1
|
Janković B, Janković M, Mraković A, Krneta Nikolić J, Rajačić M, Vukanac I, Sarap N, Manić N. Thermal Conversion of Coal Bottom Ash and Its Recovery Potential for High-Value Products Generation: Kinetic and Thermodynamic Analysis with Adiabatic TD24 Predictions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5759. [PMID: 39685195 DOI: 10.3390/ma17235759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024]
Abstract
Thermal decomposition (pyrolysis) of coal bottom ash (collected after lignite combustion in coal-fired power plant TEKO-B, Republic of Serbia) was investigated, using the simultaneous TG-DTG techniques in an inert atmosphere, at various heating rates. By using the XRD technique, it was found that the sample (CBA-TB) contains a large amount of anorthite, muscovite, and silica, as well as periclase and hematite, but in a smaller amount. Using a model-free kinetic approach, the complex nature of the process was successfully resolved. Thermodynamic analysis showed that the sample is characterized by dissociation reactions, which are endothermic with positive activation entropy changes, where spontaneity is achieved at high reaction temperatures. The model-based method showed the existence of a complex reaction scheme that includes two consecutive reaction steps and one single-step reaction, described by a variety of reaction models as nucleation/growth phase boundary-controlled, the second/n-th order chemical, and autocatalytic mechanisms. It was established that an anorthite I1 phase breakdown reaction into the incongruent melting product (CaO·Al2O3·2SiO2) represents the rate-controlling step. Autocatalytic behavior is reflected through chromium-incorporated SiO2 catalyst reaction, which leads to the formation of chromium(II) oxo-species. These catalytic centers are important in ethylene polymerization for converting light olefin gases into hydrocarbons. Adiabatic TD24 prediction simulations of the process were also carried out. Based on safety analysis through validated kinetic parameters, it was concluded that the tested sample exhibits high thermal stability. Applied thermal treatment was successful in promoting positive changes in the physicochemical characteristics of starting material, enabling beneficial end-use of final products and reduction of potential environmental risks.
Collapse
Affiliation(s)
- Bojan Janković
- "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia
| | - Marija Janković
- "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia
| | - Ana Mraković
- "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia
| | - Jelena Krneta Nikolić
- "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia
| | - Milica Rajačić
- "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia
| | - Ivana Vukanac
- "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia
| | - Nataša Sarap
- "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia
| | - Nebojša Manić
- Faculty of Mechanical Engineering, Fuel and Combustion Laboratory, University of Belgrade, Kraljice Marije 16, P.O. Box 35, 11120 Belgrade, Serbia
| |
Collapse
|
2
|
Peng L, Li X, Peng X, Gan Y, Wang J. Analysis of physical and mechanical behaviors and microscopic mineral characteristics of thermally damaged granite. Sci Rep 2024; 14:14776. [PMID: 38926491 PMCID: PMC11208172 DOI: 10.1038/s41598-024-65752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Temperature's influence on the physical and mechanical properties of rocks is a crucial concern for the rational design of deep rock engineering structures and the assurance of their long-term stability. To systematically comprehend the impact of the evolution of mineral composition and micro characteristics on the physical and mechanical behavior of thermally damaged granite, we observed the microscopic structural defects inside the rocks with a polarizing microscope and revealed the thermal damage mechanism of granite from a microscopic perspective by combining ultrasound detection and XRD phase characteristic analysis. The results show that the physical properties of the specimens changed significantly at three characteristic temperature points: 400 °C, 800 °C, and 1000 °C. Under high temperature conditions, the diffraction intensity of all minerals in granite, except for quartz, generally decreased, and stable minerals decomposed. Albite and potash feldspar decomposed to form anorthoclase, thereby reducing the structural stability of the rock material. In addition, the peak width of various minerals decreased to varying degrees with increasing temperature. The increase in mineral volume further damaged the internal structure of the rock material while promoting the transformation from grain boundary to intergranular cracks and from intragranular cracks to transgranular cracks, ultimately forming a interconnected crack network. Thermal damage significantly reduced the longitudinal wave velocity, uniaxial compressive strength, and elastic modulus of the specimens, while the stress-strain curve relationship indicated that the specimens underwent two opposite processes of transformation from brittleness to ductility and then from ductility to brittleness. The thermal damage threshold of granite in this study was 600 °C.
Collapse
Affiliation(s)
- Lei Peng
- Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
| | - Xianglong Li
- Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China.
- Advanced Blasting Technology Engineering Research Center of Yunnan Provincial Department of Education, Kunming, 650093, Yunnan, China.
| | - Xin Peng
- Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
| | - Yunchuan Gan
- Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
| | - Jianguo Wang
- Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China.
- Advanced Blasting Technology Engineering Research Center of Yunnan Provincial Department of Education, Kunming, 650093, Yunnan, China.
| |
Collapse
|
3
|
Gorelova L, Pakhomova A, Aprilis G, Yin Y, Laniel D, Winkler B, Krivovichev S, Pekov I, Dubrovinskaia N, Dubrovinsky L. Edge-sharing BO 4 tetrahedra and penta-coordinated silicon in the high-pressure modification of NaBSi 3O 8. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00101b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-pressure modification of NaBSi3O8 results in the first example of a borosilicate compound containing edge-sharing BO4 tetrahedra and SiO5 polyhedra.
Collapse
Affiliation(s)
- Liudmila Gorelova
- Crystallography Department, Institute of Earth Science, Saint Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
| | - Anna Pakhomova
- Deutsches Elektronen-Synchrotron (DESY), Petra III, Notkestraße 85, 22607 Hamburg, Germany
- European Synchrotron Radiation Facility, 71 Av. des Martyrs, 38000 Grenoble, France
| | - Georgios Aprilis
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
| | - Yuqing Yin
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
| | - Dominique Laniel
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
| | - Bjoern Winkler
- Institute für Geowissenschaften, Frankfurt University, Altenhöferallee 1, DE-60438 Frankfurt am Main, Germany
| | - Sergey Krivovichev
- Crystallography Department, Institute of Earth Science, Saint Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
- Kola Science Centre, Russian Academy of Sciences, Fersman str. 14, 184209 Apatity, Russia
| | - Igor Pekov
- Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
- Department of Physics, Chemistry and Biology (IFM), Linkoeping University, SE-581 83, Linkoeping, Sweden
| | - Leonid Dubrovinsky
- Bayerisches Geoinstitut, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
4
|
Pakhomova A, Fuchs B, Dubrovinsky LS, Dubrovinskaia N, Huppertz H. Polymorphs of the Gadolinite-Type Borates ZrB 2 O 5 and HfB 2 O 5 Under Extreme Pressure. Chemistry 2021; 27:6007-6014. [PMID: 33544397 PMCID: PMC8049040 DOI: 10.1002/chem.202005244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 11/20/2022]
Abstract
Based on the results from previous high‐pressure experiments on the gadolinite‐type mineral datolite, CaBSiO4(OH), the behavior of the isostructural borates β‐HfB2O5 and β‐ZrB2O5 have been studied by synchrotron‐based in situ high‐pressure single‐crystal X‐ray diffraction experiments. On compression to 120 GPa, both borate layer‐structures are preserved. Additionally, at ≈114 GPa, the formation of a second phase can be observed in both compounds. The new high‐pressure modification γ‐ZrB2O5 features a rearrangement of the corner‐sharing BO4 tetrahedra, while still maintaining the four‐ and eight‐membered rings. The new phase γ‐HfB2O5 contains ten‐membered rings including the rare structural motif of edge‐sharing BO4 tetrahedra with exceptionally short B−O and B⋅⋅⋅B distances. For both structures, unusually high coordination numbers are found for the transition metal cations, with ninefold coordinated Hf4+, and tenfold coordinated Zr4+, respectively. These findings remarkably show the potential of cold compression as a low‐energy pathway to discover metastable structures that exhibit new coordinations and structural motifs.
Collapse
Affiliation(s)
- Anna Pakhomova
- Deutsches Elektronen-Synchrotron (DESY), Petra III, Notkestraße 85, 22607, Hamburg, Germany
| | - Birgit Fuchs
- Institut für Allgemeine, Anorganische und Theoretische Chemie, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Leonid S Dubrovinsky
- Bayerisches Geoinstitut, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, University of Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany.,Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden
| | - Hubert Huppertz
- Institut für Allgemeine, Anorganische und Theoretische Chemie, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| |
Collapse
|