1
|
Seeger M, Stylogiannis A, Prade L, Glasl S, Ntziachristos V. Overdriven laser diode optoacoustic microscopy. Sci Rep 2023; 13:19542. [PMID: 37945920 PMCID: PMC10636104 DOI: 10.1038/s41598-023-46855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
Laser diodes are small and inexpensive but don't afford the pulse energy and beam profile required for optoacoustic (photoacoustic) microscopy. Using two novel modulation concepts, i.e. overdriving continuous-wave laser diodes (CWLD) and frequency-wavelength multiplexing (FWM) based on illumination pulse-trains, we demonstrate concurrent multi-wavelength optoacoustic microscopy with signal-to-noise ratios of > 17 dB, < 2 µm resolution at repetition rates of 1 MHz. This unprecedented performance based on an adaptable trigger engine allowed us to contrast FWM to wavelength alternating acquisition using identical optical components. We showcase this concept's superiority over conventional optoacoustic microscopes by visualizing vascular oxygenation dynamics and circulating tumor cells in mice. This work positions laser diodes as a technology allowing affordable, tunable, and miniaturizable optoacoustic microscopy.
Collapse
Affiliation(s)
- Markus Seeger
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger St 22, 81675, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landst. 1, 85764, Neuherberg, Germany
| | - Antonios Stylogiannis
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger St 22, 81675, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landst. 1, 85764, Neuherberg, Germany
| | - Ludwig Prade
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger St 22, 81675, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landst. 1, 85764, Neuherberg, Germany
| | - Sarah Glasl
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger St 22, 81675, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landst. 1, 85764, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Ismaninger St 22, 81675, Munich, Germany.
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landst. 1, 85764, Neuherberg, Germany.
- Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich, Boltzmannstr. 11, 85748, Garching b. München, Germany.
| |
Collapse
|
2
|
Wang L, Zhao Y, Zheng B, Huo Y, Fan Y, Ma D, Gu Y, Wang P. Ultrawide-bandwidth high-resolution all-optical intravascular ultrasound using miniaturized photoacoustic transducer. SCIENCE ADVANCES 2023; 9:eadg8600. [PMID: 37294755 PMCID: PMC10256152 DOI: 10.1126/sciadv.adg8600] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/05/2023] [Indexed: 06/11/2023]
Abstract
Conventional intravascular ultrasound (IVUS) uses piezoelectric transducers to electrically generate and receive ultrasound. However, it remains a challenge to achieve large bandwidth for high resolution without compromising imaging depth. We report an all-optical IVUS (AO-IVUS) imaging system using picosecond laser pulse-pumped carbon composite for ultrasound excitation and π-phase-shifted fiber Bragg gratings for ultrasound detection. Using this all-optical technique, we achieved ultrawide-bandwidth (147%) and high-resolution (18.6 micrometers) IVUS imaging, which is unattainable by conventional technique. Imaging performance has been characterized in phantoms, presenting 18.6-micrometer axial resolution, 124-micrometer lateral resolution, and 7-millimeter imaging depth. Rotational pullback imaging scans are performed in rabbit iliac artery, porcine coronary artery, and rabbit arteries with drug-eluting metal stents, in parallel with commercial intravenous ultrasound scans as reference. Results demonstrated the advantages of high-resolution AO-IVUS in delineating details in vascular structures, showing great potential in clinical applications.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yongwen Zhao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Bo Zheng
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China
| | - Yong Huo
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Dinglong Ma
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ying Gu
- Department of Laser Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Pu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
3
|
Pan J, Li Q, Feng Y, Zhong R, Fu Z, Yang S, Sun W, Zhang B, Sui Q, Chen J, Shen Y, Li Z. Parallel interrogation of the chalcogenide-based micro-ring sensor array for photoacoustic tomography. Nat Commun 2023; 14:3250. [PMID: 37277353 DOI: 10.1038/s41467-023-39075-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
Photoacoustic tomography (PAT), also known as optoacoustic tomography, is an attractive imaging modality that provides optical contrast with acoustic resolutions. Recent progress in the applications of PAT largely relies on the development and employment of ultrasound sensor arrays with many elements. Although on-chip optical ultrasound sensors have been demonstrated with high sensitivity, large bandwidth, and small size, PAT with on-chip optical ultrasound sensor arrays is rarely reported. In this work, we demonstrate PAT with a chalcogenide-based micro-ring sensor array containing 15 elements, while each element supports a bandwidth of 175 MHz (-6 dB) and a noise-equivalent pressure of 2.2 mPaHz-1/2. Moreover, by synthesizing a digital optical frequency comb (DOFC), we further develop an effective means of parallel interrogation to this sensor array. As a proof of concept, parallel interrogation with only one light source and one photoreceiver is demonstrated for PAT with this sensor array, providing images of fast-moving objects, leaf veins, and live zebrafish. The superior performance of the chalcogenide-based micro-ring sensor array and the effectiveness of the DOFC-enabled parallel interrogation offer great prospects for advancing applications in PAT.
Collapse
Affiliation(s)
- Jingshun Pan
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510006, China
| | - Qiang Li
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yaoming Feng
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ruifeng Zhong
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhihao Fu
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuixian Yang
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weiyuan Sun
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bin Zhang
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Qi Sui
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Jun Chen
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuecheng Shen
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Zhaohui Li
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, 510275, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
4
|
Cheng Z, Wang D, Zhang Z, Wang Z, Yang F, Zeng L, Ji X. Photoacoustic maximum amplitude projection microscopy by ultra-low data sampling. OPTICS LETTERS 2023; 48:1718-1721. [PMID: 37221749 DOI: 10.1364/ol.485628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/14/2023] [Indexed: 05/25/2023]
Abstract
Photoacoustic microscopy (PAM) has attracted increasing research interest in the biomedical field due to its unique merit of combining light and sound. In general, the bandwidth of a photoacoustic signal reaches up to tens or even hundreds of MHz, which requires a high-performance acquisition card to meet the high requirement of precision of sampling and control. For most depth-insensitive scenes, it is complex and costly to capture the photoacoustic maximum amplitude projection (MAP) images. Herein, we propose a simple and low-cost MAP-PAM system based on a custom-made peak holding circuit to obtain the extremum values by Hz data sampling. The dynamic range of the input signal is 0.01-2.5 V, and the -6-dB bandwidth of the input signal can be up to 45 MHz. Through in vitro and in vivo experiments, we have verified that the system has the same imaging ability as conventional PAM. Owing to its compact size and ultra-low price (approximately $18), it provides a new performance paradigm for PAM and opens up a new way for an optimal photoacoustic sensing and imaging device.
Collapse
|
5
|
Shintate R, Ishii T, Ahn J, Kim JY, Kim C, Saijo Y. High-speed optical resolution photoacoustic microscopy with MEMS scanner using a novel and simple distortion correction method. Sci Rep 2022; 12:9221. [PMID: 35654947 PMCID: PMC9163157 DOI: 10.1038/s41598-022-12865-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Optical resolution photoacoustic microscopy (OR-PAM) is a remarkable biomedical imaging technique that can selectively visualize microtissues with optical-dependent high resolution. However, traditional OR-PAM using mechanical stages provides slow imaging speed, making it difficult to biologically interpret in vivo tissue. In this study, we developed a high-speed OR-PAM using a recently commercialized MEMS mirror. This system (MEMS-OR-PAM) consists of a 1-axis MEMS mirror and a mechanical stage. Furthermore, this study proposes a novel calibration method that quickly removes the spatial distortion caused by fast MEMS scanning. The proposed calibration method can easily correct distortions caused by both the scan geometry of the MEMS mirror and its nonlinear motion by running an image sequence only once using a ruler target. The combination of MEMS-OR-PAM and distortion correction method was verified using three experiments: (1) leaf skeleton phantom imaging to test the distortion correction efficacy; (2) spatial resolution and depth of field (DOF) measurement for system performance; (3) in-vivo finger capillary imaging to verify their biomedical use. The results showed that the combination could achieve a high-speed (32 s in 2 × 4 mm) and high lateral resolution (~ 6 µm) imaging capability and precisely visualize the circulating structure of the finger capillaries.
Collapse
Affiliation(s)
- Ryo Shintate
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, 980-8579, Japan.
| | - Takuro Ishii
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, 980-8579, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 930-8555, Japan
| | - Joongho Ahn
- Department of Convergence IT Engineering, Electrical Engineering, and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jin Young Kim
- Department of Convergence IT Engineering, Electrical Engineering, and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chulhong Kim
- Department of Convergence IT Engineering, Electrical Engineering, and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yoshifumi Saijo
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, 980-8579, Japan
| |
Collapse
|
6
|
Ma H, Wang Z, Cheng Z, He G, Feng T, Zuo C, Qiu H. Multiscale confocal photoacoustic dermoscopy to evaluate skin health. Quant Imaging Med Surg 2022; 12:2696-2708. [PMID: 35502399 PMCID: PMC9014143 DOI: 10.21037/qims-21-878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/12/2022] [Indexed: 08/29/2023]
Abstract
Background Photoacoustic dermoscopy (PAD) is a promising branch of photoacoustic microscopy (PAM) that can provide a range of functional and morphologic information for clinical assessment and diagnosis of dermatological conditions. However, most PAM setups are unsuitable for clinical dermatology because their single-scale mode and narrow frequency band result in insufficient imaging depth or poor spatiotemporal resolution when visualizing the internal texture of the skin. Methods We developed a multiscale confocal photoacoustic dermoscopy (MC-PAD) with a multifunction opto-sono objective that could achieve high quality dermatological imaging. Using the objective to coordinate the spatial resolution and penetration depth, the MC-PAD was used to visualize pathophysiological biomarkers and vascular morphology from the epidermis (EP) to the dermis, which enabled us to quantify skin abnormalities without using exogenous contrast agents for human skin. Results The MC-PAD was shown to have the ability to differentiate between different types of cells (such as red blood cells and melanoma cells), image and quantify pigment of the skin, and visualize skin morphology and blood capillary landmarks. The MC-PAD detected a significant difference in the structures of some pigmented and vascular lesions of skin diseases compared with that of healthy skin (P<0.01). The café au lait macule (CALM) skin type was found to have a relatively higher melanin concentration and thicker stratum basale (SB) in the EP than healthy skin. The dermal vascular network of skin that had a port wine stain (PWS) had greater diameters and a denser distribution than healthy skin, as reported in clinical trials. Conclusions The MC-PAD has a broad range of applications for the diagnosis of human skin diseases and evaluation of the curative effect of treatments, and it can offer new perspectives in biomedical sciences.
Collapse
Affiliation(s)
- Haigang Ma
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, China
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China
| | - Zhiyang Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhongwen Cheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Guo He
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Ting Feng
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, China
| | - Chao Zuo
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, China
| | - Haixia Qiu
- Department of Laser medicine, the First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Duan T, Peng X, Chen M, Zhang D, Gao F, Yao J. Detection of weak optical absorption by optical-resolution photoacoustic microscopy. PHOTOACOUSTICS 2022; 25:100335. [PMID: 35198378 PMCID: PMC8844787 DOI: 10.1016/j.pacs.2022.100335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Optical-resolution photoacoustic microscopy (OR-PAM) is one of the major implementations of photoacoustic (PA) imaging. With tightly focused optical illumination and high-frequency ultrasound detection, OR-PAM provides micrometer-level resolutions as well as high sensitivity to optical absorption contrast. Traditionally, it is assumed that the detected PA signal in OR-PAM has a linear dependence on the target's optical absorption coefficient, which is the basis for quantitative functional and molecular PA imaging. In this paper, we demonstrate that, due to the limited detection bandwidth and detection view, OR-PAM can have a strong nonlinear dependence on the optical absorption, especially for weak optical absorption (<10 cm-1). We have investigated the nonlinear dependence in OR-PAM using numerical simulations, analyzed the underlining mechanisms, proposed potential solutions, and experimentally confirmed the results on phantoms. This work may correct a traditional misunderstanding of the OR-PAM signals and improve quantitative accuracy for functional and molecular applications.
Collapse
Affiliation(s)
- Tingyang Duan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Hybrid Imaging System Laboratory, Shanghai Engineering Research Center of Intelligent Vision and Imaging, School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Departmentof Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaorui Peng
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Departmentof Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Maomao Chen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Dong Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Departmentof Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Fei Gao
- Hybrid Imaging System Laboratory, Shanghai Engineering Research Center of Intelligent Vision and Imaging, School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
8
|
Mustafa Q, Omar M, Prade L, Mohajerani P, Stylogiannis A, Ntziachristos V, Zakian C. In Vivo Three-Dimensional Raster Scan Optoacoustic Mesoscopy Using Frequency Domain Inversion. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3349-3357. [PMID: 34043507 DOI: 10.1109/tmi.2021.3084356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Optoacoustic signals are typically reconstructed into images using inversion algorithms applied in the time-domain. However, time-domain reconstructions can be computationally intensive and therefore slow when large amounts of raw data are collected from an optoacoustic scan. Here we considered a fast weighted ω-k (FWOK) algorithm operating in the frequency domain to accelerate the inversion in raster-scan optoacoustic mesoscopy (RSOM), while seamlessly incorporating impulse response correction with minimum computational burden. We investigated the FWOK performance with RSOM measurements from phantoms and mice in vivo and obtained 360-fold speed improvement over inversions based on the back-projection algorithm in the time-domain. This previously unexplored inversion of in vivo optoacoustic data with impulse response correction in frequency domain reconstructions points to a promising strategy of accelerating optoacoustic imaging computations, toward video-rate tomography.
Collapse
|
9
|
Seeger M, Dehner C, Jüstel D, Ntziachristos V. Label-free concurrent 5-modal microscopy (Co5M) resolves unknown spatio-temporal processes in wound healing. Commun Biol 2021; 4:1040. [PMID: 34489513 PMCID: PMC8421396 DOI: 10.1038/s42003-021-02573-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
The non-invasive investigation of multiple biological processes remains a methodological challenge as it requires capturing different contrast mechanisms, usually not available with any single modality. Intravital microscopy has played a key role in dynamically studying biological morphology and function, but it is generally limited to resolving a small number of contrasts, typically generated by the use of transgenic labels, disturbing the biological system. We introduce concurrent 5-modal microscopy (Co5M), illustrating a new concept for label-free in vivo observations by simultaneously capturing optoacoustic, two-photon excitation fluorescence, second and third harmonic generation, and brightfield contrast. We apply Co5M to non-invasively visualize multiple wound healing biomarkers and quantitatively monitor a number of processes and features, including longitudinal changes in wound shape, microvascular and collagen density, vessel size and fractality, and the plasticity of sebaceous glands. Analysis of these parameters offers unique insights into the interplay of wound closure, vasodilation, angiogenesis, skin contracture, and epithelial reformation in space and time, inaccessible by other methods. Co5M challenges the conventional concept of biological observation by yielding multiple simultaneous parameters of pathophysiological processes in a label-free mode.
Collapse
Affiliation(s)
- Markus Seeger
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christoph Dehner
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dominik Jüstel
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
10
|
Bodea SV, Westmeyer GG. Photoacoustic Neuroimaging - Perspectives on a Maturing Imaging Technique and its Applications in Neuroscience. Front Neurosci 2021; 15:655247. [PMID: 34220420 PMCID: PMC8253050 DOI: 10.3389/fnins.2021.655247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
A prominent goal of neuroscience is to improve our understanding of how brain structure and activity interact to produce perception, emotion, behavior, and cognition. The brain's network activity is inherently organized in distinct spatiotemporal patterns that span scales from nanometer-sized synapses to meter-long nerve fibers and millisecond intervals between electrical signals to decades of memory storage. There is currently no single imaging method that alone can provide all the relevant information, but intelligent combinations of complementary techniques can be effective. Here, we thus present the latest advances in biomedical and biological engineering on photoacoustic neuroimaging in the context of complementary imaging techniques. A particular focus is placed on recent advances in whole-brain photoacoustic imaging in rodent models and its influential role in bridging the gap between fluorescence microscopy and more non-invasive techniques such as magnetic resonance imaging (MRI). We consider current strategies to address persistent challenges, particularly in developing molecular contrast agents, and conclude with an overview of potential future directions for photoacoustic neuroimaging to provide deeper insights into healthy and pathological brain processes.
Collapse
Affiliation(s)
- Silviu-Vasile Bodea
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
11
|
Hass K, Insabella RM, González MG, Riobó L, Veiras FE. A method for the calibration of wideband ultrasonic sensors for optoacoustics. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:064904. [PMID: 34243561 DOI: 10.1063/5.0041613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
A method for calibration of ultrasonic sensors for optoacoustics that provides both frequency response and sensitivity is presented. In order to obtain the bandwidth and the frequency response of an uncalibrated sensor, a point source with broadband spectra generated by a laser-induced bubble on a copper wire submerged in water is employed. On the other hand, the sensitivity measurement relies on the spatial symmetry of the pressure pulse and on a calibrated transducer. Therefore, two sensors are employed to detect the pressure pulse at the same distance from the source. The symmetry of the acoustic field that arrives at both transducers is adjusted and verified by means of an optical interferometer that provides a null signal when the copper wire is placed at the right position. The method is tested on the characterization of a thin-film polymeric piezoelectric transducer with a cylindrical focused shape.
Collapse
Affiliation(s)
- K Hass
- Universidad de Buenos Aires, Facultad de Ingeniería, GLOmAe, Paseo Colón 850, C1063ACV Buenos Aires, Argentina
| | - R M Insabella
- Universidad de Buenos Aires, Facultad de Ingeniería, GLOmAe, Paseo Colón 850, C1063ACV Buenos Aires, Argentina
| | - M G González
- Universidad de Buenos Aires, Facultad de Ingeniería, GLOmAe, Paseo Colón 850, C1063ACV Buenos Aires, Argentina
| | - L Riobó
- Universidad de Buenos Aires, Facultad de Ingeniería, GLOmAe, Paseo Colón 850, C1063ACV Buenos Aires, Argentina
| | - F E Veiras
- Universidad de Buenos Aires, Facultad de Ingeniería, GLOmAe, Paseo Colón 850, C1063ACV Buenos Aires, Argentina
| |
Collapse
|
12
|
Farhadi A, Sigmund F, Westmeyer GG, Shapiro MG. Genetically encodable materials for non-invasive biological imaging. NATURE MATERIALS 2021; 20:585-592. [PMID: 33526879 PMCID: PMC8606175 DOI: 10.1038/s41563-020-00883-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 11/18/2020] [Indexed: 05/04/2023]
Abstract
Many questions in basic biology and medicine require the ability to visualize the function of specific cells and molecules inside living organisms. In this context, technologies such as ultrasound, optoacoustics and magnetic resonance provide non-invasive imaging access to deep-tissue regions, as used in many laboratories and clinics to visualize anatomy and physiology. In addition, recent work has enabled these technologies to image the location and function of specific cells and molecules inside the body by coupling the physics of sound waves, nuclear spins and light absorption to unique protein-based materials. These materials, which include air-filled gas vesicles, capsid-like nanocompartments, pigment-producing enzymes and transmembrane transporters, enable new forms of biomolecular and cellular contrast. The ability of these protein-based contrast agents to be genetically encoded and produced by cells creates opportunities for unprecedented in vivo studies of cellular function, while their amenability to genetic engineering enables atomic-level design of their physical, chemical and biological properties.
Collapse
Affiliation(s)
- Arash Farhadi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Felix Sigmund
- Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany.
- Institute for Synthetic Biomedicine, Helmholtz Zentrum Muenchen, Neuherberg, Germany.
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
13
|
Seeger M, Stiel AC, Ntziachristos V. In vitro optoacoustic flow cytometry with light scattering referencing. Sci Rep 2021; 11:2181. [PMID: 33500461 PMCID: PMC7838204 DOI: 10.1038/s41598-021-81584-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/08/2021] [Indexed: 11/09/2022] Open
Abstract
Morphological and functional optoacoustic imaging is enhanced by dedicated transgene reporters, in analogy to fluorescence methods. The development of optoacoustic reporters using protein engineering and directed evolution would be accelerated by high-throughput in-flow screening for intracellular, genetically encoded, optoacoustic contrast. However, accurate characterization of such contrast is impeded because the optoacoustic signals depend on the cell's size and position in the flow chamber. We report herein an optoacoustic flow cytometer (OA-FCM) capable of precise measurement of intracellular optoacoustic signals of genetically-encoded chromoproteins in flow. The novel system records light-scattering as a reference for the detected optoacoustic signals in order to account for cell size and position, as well as excitation light flux in the focal volume, which we use to reference the detected optoacoustic signals to enhance the system's precision. The OA-FCM was calibrated using micrometer-sized particles to showcase the ability to assess in-flow objects in the size range of single-cells. We demonstrate the capabilities of our OA-FCM to identify sub-populations in a mixture of two E. coli stocks expressing different reporter-proteins with a precision of over 90%. High-throughput screening of optoacoustic labels could pave the way for identifying genetically encoded optoacoustic reporters by transferring working concepts of the fluorescence field such as directed evolution and activated cell sorting.
Collapse
Affiliation(s)
- Markus Seeger
- Chair of Biological Imaging (CBI) and Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
| | - Andre C Stiel
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany.
| | - Vasilis Ntziachristos
- Chair of Biological Imaging (CBI) and Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
14
|
Ma Y, Lu C, Xiong K, Zhang W, Yang S. Spatial weight matrix in dimensionality reduction reconstruction for micro-electromechanical system-based photoacoustic microscopy. Vis Comput Ind Biomed Art 2020; 3:22. [PMID: 32996016 PMCID: PMC7524599 DOI: 10.1186/s42492-020-00058-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/04/2020] [Indexed: 12/23/2022] Open
Abstract
A micro-electromechanical system (MEMS) scanning mirror accelerates the raster scanning of optical-resolution photoacoustic microscopy (OR-PAM). However, the nonlinear tilt angular-voltage characteristic of a MEMS mirror introduces distortion into the maximum back-projection image. Moreover, the size of the airy disk, ultrasonic sensor properties, and thermal effects decrease the resolution. Thus, in this study, we proposed a spatial weight matrix (SWM) with a dimensionality reduction for image reconstruction. The three-layer SWM contains the invariable information of the system, which includes a spatial dependent distortion correction and 3D deconvolution. We employed an ordinal-valued Markov random field and the Harris Stephen algorithm, as well as a modified delay-and-sum method during a time reversal. The results from the experiments and a quantitative analysis demonstrate that images can be effectively reconstructed using an SWM; this is also true for severely distorted images. The index of the mutual information between the reference images and registered images was 70.33 times higher than the initial index, on average. Moreover, the peak signal-to-noise ratio was increased by 17.08% after 3D deconvolution. This accomplishment offers a practical approach to image reconstruction and a promising method to achieve a real-time distortion correction for MEMS-based OR-PAM.
Collapse
Affiliation(s)
- Yuanzheng Ma
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Chang Lu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Kedi Xiong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Wuyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China. .,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|