex multivalent PAR-protein structures. In conclusion, our study gives detailed and quantitative insight into PAR-protein interactions in a solution-based setting at near physiological buffer conditions. The results support the notion of protein and PAR-structure-specific binding modes that have evolved to fit the purpose of the respective biochemical functions and biological contexts.
Collapse
Affiliation(s)
| | | | - Peyman Zirak
- Department of Chemistry, Universität Konstanz, Konstanz D-78457, Germany
| | | | - Anna-Lena Müller
- Department of Chemistry, Universität Konstanz, Konstanz D-78457, Germany
| | - Arthur Fischbach
- Department of Biology, Universität Konstanz, Konstanz D-78457, Germany
| | - Aswin Mangerich
- To whom correspondence should be addressed. Tel: +49 33200 88 5301;
| | - Andreas Zumbusch
- Correspondence may also be addressed to Andreas Zumbusch. Tel: +49 7531 882027;
| |
Collapse
|
20
|
Chen D, Chen N, Liu F, Wang Y, Liang H, Yang Y, Yuan Q. Flexible Point-of-Care Electrodes for Ultrasensitive Detection of Bladder Tumor-Relevant miRNA in Urine. Anal Chem 2023; 95:1847-1855. [PMID: 36607132 DOI: 10.1021/acs.analchem.2c03156] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Portable point-of-care testing (POCT) is currently drawing enormous attention owing to its great potential for disease diagnosis and personal health management. Electrochemical biosensors, with the intrinsic advantages of cost-effectiveness, fast response, ease of miniaturization, and integration, are considered as one of the most promising candidates for POCT application. However, the clinical application of electrochemical biosensors-based POCT is hindered by the decreased detection sensitivity due to the low abundance of disease-relevant biomolecules in extremely complex biological samples. Herein, we construct a flexible electrochemical biosensor based on single-stranded DNA functionalized single-walled carbon nanotubes (ssDNA-SWNTs) for high sensitivity and stability detection of miRNA-21 in human urine to achieve bladder cancer (BCa) diagnosis and classification. The ssDNA-SWNT electrodes with a 2D interconnected network structure exhibit a high electrical conductivity, thus enabling the ultrasensitive detection of miRNA-21 with a detection limit of 3.0 fM. Additionally, the intrinsic flexibility of ssDNA-SWNT electrodes endows the biosensors with the capability to achieve high stability detection of miRNA-21 even under large bending deformations. In a cohort of 40 BCa patients at stages I-III and 44 negative control samples, the constructed ssDNA-SWNT biosensors could detect BCa with a 92.5% sensitivity, an 88.6% specificity, and classify the cancer stages with an overall accuracy of 81.0%. Additionally, the flexible ssDNA-SWNT biosensors could also be utilized for treatment efficiency assessment and cancer recurrence monitoring. Owing to their excellent sensitivity and stability, the designed flexible ssDNA-SWNT biosensors in this work propose a strategy to realize point-of-care detection of complex clinical samples to achieve personalized healthcare.
Collapse
Affiliation(s)
- Duo Chen
- College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Na Chen
- College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Fangning Liu
- Urology Department, Union Hospital, Tongji Medical College of Huazhong Science and Technology University, Wuhan 430000, P. R. China
| | - Yiming Wang
- College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Huageng Liang
- Urology Department, Union Hospital, Tongji Medical College of Huazhong Science and Technology University, Wuhan 430000, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
21
|
Lu J, Wang M, Chen Y, Song H, Wen D, Tu J, Guo Y, Liu Z. NAMPT inhibition reduces macrophage inflammation through the NAD+/PARP1 pathway to attenuate liver ischemia-reperfusion injury. Chem Biol Interact 2023; 369:110294. [PMID: 36460127 DOI: 10.1016/j.cbi.2022.110294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Liver ischemia-reperfusion injury (IRI) is a major complication in the perioperative period and often leads to liver failure and even systemic inflammation. Previous studies have suggested that the inflammatory response participated in the liver damage during liver IRI. Nicotinamide phosphoribosyl transferase (NAMPT) is required for the maintenance of cellular nicotinamide adenine dinucleotide (NAD+) levels, catalyzing the rate-limiting step in the NAD + salvage pathway. NAMPT is strongly upregulated during inflammation and constitutes an important mechanistic link between inflammatory, metabolic, and transcriptional pathways. The aim of our study was to investigate the role of NAMPT in liver IRI. METHODS We investigated the effect of pharmacological inhibition of NAMPT with FK866 in models of liver IRI. Liver damage was assessed by HE staining, serum ALT/AST, and TUNEL staining. To examine the mechanism, primary hepatocytes, liver macrophages and RAW264.7 cells were treated with or without NAMPT inhibitors before hypoxia-reoxygenation. Liver macrophages and RAW 264.7 cells activation in vitro was evaluated by western blotting, flow cytometry, and ELISA. RESULT We found that NAMPT was upregulated in liver IRI. Treatment with the NAMPT inhibitor FK866 ameliorated liver IRI and suppressed inflammation in mice. Although NAMPT plays an important role both in hepatocytes and liver macrophages, we focused on the impact of NAMPT on liver macrophages. The mechanism revealed that FK866 potently inhibited NAMPT activity, as demonstrated by reduced liver NAD+ and intracellular NAD+, resulting in reduced abundance and activity of NAD + -dependent enzymes, including poly (ADP-ribose) polymerase 1 (PARP1), thus inhibiting macrophage M1 polarization by reducing CD86, iNOS, TNF-α, and interleukin (IL)-1β. Taken together, our data suggested that NAMPT can regulate macrophage polarization through NAD+/PARP1 to ameliorate liver injury, and that FK866-mediated NAMPT blockade may be a therapeutic approach in liver IRI.
Collapse
Affiliation(s)
- Jiao Lu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China
| | - Menghao Wang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China
| | - Yucheng Chen
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China
| | - Hua Song
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China
| | - Diguang Wen
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China
| | - Jianfei Tu
- The Center for Diagnostic and Treatment of Intervention, Lishui Central Hospital, Zhejiang, 323000, China
| | - Yuan Guo
- Infectious Disease Department of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China.
| | - Zuojin Liu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 40010, China.
| |
Collapse
|
22
|
Krishnan Muthaiah VP, Kaliyappan K, Mahajan SD. Poly ADP-Ribose Polymerase-1 inhibition by 3-aminobenzamide recuperates HEI-OC1 auditory hair cells from blast overpressure-induced cell death. Front Cell Dev Biol 2023; 11:1047308. [PMID: 36949771 PMCID: PMC10025353 DOI: 10.3389/fcell.2023.1047308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction: Poly ADP-Ribose Polymerase-1 (PARP1), a DNA repair enzyme is implicated as a key molecule in the pathogenesis of several neurodegenerative disorders. Traumatic insults inducing oxidative stress results in its over-activation causing inflammation and cell death (Parthanatos). As PARP1 inhibition is known to reduce oxidative stress, we hypothesized that PARP1 inhibition by a known inhibitor 3-aminobenzamide (3AB) might recuperate the damage in an in vitro model of blast injury using HEI-OC1 cells (mouse auditory hair cells). Methods: Here, we evaluated the protective effect of 3AB on HEI-OC1 cells following single and repetitive blast overpressures (BOPs). Results: We found that inhibition of PARP1 b 3AB inhibits the PARP1 enzyme and its action of a post-translational modification i.e. formation of Poly ADP-Ribose Polymers which leads to massive ATP depletion. PARP inhibition (3AB treatment) reduced the oxidative stress (4HNE, a marker of lipid peroxidation, and 8OHdG, a marker of oxidative DNA damage) in cells exposed to single/repetitive BOPS through up-regulation of Nrf2, a transcriptional regulator of antioxidant defense and the GCLC, a rate limiting enzyme in the synthesis of glutathione. Discussion: Overall, we found that PARP inhibition by 3AB helps to maintain the viability of BOP-exposed auditory hair cells by recuperating the ATP pool from both mitochondrial and glycolytic sources.
Collapse
Affiliation(s)
- Vijaya Prakash Krishnan Muthaiah
- Department of Rehabilitation Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
- *Correspondence: Vijaya Prakash Krishnan Muthaiah,
| | - Kathiravan Kaliyappan
- Department of Rehabilitation Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, State University of New York at Buffalo, Clinical Translational Research Center, Buffalo, NY, United States
| |
Collapse
|
23
|
The Role of PARP1 and PAR in ATP-Independent Nucleosome Reorganisation during the DNA Damage Response. Genes (Basel) 2022; 14:genes14010112. [PMID: 36672853 PMCID: PMC9859207 DOI: 10.3390/genes14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The functioning of the eukaryotic cell genome is mediated by sophisticated protein-nucleic-acid complexes, whose minimal structural unit is the nucleosome. After the damage to genomic DNA, repair proteins need to gain access directly to the lesion; therefore, the initiation of the DNA damage response inevitably leads to local chromatin reorganisation. This review focuses on the possible involvement of PARP1, as well as proteins acting nucleosome compaction, linker histone H1 and non-histone chromatin protein HMGB1. The polymer of ADP-ribose is considered the main regulator during the development of the DNA damage response and in the course of assembly of the correct repair complex.
Collapse
|
24
|
Alali AS, Kalam MA, Ahmed MM, Aboudzadeh MA, Alhudaithi SS, Anwer MK, Fatima F, Iqbal M. Nanocrystallization Improves the Solubilization and Cytotoxic Effect of a Poly (ADP-Ribose)-Polymerase-I Inhibitor. Polymers (Basel) 2022; 14:polym14224827. [PMID: 36432955 PMCID: PMC9696361 DOI: 10.3390/polym14224827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Olaparib (OLA) is an anticancer agent that acts by inhibiting the poly (ADP-ribose)-polymerase-I (PARP-I). Due to its low solubility and low permeability, it has been placed as a BCS Class-IV drug and hence its clinical use is limited. In this study, we develop the nanocrystals of OLA as a way to improve its solubility and other performances. The OLA-NCs were prepared by antisolvent precipitation method through homogenization and probe sonication technique using a novel amphiphilic polymeric stabilizer (Soluplus®). Particle characterization resulted approximately 103.13 nm, polydispersity-index was 0.104 with positive zeta-potential of +8.67 mV. The crystal morphology by SEM of OLA-NCs (with and without mannitol) exhibited nano-crystalline prism-like structures as compared to the elongated OLA-pure. The DSC, XRD and FTIR were performed to check the interaction of Soluplus, mannitol and OLA did not exhibit any physical interaction among the OLA, Soluplus® and mannitol that is indicated by the presence of parent wave number peak. Two-fold increased solubility of OLA was found in PBS with Soluplus® from the NCs (69.3 ± 6.2 µgmL−1) as compared to pure drug (35.6 ± 7.2 µgmL−1). In vitro release of drug from OLA-NCs was higher (78.2%) at 12 h at pH 6.8 and relatively lower (53.1%) at pH 1.2. In vitro cellular cytotoxicity and anticancer effects were examined on MCF-7 cells. OLA-NCs were found effectively potent to MCF-7 cells compared with OLA-pure with approximately less than half IC50 value during MTT assay. Estimation of p53, Caspase-3 and Caspase-9 in MCF-7 cells indicated that OLA-NCs have significantly (p < 0.05) increased their expressions. After single oral dose in rats, 12 h plasma drug concentration-time profile indicated approximately 2.06-, 2.29-, 2−25- and 2.62-folds increased Cmax, AUC0-12 h, AUC0-∞ and AUMC0-∞, respectively, from the NCs as compared to OLA-pure. Storage stability indicated that the OLA-NCs was physically and chemically stable at 4 °C, 25 °C and 40 °C up to 6-months. Overall, OLA-NCs were deliberated; its potential feasibility to overwhelm the formulation challenges related to poorly soluble drugs and its future clinical applications.
Collapse
Affiliation(s)
- Amer S. Alali
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd Abul Kalam
- Nanobiotechnogy Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence:
| | - M. Ali Aboudzadeh
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, University Pau & Pays Adour, E2S UPPA, IPREM, UMR5254, 64000 Pau, France
| | - Sulaiman S. Alhudaithi
- Nanobiotechnogy Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
PARP Inhibitors: Clinical Limitations and Recent Attempts to Overcome Them. Int J Mol Sci 2022; 23:ijms23158412. [PMID: 35955544 PMCID: PMC9369301 DOI: 10.3390/ijms23158412] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
PARP inhibitors are the first clinically approved drugs that were developed based on synthetic lethality. PARP inhibitors have shown promising outcomes since their clinical applications and have recently been approved as maintenance treatment for cancer patients with BRCA mutations. PARP inhibitors also exhibit positive results even in patients without homologous recombination (HR) deficiency. Therapeutic effects were successfully achieved; however, the development of resistance was unavoidable. Approximately 40–70% of patients are likely to develop resistance. Here, we describe the mechanisms of action of PARP inhibitors, the causes of resistance, and the various efforts to overcome resistance. Particularly, we determined the survival probability of cancer patients according to the expression patterns of genes associated with HR restoration, which are critical for the development of PARP inhibitor resistance. Furthermore, we discuss the innovative attempts to degrade PARP proteins by chemically modifying PARP inhibitors. These efforts would enhance the efficacy of PARP inhibitors or expand the scope of their usage.
Collapse
|
26
|
Leng X, Duxin JP. Targeting DNA-Protein Crosslinks via Post-Translational Modifications. Front Mol Biosci 2022; 9:944775. [PMID: 35860355 PMCID: PMC9289515 DOI: 10.3389/fmolb.2022.944775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Covalent binding of proteins to DNA forms DNA-protein crosslinks (DPCs), which represent cytotoxic DNA lesions that interfere with essential processes such as DNA replication and transcription. Cells possess different enzymatic activities to counteract DPCs. These include enzymes that degrade the adducted proteins, resolve the crosslinks, or incise the DNA to remove the crosslinked proteins. An important question is how DPCs are sensed and targeted for removal via the most suited pathway. Recent advances have shown the inherent role of DNA replication in triggering DPC removal by proteolysis. However, DPCs are also efficiently sensed and removed in the absence of DNA replication. In either scenario, post-translational modifications (PTMs) on DPCs play essential and versatile roles in orchestrating the repair routes. In this review, we summarize the current knowledge of the mechanisms that trigger DPC removal via PTMs, focusing on ubiquitylation, small ubiquitin-related modifier (SUMO) conjugation (SUMOylation), and poly (ADP-ribosyl)ation (PARylation). We also briefly discuss the current knowledge gaps and emerging hypotheses in the field.
Collapse
|
27
|
Ołdak Ł, Zielińska Z, Gorodkiewicz E. Methods of PARP-1 Determination and its Importance in Living
Organisms. Protein Pept Lett 2022; 29:496-504. [DOI: 10.2174/0929866529666220405160715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
PARP-1 is one of the 18 PARP enzymes that are involved in important processes at the
cellular level. The most important tasks of PARP-1 are to detect and repair DNA damage and to
prevent processes of apoptosis. By finding and using new strategies for marking and detecting the
activity of this protein, it is possible to identify more and more tasks in which it participates. In
pathological states, PARP-1 activity increases significantly. Since the 1980s, scientists have been
searching for and discussing substances that may inhibit PARP-1 activity and disrupt DNA damage
response pathways. In this way, unwanted cells could be destroyed. The paper presents a short
description of the methods used in the determination of PARP-1 by various research groups. A
critical approach to each of them was also made by pointing to the advantages and disadvantages of
the described analytical methods. The literature review contains information on methods useful for
PARP-1 determination, such as SPR, QCM, CL and FL, DPV, SDS-PAGE with MS, MALDI MS,
Western Blot, ELISA and ATR-FTIR spectroscopy. It also includes analysis of the results of
research on inhibitors that may be effective in the diagnosis and treatment of cancer and other
diseases.
Collapse
Affiliation(s)
- Łukasz Ołdak
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland
- Doctoral School of Exact and Natural Science, Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Zuzanna Zielińska
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland
| |
Collapse
|
28
|
Ruszkiewicz JA, Bürkle A, Mangerich A. Fueling genome maintenance: On the versatile roles of NAD + in preserving DNA integrity. J Biol Chem 2022; 298:102037. [PMID: 35595095 PMCID: PMC9194868 DOI: 10.1016/j.jbc.2022.102037] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
NAD+ is a versatile biomolecule acting as a master regulator and substrate in various cellular processes, including redox regulation, metabolism, and various signaling pathways. In this article, we concisely and critically review the role of NAD+ in mechanisms promoting genome maintenance. Numerous NAD+-dependent reactions are involved in the preservation of genome stability, the cellular DNA damage response, and other pathways regulating nucleic acid metabolism, such as gene expression and cell proliferation pathways. Of note, NAD+ serves as a substrate to ADP-ribosyltransferases, sirtuins, and potentially also eukaryotic DNA ligases, all of which regulate various aspects of DNA integrity, damage repair, and gene expression. Finally, we critically analyze recent developments in the field as well as discuss challenges associated with therapeutic actions intended to raise NAD+ levels.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
29
|
Giansanti C, Manzini V, Dickmanns A, Dickmanns A, Palumbieri MD, Sanchi A, Kienle SM, Rieth S, Scheffner M, Lopes M, Dobbelstein M. MDM2 binds and ubiquitinates PARP1 to enhance DNA replication fork progression. Cell Rep 2022; 39:110879. [PMID: 35649362 DOI: 10.1016/j.celrep.2022.110879] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022] Open
Abstract
The MDM2 oncoprotein antagonizes the tumor suppressor p53 by physical interaction and ubiquitination. However, it also sustains the progression of DNA replication forks, even in the absence of functional p53. Here, we show that MDM2 binds, inhibits, ubiquitinates, and destabilizes poly(ADP-ribose) polymerase 1 (PARP1). When cellular MDM2 levels are increased, this leads to accelerated progression of DNA replication forks, much like pharmacological inhibition of PARP1. Conversely, overexpressed PARP1 restores normal fork progression despite elevated MDM2. Strikingly, MDM2 profoundly reduces the frequency of fork reversal, revealed as four-way junctions through electron microscopy. Depletion of RECQ1 or the primase/polymerase (PRIMPOL) reverses the MDM2-mediated acceleration of the nascent DNA elongation rate. MDM2 also increases the occurrence of micronuclei, and it exacerbates camptothecin-induced cell death. In conclusion, high MDM2 levels phenocopy PARP inhibition in modulation of fork restart, representing a potential vulnerability of cancer cells.
Collapse
Affiliation(s)
- Celeste Giansanti
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Valentina Manzini
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Antje Dickmanns
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute of Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Maria Dilia Palumbieri
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andrea Sanchi
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | - Sonja Rieth
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Martin Scheffner
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
30
|
King M, Avaro JT, Peter C, Hauser K, Gebauer D. Solvent-mediated isotope effects strongly influence the early stages of calcium carbonate formation: exploring D 2O vs. H 2O in a combined computational and experimental approach. Faraday Discuss 2022; 235:36-55. [PMID: 35388817 DOI: 10.1039/d1fd00078k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In experimental studies, heavy water (D2O) is employed, e.g., so as to shift the spectroscopic solvent background, but any potential effects of this solvent exchange on reaction pathways are often neglected. While the important role of light water (H2O) during the early stages of calcium carbonate formation has been realized, studies into the actual effects of aqueous solvent exchanges are scarce. Here, we present a combined computational and experimental approach to start to fill this gap. We extended a suitable force field for molecular dynamics (MD) simulations. Experimentally, we utilised advanced titration assays and time-resolved attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. We find distinct effects in various mixtures of the two aqueous solvents, and in pure H2O or D2O. Disagreements between the computational results and experimental data regarding the stabilities of ion associates might be due to the unexplored role of HDO, or an unprobed complex phase behaviour of the solvent mixtures in the simulations. Altogether, however, our data suggest that calcium carbonate formation might proceed "more classically" in D2O. Also, there are indications for the formation of new structures in amorphous and crystalline calcium carbonates. There is huge potential towards further improving the understanding of mineralization mechanisms by studying solvent-mediated isotope effects, also beyond calcium carbonate. Last, it must be appreciated that H2O and D2O have significant, distinct effects on mineralization mechanisms, and that care has to be taken when experimental data from D2O studies are used, e.g., for the development of H2O-based computer models.
Collapse
Affiliation(s)
- Michael King
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Jonathan T Avaro
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany.,Empa, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Christine Peter
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University of Hannover, Callinstr. 9, 30167 Hannover, Germany.
| |
Collapse
|
31
|
Rudolph J, Jung K, Luger K. Inhibitors of PARP: Number crunching and structure gazing. Proc Natl Acad Sci U S A 2022; 119:e2121979119. [PMID: 35259019 PMCID: PMC8931346 DOI: 10.1073/pnas.2121979119] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
SignificancePARP is an important target in the treatment of cancers, particularly in patients with breast, ovarian, or prostate cancer that have compromised homologous recombination repair (i.e., BRCA-/-). This review about inhibitors of PARP (PARPi) is for readers interested in the development of next-generation drugs for the treatment of cancer, providing insights into structure-activity relationships, in vitro vs. in vivo potency, PARP trapping, and synthetic lethality.
Collapse
Affiliation(s)
- Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Karen Jung
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
- HHMI, University of Colorado Boulder, Boulder, CO 80309
| |
Collapse
|
32
|
Kieffer SR, Lowndes NF. Immediate-Early, Early, and Late Responses to DNA Double Stranded Breaks. Front Genet 2022; 13:793884. [PMID: 35173769 PMCID: PMC8841529 DOI: 10.3389/fgene.2022.793884] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
Loss or rearrangement of genetic information can result from incorrect responses to DNA double strand breaks (DSBs). The cellular responses to DSBs encompass a range of highly coordinated events designed to detect and respond appropriately to the damage, thereby preserving genomic integrity. In analogy with events occurring during viral infection, we appropriate the terms Immediate-Early, Early, and Late to describe the pre-repair responses to DSBs. A distinguishing feature of the Immediate-Early response is that the large protein condensates that form during the Early and Late response and are resolved upon repair, termed foci, are not visible. The Immediate-Early response encompasses initial lesion sensing, involving poly (ADP-ribose) polymerases (PARPs), KU70/80, and MRN, as well as rapid repair by so-called ‘fast-kinetic’ canonical non-homologous end joining (cNHEJ). Initial binding of PARPs and the KU70/80 complex to breaks appears to be mutually exclusive at easily ligatable DSBs that are repaired efficiently by fast-kinetic cNHEJ; a process that is PARP-, ATM-, 53BP1-, Artemis-, and resection-independent. However, at more complex breaks requiring processing, the Immediate-Early response involving PARPs and the ensuing highly dynamic PARylation (polyADP ribosylation) of many substrates may aid recruitment of both KU70/80 and MRN to DSBs. Complex DSBs rely upon the Early response, largely defined by ATM-dependent focal recruitment of many signalling molecules into large condensates, and regulated by complex chromatin dynamics. Finally, the Late response integrates information from cell cycle phase, chromatin context, and type of DSB to determine appropriate pathway choice. Critical to pathway choice is the recruitment of p53 binding protein 1 (53BP1) and breast cancer associated 1 (BRCA1). However, additional factors recruited throughout the DSB response also impact upon pathway choice, although these remain to be fully characterised. The Late response somehow channels DSBs into the appropriate high-fidelity repair pathway, typically either ‘slow-kinetic’ cNHEJ or homologous recombination (HR). Loss of specific components of the DSB repair machinery results in cells utilising remaining factors to effect repair, but often at the cost of increased mutagenesis. Here we discuss the complex regulation of the Immediate-Early, Early, and Late responses to DSBs proceeding repair itself.
Collapse
|
33
|
Kumar V, Kumar A, Mir KUI, Yadav V, Chauhan SS. Pleiotropic role of PARP1: an overview. 3 Biotech 2022; 12:3. [PMID: 34926116 PMCID: PMC8643375 DOI: 10.1007/s13205-021-03038-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) protein is encoded by the PARP1 gene located on chromosome 1 (1q42.12) in human cells. It plays a crucial role in post-translational modification by adding poly (ADP-ribose) (PAR) groups to various proteins and PARP1 itself by utilizing nicotinamide adenine dinucleotide (NAD +) as a substrate. Since the discovery of PARP1, its role in DNA repair and cell death has been its identity. This is evident from an overwhelmingly high number of scientific reports in this regard. However, PARP1 also plays critical roles in inflammation, metabolism, tumor development and progression, chromatin modification and transcription, mRNA stability, and alternative splicing. In the present study, we attempted to compile all the scattered scientific information about this molecule, including the structure and multifunctional role of PARP1 in cancer and non-cancer diseases, along with PARP1 inhibitors (PARPis). Furthermore, for the first time, we have classified PARP1-mediated cell death for ease of understanding its role in cell death pathways.
Collapse
Affiliation(s)
- Vikas Kumar
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Anurag Kumar
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Khursheed Ul Islam Mir
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Yadav
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam Singh Chauhan
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
34
|
Yang X, Ou Q, Yang W, Shi Y, Liu G. Diagnosis of liver cancer by FTIR spectra of serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120181. [PMID: 34311164 DOI: 10.1016/j.saa.2021.120181] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Liver cancer is the most common fatal malignant tumor in the world. Early diagnosis of liver cancer can improve the survival rate of the patients with liver disease. In this paper, Fourier transform infrared (FTIR) spectroscopy combined with curve fitting and chemometrics was used to distinguish the serum from patients from that of healthy people. The curve fitting results in protein range of 1700-1600 cm-1 showed that there were differences in the secondary structure of protein in serum between the patients with liver cancer and healthy people. Principal component analysis (PCA) in lipid range of 2900-2800 cm-1 could distinguish the serum of patients with liver cancer from that of healthy people. The first two principal components PC1 and PC2 explained 95% of the total data variance. The sensitivity and specificity of partial least squares discriminant analysis (PLS-DA) in lipid range of 2900-2800 cm-1 reached 92.85% and 95.23% respectively. It is shown that FTIR spectroscopy might be developed as an effective method for the diagnosis of liver cancer.
Collapse
Affiliation(s)
- Xien Yang
- School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China
| | - Quanhong Ou
- School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China
| | - Weiye Yang
- School of Preclinical Medicine, Zunyi Medical University, Zunyi 563003, China
| | - Youming Shi
- School of Physics and Electronic Engineering, Qujing Normal University, Qujing 655011, China
| | - Gang Liu
- School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
35
|
Richartz N, Pietka W, Gilljam KM, Skah S, Skålhegg BS, Bhagwat S, Naderi EH, Ruud E, Blomhoff HK. cAMP-Mediated Autophagy Promotes Cell Survival via ROS-Induced Activation of PARP1: Implications for Treatment of Acute Lymphoblastic Leukemia. Mol Cancer Res 2021; 20:400-411. [PMID: 34880123 DOI: 10.1158/1541-7786.mcr-21-0652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/24/2021] [Accepted: 11/23/2021] [Indexed: 12/09/2022]
Abstract
DNA-damaging therapy is the basis for treatment of most cancers, including B-cell precursor acute lymphoblastic leukemia (BCP-ALL, hereafter ALL). We have previously shown that cAMP-activating factors present in the bone marrow render ALL cells less sensitive to DNA damage-induced apoptosis, by enhancing autophagy and suppressing p53. To sensitize ALL cells to DNA-damaging therapy, we have searched for novel targets that may counteract the effects induced by cAMP signaling. In the current study, we have identified PARP1 as a potential target. We show that the PARP1 inhibitors olaparib or PJ34 inhibit cAMP-mediated autophagy and thereby potentiate the DNA-damaging treatment. Furthermore, we reveal that cAMP-mediated PARP1 activation is preceded by induction of reactive oxygen species (ROS) and results in depletion of nicotinamide adenine dinucleotide (NAD), both of which are autophagy-promoting events. Accordingly, we demonstrate that scavenging ROS by N-acetylcysteine and repleting NAD independently reduce DNA damage-induced autophagy. In addition, olaparib augmented the effect of DNA-damaging treatment in a human xenograft model of ALL in NOD-scidIL2Rgammanull mice. On the basis of the current findings, we suggest that PARP1 inhibitors may enhance the efficiency of conventional genotoxic therapies and thereby provide a novel treatment strategy for pediatric patients with ALL. IMPLICATIONS: PARP1 inhibitors augment the DNA damage-induced killing of ALL cells by limiting the opposing effects of cAMP-mediated autophagy, which involves ROS-induced PARP1 activation and depletion of cellular NAD levels.
Collapse
Affiliation(s)
- Nina Richartz
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Wojciech Pietka
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Karin M Gilljam
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Seham Skah
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bjørn S Skålhegg
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sampada Bhagwat
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Elin Hallan Naderi
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Oncology, Section of Head and Neck Oncology, Oslo University Hospital, Oslo, Norway
| | - Ellen Ruud
- Department of Hematology and Oncology, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Heidi Kiil Blomhoff
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
36
|
Palazzo L, Suskiewicz MJ, Ahel I. Serine ADP-ribosylation in DNA-damage response regulation. Curr Opin Genet Dev 2021; 71:106-113. [PMID: 34340015 DOI: 10.1016/j.gde.2021.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022]
Abstract
PARP1 and PARP2 govern the DNA-damage response by catalysing the reversible post-translational modification ADP-ribosylation. During the repair of DNA lesions, PARP1 and PARP2 combine with an accessory factor HPF1, which is required for the modification of target proteins on serine residues. Although the physiological role of individual ADP-ribosylation sites is still unclear, serine ADP-ribosylation at damage sites leads to the recruitment of chromatin remodellers and repair factors to ensure efficient DNA repair. ADP-ribosylation signalling is tightly controlled by the coordinated activities of (ADP-ribosyl)glycohydrolases PARG and ARH3 that, by reversing the modification, guarantee proper kinetics of DNA repair and cell cycle re-entry. The recent advances in the structural and mechanistic understanding of ADP-ribosylation provide new insights into human physiopathology and cancer therapy.
Collapse
Affiliation(s)
- Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, Via Tommaso de Amicis 95, 80145 Naples, Italy
| | - Marcin J Suskiewicz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
37
|
Infrared-spectroscopic, dynamic near-field microscopy of living cells and nanoparticles in water. Sci Rep 2021; 11:21860. [PMID: 34750511 PMCID: PMC8576021 DOI: 10.1038/s41598-021-01425-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Infrared fingerprint spectra can reveal the chemical nature of materials down to 20-nm detail, far below the diffraction limit, when probed by scattering-type scanning near-field optical microscopy (s-SNOM). But this was impossible with living cells or aqueous processes as in corrosion, due to water-related absorption and tip contamination. Here, we demonstrate infrared s-SNOM of water-suspended objects by probing them through a 10-nm thick SiN membrane. This separator stretches freely over up to 250 µm, providing an upper, stable surface to the scanning tip, while its lower surface is in contact with the liquid and localises adhering objects. We present its proof-of-principle applicability in biology by observing simply drop-casted, living E. coli in nutrient medium, as well as living A549 cancer cells, as they divide, move and develop rich sub-cellular morphology and adhesion patterns, at 150 nm resolution. Their infrared spectra reveal the local abundances of water, proteins, and lipids within a depth of ca. 100 nm below the SiN membrane, as we verify by analysing well-defined, suspended polymer spheres and through model calculations. SiN-membrane based s-SNOM thus establishes a novel tool of live cell nano-imaging that returns structure, dynamics and chemical composition. This method should benefit the nanoscale analysis of any aqueous system, from physics to medicine.
Collapse
|
38
|
Stock AJ, Liu Y. NAD-Linked Metabolism and Intervention in Short Telomere Syndromes and Murine Models of Telomere Dysfunction. FRONTIERS IN AGING 2021; 2:785171. [PMID: 35822010 PMCID: PMC9261345 DOI: 10.3389/fragi.2021.785171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022]
Abstract
Telomeres are specialized nucleoprotein structures that form protective caps at the ends of chromosomes. Short telomeres are a hallmark of aging and a principal defining feature of short telomere syndromes, including dyskeratosis congenita (DC). Emerging evidence suggests a crucial role for critically short telomere-induced DNA damage signaling and mitochondrial dysfunction in cellular dysfunction in DC. A prominent factor linking nuclear DNA damage and mitochondrial homeostasis is the nicotinamide adenine dinucleotide (NAD) metabolite. Recent studies have demonstrated that patients with DC and murine models with critically short telomeres exhibit lower NAD levels, and an imbalance in the NAD metabolome, including elevated CD38 NADase and reduced poly (ADP-ribose) polymerase and SIRT1 activities. CD38 inhibition and/or supplementation with NAD precursors reequilibrate imbalanced NAD metabolism and alleviate mitochondrial impairment, telomere DNA damage, telomere dysfunction-induced DNA damage signaling, and cellular growth retardation in primary fibroblasts derived from DC patients. Boosting NAD levels also ameliorate chemical-induced liver fibrosis in murine models of telomere dysfunction. These findings underscore the relevance of NAD dysregulation to telomeropathies and demonstrate how NAD interventions may prove to be effective in combating cellular and organismal defects that occur in short telomere syndromes.
Collapse
|
39
|
Reber JM, Mangerich A. Why structure and chain length matter: on the biological significance underlying the structural heterogeneity of poly(ADP-ribose). Nucleic Acids Res 2021; 49:8432-8448. [PMID: 34302489 PMCID: PMC8421145 DOI: 10.1093/nar/gkab618] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a multifaceted post-translational modification, carried out by poly(ADP-ribosyl)transferases (poly-ARTs, PARPs), which play essential roles in (patho-) physiology, as well as cancer therapy. Using NAD+ as a substrate, acceptors, such as proteins and nucleic acids, can be modified with either single ADP-ribose units or polymers, varying considerably in length and branching. Recently, the importance of PAR structural heterogeneity with regards to chain length and branching came into focus. Here, we provide a concise overview on the current knowledge of the biochemical and physiological significance of such differently structured PAR. There is increasing evidence revealing that PAR's structural diversity influences the binding characteristics of its readers, PAR catabolism, and the dynamics of biomolecular condensates. Thereby, it shapes various cellular processes, such as DNA damage response and cell cycle regulation. Contrary to the knowledge on the consequences of PAR's structural diversity, insight into its determinants is just emerging, pointing to specific roles of different PARP members and accessory factors. In the future, it will be interesting to study the interplay with other post-translational modifications, the contribution of natural PARP variants, and the regulatory role of accessory molecules. This has the exciting potential for new therapeutic approaches, with the targeted modulation and tuning of PARPs' enzymatic functions, rather than their complete inhibition, as a central premise.
Collapse
Affiliation(s)
- Julia M Reber
- Department of Biology, University of Konstanz, 78467 Konstanz, Germany
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, 78467 Konstanz, Germany
| |
Collapse
|
40
|
Prokhorova E, Zobel F, Smith R, Zentout S, Gibbs-Seymour I, Schützenhofer K, Peters A, Groslambert J, Zorzini V, Agnew T, Brognard J, Nielsen ML, Ahel D, Huet S, Suskiewicz MJ, Ahel I. Serine-linked PARP1 auto-modification controls PARP inhibitor response. Nat Commun 2021; 12:4055. [PMID: 34210965 PMCID: PMC8249464 DOI: 10.1038/s41467-021-24361-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 06/17/2021] [Indexed: 12/28/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) and PARP2 are recruited and activated by DNA damage, resulting in ADP-ribosylation at numerous sites, both within PARP1 itself and in other proteins. Several PARP1 and PARP2 inhibitors are currently employed in the clinic or undergoing trials for treatment of various cancers. These drugs act primarily by trapping PARP1 on damaged chromatin, which can lead to cell death, especially in cells with DNA repair defects. Although PARP1 trapping is thought to be caused primarily by the catalytic inhibition of PARP-dependent modification, implying that ADP-ribosylation (ADPr) can counteract trapping, it is not known which exact sites are important for this process. Following recent findings that PARP1- or PARP2-mediated modification is predominantly serine-linked, we demonstrate here that serine ADPr plays a vital role in cellular responses to PARP1/PARP2 inhibitors. Specifically, we identify three serine residues within PARP1 (499, 507, and 519) as key sites whose efficient HPF1-dependent modification counters PARP1 trapping and contributes to inhibitor tolerance. Our data implicate genes that encode serine-specific ADPr regulators, HPF1 and ARH3, as potential PARP1/PARP2 inhibitor therapy biomarkers.
Collapse
Affiliation(s)
| | - Florian Zobel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Rebecca Smith
- Univ Rennes, CNRS, Structure Fédérative de Recherche Biosit, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Rennes, France
| | - Siham Zentout
- Univ Rennes, CNRS, Structure Fédérative de Recherche Biosit, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Rennes, France
| | - Ian Gibbs-Seymour
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Alessandra Peters
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Valentina Zorzini
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Thomas Agnew
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - John Brognard
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Sébastien Huet
- Univ Rennes, CNRS, Structure Fédérative de Recherche Biosit, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Rennes, France
- Institut Universitaire de France, Paris, France
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
41
|
Fijen C, Rothenberg E. The evolving complexity of DNA damage foci: RNA, condensates and chromatin in DNA double-strand break repair. DNA Repair (Amst) 2021; 105:103170. [PMID: 34256335 DOI: 10.1016/j.dnarep.2021.103170] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Formation of biomolecular condensates is increasingly recognized as a mechanism employed by cells to deal with stress and to optimize enzymatic reactions. Recent studies have characterized several DNA repair foci as phase-separated condensates, behaving like liquid droplets. Concomitantly, the apparent importance of long non-coding RNAs and RNA-binding proteins for the repair of double-strand breaks has raised many questions about their exact contribution to the repair process. Here we discuss how RNA molecules can participate in condensate formation and how RNA-binding proteins can act as molecular scaffolds. We furthermore summarize our current knowledge about how properties of condensates can influence the choice of repair pathway (homologous recombination or non-homologous end joining) and identify the open questions in this field of emerging importance.
Collapse
Affiliation(s)
- Carel Fijen
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, USA.
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, USA.
| |
Collapse
|
42
|
van Beek L, McClay É, Patel S, Schimpl M, Spagnolo L, Maia de Oliveira T. PARP Power: A Structural Perspective on PARP1, PARP2, and PARP3 in DNA Damage Repair and Nucleosome Remodelling. Int J Mol Sci 2021; 22:ijms22105112. [PMID: 34066057 PMCID: PMC8150716 DOI: 10.3390/ijms22105112] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/30/2022] Open
Abstract
Poly (ADP-ribose) polymerases (PARP) 1-3 are well-known multi-domain enzymes, catalysing the covalent modification of proteins, DNA, and themselves. They attach mono- or poly-ADP-ribose to targets using NAD+ as a substrate. Poly-ADP-ribosylation (PARylation) is central to the important functions of PARP enzymes in the DNA damage response and nucleosome remodelling. Activation of PARP happens through DNA binding via zinc fingers and/or the WGR domain. Modulation of their activity using PARP inhibitors occupying the NAD+ binding site has proven successful in cancer therapies. For decades, studies set out to elucidate their full-length molecular structure and activation mechanism. In the last five years, significant advances have progressed the structural and functional understanding of PARP1-3, such as understanding allosteric activation via inter-domain contacts, how PARP senses damaged DNA in the crowded nucleus, and the complementary role of histone PARylation factor 1 in modulating the active site of PARP. Here, we review these advances together with the versatility of PARP domains involved in DNA binding, the targets and shape of PARylation and the role of PARPs in nucleosome remodelling.
Collapse
Affiliation(s)
- Lotte van Beek
- Structure and Biophysics, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (L.v.B.); (M.S.)
| | - Éilís McClay
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1QQ, UK;
| | - Saleha Patel
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK;
| | - Marianne Schimpl
- Structure and Biophysics, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (L.v.B.); (M.S.)
| | - Laura Spagnolo
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1QQ, UK;
- Correspondence: (L.S.); (T.M.d.O.)
| | - Taiana Maia de Oliveira
- Structure and Biophysics, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (L.v.B.); (M.S.)
- Correspondence: (L.S.); (T.M.d.O.)
| |
Collapse
|
43
|
Role of PGC-1α in the Mitochondrial NAD + Pool in Metabolic Diseases. Int J Mol Sci 2021; 22:ijms22094558. [PMID: 33925372 PMCID: PMC8123861 DOI: 10.3390/ijms22094558] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play vital roles, including ATP generation, regulation of cellular metabolism, and cell survival. Mitochondria contain the majority of cellular nicotinamide adenine dinucleotide (NAD+), which an essential cofactor that regulates metabolic function. A decrease in both mitochondria biogenesis and NAD+ is a characteristic of metabolic diseases, and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) orchestrates mitochondrial biogenesis and is involved in mitochondrial NAD+ pool. Here we discuss how PGC-1α is involved in the NAD+ synthesis pathway and metabolism, as well as the strategy for increasing the NAD+ pool in the metabolic disease state.
Collapse
|
44
|
Kutuzov MM, Belousova EA, Kurgina TA, Ukraintsev AA, Vasil’eva IA, Khodyreva SN, Lavrik OI. The contribution of PARP1, PARP2 and poly(ADP-ribosyl)ation to base excision repair in the nucleosomal context. Sci Rep 2021; 11:4849. [PMID: 33649352 PMCID: PMC7921663 DOI: 10.1038/s41598-021-84351-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
The regulation of repair processes including base excision repair (BER) in the presence of DNA damage is implemented by a cellular signal: poly(ADP-ribosyl)ation (PARylation), which is catalysed by PARP1 and PARP2. Despite ample studies, it is far from clear how BER is regulated by PARPs and how the roles are distributed between the PARPs. Here, we investigated the effects of PARP1, PARP2 and PARylation on activities of the main BER enzymes (APE1, DNA polymerase β [Polβ] and DNA ligase IIIα [LigIIIα]) in combination with BER scaffold protein XRCC1 in the nucleosomal context. We constructed nucleosome core particles with midward- or outward-oriented damage. It was concluded that in most cases, the presence of PARP1 leads to the suppression of the activities of APE1, Polβ and to a lesser extent LigIIIα. PARylation by PARP1 attenuated this effect to various degrees depending on the enzyme. PARP2 had an influence predominantly on the last stage of BER: DNA sealing. Nonetheless, PARylation by PARP2 led to Polβ inhibition and to significant stimulation of LigIIIα activities in a NAD+-dependent manner. On the basis of the obtained and literature data, we suggest a hypothetical model of the contribution of PARP1 and PARP2 to BER.
Collapse
Affiliation(s)
- M. M. Kutuzov
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - E. A. Belousova
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - T. A. Kurgina
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia ,grid.4605.70000000121896553Novosibirsk State University, Novosibirsk, Russia
| | - A. A. Ukraintsev
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - I. A. Vasil’eva
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - S. N. Khodyreva
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - O. I. Lavrik
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia ,grid.4605.70000000121896553Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
45
|
Edwards AD, Marecki JC, Byrd AK, Gao J, Raney K. G-Quadruplex loops regulate PARP-1 enzymatic activation. Nucleic Acids Res 2021; 49:416-431. [PMID: 33313902 PMCID: PMC7797039 DOI: 10.1093/nar/gkaa1172] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/31/2022] Open
Abstract
G-Quadruplexes are non-B form DNA structures present at regulatory regions in the genome, such as promoters of proto-oncogenes and telomeres. The prominence in such sites suggests G-quadruplexes serve an important regulatory role in the cell. Indeed, oxidized G-quadruplexes found at regulatory sites are regarded as epigenetic elements and are associated with an interlinking of DNA repair and transcription. PARP-1 binds damaged DNA and non-B form DNA, where it covalently modifies repair enzymes or chromatin-associated proteins respectively with poly(ADP-ribose) (PAR). PAR serves as a signal in regulation of transcription, chromatin remodeling, and DNA repair. PARP-1 is known to bind G-quadruplexes with stimulation of enzymatic activity. We show that PARP-1 binds several G-quadruplex structures with nanomolar affinities, but only a subset promote PARP-1 activity. The G-quadruplex forming sequence found in the proto-oncogene c-KIT promoter stimulates enzymatic activity of PARP-1. The loop-forming characteristics of the c-KIT G-quadruplex sequence regulate PARP-1 catalytic activity, whereas eliminating these loop features reduces PARP-1 activity. Oxidized G-quadruplexes that have been suggested to form unique, looped structures stimulate PARP-1 activity. Our results support a functional interaction between PARP-1 and G-quadruplexes. PARP-1 enzymatic activation by G-quadruplexes is dependent on the loop features and the presence of oxidative damage.
Collapse
Affiliation(s)
- Andrea D Edwards
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - John C Marecki
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
46
|
Aberle L, Krüger A, Reber JM, Lippmann M, Hufnagel M, Schmalz M, Trussina IREA, Schlesiger S, Zubel T, Schütz K, Marx A, Hartwig A, Ferrando-May E, Bürkle A, Mangerich A. PARP1 catalytic variants reveal branching and chain length-specific functions of poly(ADP-ribose) in cellular physiology and stress response. Nucleic Acids Res 2020; 48:10015-10033. [PMID: 32667640 PMCID: PMC7544232 DOI: 10.1093/nar/gkaa590] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Poly(ADP-ribosyl)ation regulates numerous cellular processes like genome maintenance and cell death, thus providing protective functions but also contributing to several pathological conditions. Poly(ADP-ribose) (PAR) molecules exhibit a remarkable heterogeneity in chain lengths and branching frequencies, but the biological significance of this is basically unknown. To unravel structure-specific functions of PAR, we used PARP1 mutants producing PAR of different qualities, i.e. short and hypobranched (PARP1\G972R), short and moderately hyperbranched (PARP1\Y986S), or strongly hyperbranched PAR (PARP1\Y986H). By reconstituting HeLa PARP1 knockout cells, we demonstrate that PARP1\G972R negatively affects cellular endpoints, such as viability, cell cycle progression and genotoxic stress resistance. In contrast, PARP1\Y986S elicits only mild effects, suggesting that PAR branching compensates for short polymer length. Interestingly, PARP1\Y986H exhibits moderate beneficial effects on cell physiology. Furthermore, different PARP1 mutants have distinct effects on molecular processes, such as gene expression and protein localization dynamics of PARP1 itself, and of its downstream factor XRCC1. Finally, the biological relevance of PAR branching is emphasized by the fact that branching frequencies vary considerably during different phases of the DNA damage-induced PARylation reaction and between different mouse tissues. Taken together, this study reveals that PAR branching and chain length essentially affect cellular functions, which further supports the notion of a ‘PAR code’.
Collapse
Affiliation(s)
- Lisa Aberle
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Annika Krüger
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Julia M Reber
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Michelle Lippmann
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Matthias Hufnagel
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Michael Schmalz
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| | | | - Sarah Schlesiger
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Tabea Zubel
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Karina Schütz
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | | | - Alexander Bürkle
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
47
|
Lee SG, Kim N, Kim SM, Park IB, Kim H, Kim S, Kim BG, Hwang JM, Baek IJ, Gartner A, Park JH, Myung K. Ewing sarcoma protein promotes dissociation of poly(ADP-ribose) polymerase 1 from chromatin. EMBO Rep 2020; 21:e48676. [PMID: 33006225 DOI: 10.15252/embr.201948676] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) facilitates DNA damage response (DDR). While the Ewing's sarcoma breakpoint region 1 (EWS) protein fused to FLI1 triggers sarcoma formation, the physiological function of EWS is largely unknown. Here, we investigate the physiological role of EWS in regulating PARP1. We show that EWS is required for PARP1 dissociation from damaged DNA. Abnormal PARP1 accumulation caused by EWS inactivation leads to excessive Poly(ADP-Ribosy)lation (PARylation) and triggers cell death in both in vitro and in vivo models. Consistent with previous work, the arginine-glycine-glycine (RGG) domain of EWS is essential for PAR chain interaction and PARP1 dissociation from damaged DNA. Ews and Parp1 double mutant mice do not show improved survival, but supplementation with nicotinamide mononucleotides extends Ews-mutant pups' survival, which might be due to compensatory activation of other PARP proteins. Consistently, PARP1 accumulates on chromatin in Ewing's sarcoma cells expressing an EWS fusion protein that cannot interact with PARP1, and tissues derived from Ewing's sarcoma patients show increased PARylation. Taken together, our data reveal that EWS is important for removing PARP1 from damaged chromatin.
Collapse
Affiliation(s)
- Seon-Gyeong Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Namwoo Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Su-Min Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - In Bae Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Hyejin Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Shinseog Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Jung Me Hwang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - In-Joon Baek
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Anton Gartner
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Jun Hong Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| |
Collapse
|
48
|
Naumenko KN, Sukhanova MV, Hamon L, Kurgina TA, Alemasova EE, Kutuzov MM, Pastré D, Lavrik OI. Regulation of Poly(ADP-Ribose) Polymerase 1 Activity by Y-Box-Binding Protein 1. Biomolecules 2020; 10:E1325. [PMID: 32947956 PMCID: PMC7565162 DOI: 10.3390/biom10091325] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022] Open
Abstract
Y-box-binding protein 1 (YB-1) is a multifunctional positively charged protein that interacts with DNA or RNA and poly(ADP-ribose) (PAR). YB-1 is poly(ADP-ribosyl)ated and stimulates poly(ADP-ribose) polymerase 1 (PARP1) activity. Here, we studied the mechanism of YB-1-dependent PAR synthesis by PARP1 in vitro using biochemical and atomic force microscopy assays. PAR synthesis activity of PARP1 is known to be facilitated by co-factors such as Mg2+. However, in contrast to an Mg2+-dependent reaction, the activation of PARP1 by YB-1 is accompanied by overall up-regulation of protein PARylation and shortening of the PAR polymer. Therefore, YB-1 and cation co-factors stimulated PAR synthesis in divergent ways. PARP1 autoPARylation in the presence of YB-1 as well as trans-PARylation of YB-1 are greatly affected by the type of damaged DNA, suggesting that PARP1 activation depends on the formation of a PARP1-YB-1-DNA ternary complex. An unstructured C-terminal part of YB-1 involved in an interaction with PAR behaves similarly to full-length YB-1, indicating that both DNA and PAR binding are involved in the stimulation of PARP1 activity by YB-1. Thus, YB-1 is likely linked to the regulation of PARylation events in cells via an interaction with PAR and damaged DNA.
Collapse
Affiliation(s)
- Konstantin N. Naumenko
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
| | - Mariya V. Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
| | - Loic Hamon
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, University of Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France; (L.H.); (D.P.)
| | - Tatyana A. Kurgina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
- Department of Molecular Biology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elizaveta E. Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
| | - Mikhail M. Kutuzov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
| | - David Pastré
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, University of Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France; (L.H.); (D.P.)
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
- Department of Molecular Biology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
49
|
Engbrecht M, Mangerich A. The Nucleolus and PARP1 in Cancer Biology. Cancers (Basel) 2020; 12:cancers12071813. [PMID: 32640701 PMCID: PMC7408768 DOI: 10.3390/cancers12071813] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
The nucleolus has been known for a long time to fulfill crucial functions in ribosome biogenesis, of which cancer cells can become addicted to in order to produce sufficient amounts of proteins for cell proliferation. Recently, the nucleolus has emerged as a central regulatory hub in many other cancer-relevant processes, including stress sensing, DNA damage response, cell cycle control, and proteostasis. This fostered the idea that nucleolar processes can be exploited in cancer therapy. Interestingly, a significant proportion of poly(ADP-ribose) polymerase 1 (PARP1) molecules are localized in the nucleolus and PARP1 also plays crucial roles in many processes that are important in cancer biology, including genome maintenance, replication, transcription, and chromatin remodeling. Furthermore, during the last years, PARP1 came into focus in oncology since it represents a promising target of pharmacological PARP inhibitors in various types of cancers. Here, we provide an overview of our current understanding on the role of PARP1 in nucleolar functions and discuss potential implications in cancer biology and therapy.
Collapse
|