1
|
Nagae F, Murayama Y, Terakawa T. Molecular mechanism of parental H3/H4 recycling at a replication fork. Nat Commun 2024; 15:9485. [PMID: 39488545 DOI: 10.1038/s41467-024-53187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/02/2024] [Indexed: 11/04/2024] Open
Abstract
In chromatin replication, faithful recycling of histones from parental DNA to replicated strands is essential for maintaining epigenetic information across generations. A previous experiment has revealed that disrupting interactions between the N-terminal tail of Mcm2, a subunit in DNA replication machinery, and a histone H3/H4 tetramer perturb the recycling. However, the molecular pathways and the factors that regulate the ratio recycled to each strand and the destination location are yet to be revealed. Here, we performed molecular dynamics simulations of yeast DNA replication machinery, an H3/H4 tetramer, and replicated DNA strands. The simulations demonstrated that histones are recycled via Cdc45-mediated and unmediated pathways without histone chaperones, as our in vitro biochemical assays supported. Also, RPA binding regulated the ratio recycled to each strand, whereas DNA bending by Pol ε modulated the destination location. Together, the simulations provided testable hypotheses, which are vital for elucidating the molecular mechanisms of histone recycling.
Collapse
Affiliation(s)
- Fritz Nagae
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yasuto Murayama
- Department of Chromosome Science, National Institute of Genetics, Shizuoka, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
| | - Tsuyoshi Terakawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
2
|
Utkalaja BG, Patel SK, Sahu SR, Dutta A, Acharya N. Critical roles of Dpb3-Dpb4 sub-complex of DNA polymerase epsilon in DNA replication, genome stability, and pathogenesis of Candida albicans. mBio 2024; 15:e0122724. [PMID: 39207097 PMCID: PMC11481497 DOI: 10.1128/mbio.01227-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
DNA polymerase ε (Polε) is an essential replicative polymerase consisting of Pol2, Dpb2, Dpb3, and Dpb4 subunits and has not been explored in the pathogenic yeast Candida albicans. C. albicans is accountable for >40% of deaths due to systemic candidiasis per year worldwide. Genome plasticity is one of the adaptive mechanisms associated with virulence, and as it is associated with DNA polymerase function, this study explored the role of Polε in genome stability and pathogenesis of C. albicans. POL2 and DPB2 are haploinsufficient, but DPB3 and DPB4 are dispensable for cell survival in diploid C. albicans. However, unlike in Saccharomyces cerevisiae, loss of any or both of the nonessential subunits or defective interaction between the two resulted in slow growth and temperature-sensitive phenotypes. Knockout strains of C. albicans (dpb3ΔΔ and dpb4ΔΔ and dpb3ΔΔdpb4ΔΔ) also exhibited sensitivity to genotoxic agents and delayed cell cycle progression. Reduced processive DNA synthesis and increased rate of mutagenesis were observed in dpb3 and dpb4 null strains. Whole-genome sequencing further confirmed the accumulation of indels and SNPs majorly in the intergenic repeat regions of the chromosomes of dpb3ΔΔdpb4ΔΔ. Polε-defective strains were constitutively filamentous and non-pathogenic in mice models of systemic candidiasis. Altogether, this study showed that the function of the Dpb3-Dpb4 subcomplex is critical for fungal morphogenesis and virulence besides its role as a structural component of Polε in DNA replication and genome stability; thus, their interacting interface may be targeted to develop antifungal drugs. IMPORTANCE This study explored the role of DNA polymerase epsilon, especially its non-essential structural subunits in Candida albicans biology. Apart from their role in DNA replication and genome stability, the Dpb3-Dpb4 subcomplex regulates morphological switching and virulence. Since the defective strain is locked in filamentous form and is avirulent, the complex may be targeted for anti-fungal drug development.
Collapse
Affiliation(s)
- Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Center of Biotechnology, Faridabad, India
| | - Shraddheya Kumar Patel
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Center of Biotechnology, Faridabad, India
| | - Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Center of Biotechnology, Faridabad, India
| | - Abinash Dutta
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
3
|
Tye BK. Four decades of Eukaryotic DNA replication: From yeast genetics to high-resolution cryo-EM structures of the replisome. Proc Natl Acad Sci U S A 2024; 121:e2415231121. [PMID: 39365830 PMCID: PMC11494305 DOI: 10.1073/pnas.2415231121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/22/2024] [Indexed: 10/06/2024] Open
Abstract
I had my eyes set on DNA replication research when I took my first molecular biology course in graduate school. My election to the National Academy of Sciences came just when I was retiring from active research. It gives me an opportunity to reflect on my personal journey in eukaryotic DNA replication research, which started as a thought experiment and culminated in witnessing the determination of the cryoelectron microscopic structure of the yeast replisome in the act of transferring histone-encoded epigenetic information at the replication fork. I would like to dedicate this inaugural article to my talented trainees and valuable collaborators in gratitude for the joy they gave me in this journey. I also want to thank my mentors who instilled in me the purpose of science. I hope junior scientists will not be disheartened by the marathon nature of research, but mindful enough to integrate and pause for other equally fun and meaningful activities of life into the marathon.
Collapse
Affiliation(s)
- Bik-Kwoon Tye
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
| |
Collapse
|
4
|
He Q, Wang F, Yao NY, O'Donnell ME, Li H. Structures of the human leading strand Polε-PCNA holoenzyme. Nat Commun 2024; 15:7847. [PMID: 39245668 PMCID: PMC11381554 DOI: 10.1038/s41467-024-52257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024] Open
Abstract
In eukaryotes, the leading strand DNA is synthesized by Polε and the lagging strand by Polδ. These replicative polymerases have higher processivity when paired with the DNA clamp PCNA. While the structure of the yeast Polε catalytic domain has been determined, how Polε interacts with PCNA is unknown in any eukaryote, human or yeast. Here we report two cryo-EM structures of human Polε-PCNA-DNA complex, one in an incoming nucleotide bound state and the other in a nucleotide exchange state. The structures reveal an unexpected three-point interface between the Polε catalytic domain and PCNA, with the conserved PIP (PCNA interacting peptide)-motif, the unique P-domain, and the thumb domain each interacting with a different protomer of the PCNA trimer. We propose that the multi-point interface prevents other PIP-containing factors from recruiting to PCNA while PCNA functions with Polε. Comparison of the two states reveals that the finger domain pivots around the [4Fe-4S] cluster-containing tip of the P-domain to regulate nucleotide exchange and incoming nucleotide binding.
Collapse
Affiliation(s)
- Qing He
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Feng Wang
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Nina Y Yao
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Michael E O'Donnell
- DNA Replication Laboratory and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
5
|
Toda T, Fang Y, Shan CM, Hua X, Kim JK, Tang LC, Jovanovic M, Tong L, Qiao F, Zhang Z, Jia S. Mrc1 regulates parental histone segregation and heterochromatin inheritance. Mol Cell 2024; 84:3223-3236.e4. [PMID: 39094566 PMCID: PMC11414769 DOI: 10.1016/j.molcel.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Chromatin-based epigenetic memory relies on the symmetric distribution of parental histones to newly synthesized daughter DNA strands, aided by histone chaperones within the DNA replication machinery. However, the mechanism of parental histone transfer remains elusive. Here, we reveal that in fission yeast, the replisome protein Mrc1 plays a crucial role in promoting the transfer of parental histone H3-H4 to the lagging strand, ensuring proper heterochromatin inheritance. In addition, Mrc1 facilitates the interaction between Mcm2 and DNA polymerase alpha, two histone-binding proteins critical for parental histone transfer. Furthermore, Mrc1's involvement in parental histone transfer and epigenetic inheritance is independent of its known functions in DNA replication checkpoint activation and replisome speed control. Instead, Mrc1 interacts with Mcm2 outside of its histone-binding region, creating a physical barrier to separate parental histone transfer pathways. These findings unveil Mrc1 as a key player within the replisome, coordinating parental histone segregation to regulate epigenetic inheritance.
Collapse
Affiliation(s)
- Takenori Toda
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Yimeng Fang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Chun-Min Shan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xu Hua
- Institute for Cancer Genetics, Department of Pediatrics, and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jin-Kwang Kim
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | | | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Feng Qiao
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Department of Pediatrics, and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
6
|
Bainbridge LJ, Daigaku Y. Bulk synthesis and beyond: The roles of eukaryotic replicative DNA polymerases. DNA Repair (Amst) 2024; 141:103740. [PMID: 39096696 DOI: 10.1016/j.dnarep.2024.103740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
An organism's genomic DNA must be accurately duplicated during each cell cycle. DNA synthesis is catalysed by DNA polymerase enzymes, which extend nucleotide polymers in a 5' to 3' direction. This inherent directionality necessitates that one strand is synthesised forwards (leading), while the other is synthesised backwards discontinuously (lagging) to couple synthesis to the unwinding of duplex DNA. Eukaryotic cells possess many diverse polymerases that coordinate to replicate DNA, with the three main replicative polymerases being Pol α, Pol δ and Pol ε. Studies conducted in yeasts and human cells utilising mutant polymerases that incorporate molecular signatures into nascent DNA implicate Pol ε in leading strand synthesis and Pol α and Pol δ in lagging strand replication. Recent structural insights have revealed how the spatial organization of these enzymes around the core helicase facilitates their strand-specific roles. However, various challenging situations during replication require flexibility in the usage of these enzymes, such as during replication initiation or encounters with replication-blocking adducts. This review summarises the roles of the replicative polymerases in bulk DNA replication and explores their flexible and dynamic deployment to complete genome replication. We also examine how polymerase usage patterns can inform our understanding of global replication dynamics by revealing replication fork directionality to identify regions of replication initiation and termination.
Collapse
Affiliation(s)
- Lewis J Bainbridge
- Cancer Genome Dynamics Project, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yasukazu Daigaku
- Cancer Genome Dynamics Project, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
7
|
Ouyang Y, Al-Amodi A, Tehseen M, Alhudhali L, Shirbini A, Takahashi M, Raducanu VS, Yi G, Danazumi A, De Biasio A, Hamdan S. Single-molecule characterization of SV40 replisome and novel factors: human FPC and Mcm10. Nucleic Acids Res 2024; 52:8880-8896. [PMID: 38967018 PMCID: PMC11347169 DOI: 10.1093/nar/gkae565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45-MCM-GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system.
Collapse
Affiliation(s)
- Yujing Ouyang
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Amani Al-Amodi
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Muhammad Tehseen
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Lubna Alhudhali
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Afnan Shirbini
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Masateru Takahashi
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Vlad-Stefan Raducanu
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Gang Yi
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Ammar Usman Danazumi
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Alfredo De Biasio
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Samir M Hamdan
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
8
|
You Z, Masai H. Assembly, Activation, and Helicase Actions of MCM2-7: Transition from Inactive MCM2-7 Double Hexamers to Active Replication Forks. BIOLOGY 2024; 13:629. [PMID: 39194567 DOI: 10.3390/biology13080629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
In this review, we summarize the processes of the assembly of multi-protein replisomes at the origins of replication. Replication licensing, the loading of inactive minichromosome maintenance double hexamers (dhMCM2-7) during the G1 phase, is followed by origin firing triggered by two serine-threonine kinases, Cdc7 (DDK) and CDK, leading to the assembly and activation of Cdc45/MCM2-7/GINS (CMG) helicases at the entry into the S phase and the formation of replisomes for bidirectional DNA synthesis. Biochemical and structural analyses of the recruitment of initiation or firing factors to the dhMCM2-7 for the formation of an active helicase and those of origin melting and DNA unwinding support the steric exclusion unwinding model of the CMG helicase.
Collapse
Affiliation(s)
- Zhiying You
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hisao Masai
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
9
|
Roske JJ, Yeeles JTP. Structural basis for processive daughter-strand synthesis and proofreading by the human leading-strand DNA polymerase Pol ε. Nat Struct Mol Biol 2024:10.1038/s41594-024-01370-y. [PMID: 39112807 DOI: 10.1038/s41594-024-01370-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/11/2024] [Indexed: 10/18/2024]
Abstract
During chromosome replication, the nascent leading strand is synthesized by DNA polymerase epsilon (Pol ε), which associates with the sliding clamp processivity factor proliferating cell nuclear antigen (PCNA) to form a processive holoenzyme. For high-fidelity DNA synthesis, Pol ε relies on nucleotide selectivity and its proofreading ability to detect and excise a misincorporated nucleotide. Here, we present cryo-electron microscopy (cryo-EM) structures of human Pol ε in complex with PCNA, DNA and an incoming nucleotide, revealing how Pol ε associates with PCNA through its PCNA-interacting peptide box and additional unique features of its catalytic domain. Furthermore, by solving a series of cryo-EM structures of Pol ε at a mismatch-containing DNA, we elucidate how Pol ε senses and edits a misincorporated nucleotide. Our structures delineate steps along an intramolecular switching mechanism between polymerase and exonuclease activities, providing the basis for a proofreading mechanism in B-family replicative polymerases.
Collapse
|
10
|
Yuan Z, Georgescu R, Yao NY, Yurieva O, O’Donnell ME, Li H. Mechanism of PCNA loading by Ctf18-RFC for leading-strand DNA synthesis. Science 2024; 385:eadk5901. [PMID: 39088616 PMCID: PMC11349045 DOI: 10.1126/science.adk5901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/10/2024] [Accepted: 05/31/2024] [Indexed: 08/03/2024]
Abstract
The proliferating cell nuclear antigen (PCNA) clamp encircles DNA to hold DNA polymerases (Pols) to DNA for processivity. The Ctf18-RFC PCNA loader, a replication factor C (RFC) variant, is specific to the leading-strand Pol (Polε). We reveal here the underlying mechanism of Ctf18-RFC specificity to Polε using cryo-electron microscopy and biochemical studies. We found that both Ctf18-RFC and Polε contain specific structural features that direct PCNA loading onto DNA. Unlike other clamp loaders, Ctf18-RFC has a disordered ATPase associated with a diverse cellular activities (AAA+) motor that requires Polε to bind and stabilize it for efficient PCNA loading. In addition, Ctf18-RFC can pry prebound Polε off of DNA, then load PCNA onto DNA and transfer the PCNA-DNA back to Polε. These elements in both Ctf18-RFC and Polε provide specificity in loading PCNA onto DNA for Polε.
Collapse
Affiliation(s)
- Zuanning Yuan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Roxana Georgescu
- DNA Replication Laboratory, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
| | - Nina Y. Yao
- DNA Replication Laboratory, The Rockefeller University, New York, New York, USA
| | - Olga Yurieva
- DNA Replication Laboratory, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
| | - Michael E. O’Donnell
- DNA Replication Laboratory, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| |
Collapse
|
11
|
Manthei KA, Munson LM, Nandakumar J, Simmons LA. Structural and biochemical characterization of the mitomycin C repair exonuclease MrfB. Nucleic Acids Res 2024; 52:6347-6359. [PMID: 38661211 PMCID: PMC11194089 DOI: 10.1093/nar/gkae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Mitomycin C (MMC) repair factor A (mrfA) and factor B (mrfB), encode a conserved helicase and exonuclease that repair DNA damage in the soil-dwelling bacterium Bacillus subtilis. Here we have focused on the characterization of MrfB, a DEDDh exonuclease in the DnaQ superfamily. We solved the structure of the exonuclease core of MrfB to a resolution of 2.1 Å, in what appears to be an inactive state. In this conformation, a predicted α-helix containing the catalytic DEDDh residue Asp172 adopts a random coil, which moves Asp172 away from the active site and results in the occupancy of only one of the two catalytic Mg2+ ions. We propose that MrfB resides in this inactive state until it interacts with DNA to become activated. By comparing our structure to an AlphaFold prediction as well as other DnaQ-family structures, we located residues hypothesized to be important for exonuclease function. Using exonuclease assays we show that MrfB is a Mg2+-dependent 3'-5' DNA exonuclease. We show that Leu113 aids in coordinating the 3' end of the DNA substrate, and that a basic loop is important for substrate binding. This work provides insight into the function of a recently discovered bacterial exonuclease important for the repair of MMC-induced DNA adducts.
Collapse
Affiliation(s)
- Kelly A Manthei
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lia M Munson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Arianna GA, Korzhnev DM. Protein Assemblies in Translesion Synthesis. Genes (Basel) 2024; 15:832. [PMID: 39062611 PMCID: PMC11276120 DOI: 10.3390/genes15070832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Translesion synthesis (TLS) is a mechanism of DNA damage tolerance utilized by eukaryotic cells to replicate DNA across lesions that impede the high-fidelity replication machinery. In TLS, a series of specialized DNA polymerases are employed, which recognize specific DNA lesions, insert nucleotides across the damage, and extend the distorted primer-template. This allows cells to preserve genetic integrity at the cost of mutations. In humans, TLS enzymes include the Y-family, inserter polymerases, Polη, Polι, Polκ, Rev1, and the B-family extender polymerase Polζ, while in S. cerevisiae only Polη, Rev1, and Polζ are present. To bypass DNA lesions, TLS polymerases cooperate, assembling into a complex on the eukaryotic sliding clamp, PCNA, termed the TLS mutasome. The mutasome assembly is contingent on protein-protein interactions (PPIs) between the modular domains and subunits of TLS enzymes, and their interactions with PCNA and DNA. While the structural mechanisms of DNA lesion bypass by the TLS polymerases and PPIs of their individual modules are well understood, the mechanisms by which they cooperate in the context of TLS complexes have remained elusive. This review focuses on structural studies of TLS polymerases and describes the case of TLS holoenzyme assemblies in action emerging from recent high-resolution Cryo-EM studies.
Collapse
Affiliation(s)
| | - Dmitry M. Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA;
| |
Collapse
|
13
|
Shen Y, Li Y, Yan R. Structural basis for the inhibition mechanism of the DNA polymerase holoenzyme from mpox virus. Structure 2024; 32:654-661.e3. [PMID: 38579705 DOI: 10.1016/j.str.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/31/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
There are three key components at the core of the mpox virus (MPXV) DNA polymerase holoenzyme: DNA polymerase F8, processivity factors A22, and the Uracil-DNA glycosylase E4. The holoenzyme is recognized as a vital antiviral target because MPXV replicates in the cytoplasm of host cells. Nucleotide analogs such as cidofovir and cytarabine (Ara-C) have shown potential in curbing MPXV replication and they also display promise against other poxviruses. However, the mechanism behind their inhibitory effects remains unclear. Here, we present the cryo-EM structure of the DNA polymerase holoenzyme F8/A22/E4 bound with its competitive inhibitor Ara-C-derived cytarabine triphosphate (Ara-CTP) at an overall resolution of 3.0 Å and reveal its inhibition mechanism. Ara-CTP functions as a direct chain terminator in proximity to the deoxycytidine triphosphate (dCTP)-binding site. The extra hydrogen bond formed with Asn665 makes it more potent in binding than dCTP. Asn665 is conserved among eukaryotic B-family polymerases.
Collapse
Affiliation(s)
- Yaping Shen
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Yaning Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Renhong Yan
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China.
| |
Collapse
|
14
|
Mullins EA, Salay LE, Durie CL, Bradley NP, Jackman JE, Ohi MD, Chazin WJ, Eichman BF. A mechanistic model of primer synthesis from catalytic structures of DNA polymerase α-primase. Nat Struct Mol Biol 2024; 31:777-790. [PMID: 38491139 PMCID: PMC11102853 DOI: 10.1038/s41594-024-01227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 01/12/2024] [Indexed: 03/18/2024]
Abstract
The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of Xenopus laevis polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5' end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer-template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.
Collapse
Affiliation(s)
- Elwood A Mullins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Lauren E Salay
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Clarissa L Durie
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Noah P Bradley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Walter J Chazin
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
15
|
Manthei KA, Munson LM, Nandakumar J, Simmons LA. Structural and biochemical characterization of the mitomycin C repair exonuclease MrfB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580553. [PMID: 38405983 PMCID: PMC10889028 DOI: 10.1101/2024.02.15.580553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Mitomycin C (MMC) repair factor A (mrfA) and factor B (mrfB), encode a conserved helicase and exonuclease that repair DNA damage in the soil-dwelling bacterium Bacillus subtilis. Here we have focused on the characterization of MrfB, a DEDDh exonuclease in the DnaQ superfamily. We solved the structure of the exonuclease core of MrfB to a resolution of 2.1 Å, in what appears to be an inactive state. In this conformation, a predicted α-helix containing the catalytic DEDDh residue Asp172 adopts a random coil, which moves Asp172 away from the active site and results in the occupancy of only one of the two catalytic Mg2+ ions. We propose that MrfB resides in this inactive state until it interacts with DNA to become activated. By comparing our structure to an AlphaFold prediction as well as other DnaQ-family structures, we located residues hypothesized to be important for exonuclease function. Using exonuclease assays we show that MrfB is a Mg2+-dependent 3'-5' DNA exonuclease. We show that Leu113 aids in coordinating the 3' end of the DNA substrate, and that a basic loop is important for substrate binding. This work provides insight into the function of a recently discovered bacterial exonuclease important for the repair of MMC-induced DNA adducts.
Collapse
Affiliation(s)
- Kelly A. Manthei
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lia M. Munson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Shah SM, Demidova EV, Ringenbach S, Faezov B, Andrake M, Gandhi A, Mur P, Viana-Errasti J, Xiu J, Swensen J, Valle L, Dunbrack RL, Hall MJ, Arora S. Exploring Co-occurring POLE Exonuclease and Non-exonuclease Domain Mutations and Their Impact on Tumor Mutagenicity. CANCER RESEARCH COMMUNICATIONS 2024; 4:213-225. [PMID: 38282550 PMCID: PMC10812383 DOI: 10.1158/2767-9764.crc-23-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/05/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
POLE driver mutations in the exonuclease domain (ExoD driver) are prevalent in several cancers, including colorectal cancer and endometrial cancer, leading to dramatically ultra-high tumor mutation burden (TMB). To understand whether POLE mutations that are not classified as drivers (POLE Variant) contribute to mutagenesis, we assessed TMB in 447 POLE-mutated colorectal cancers, endometrial cancers, and ovarian cancers classified as TMB-high ≥10 mutations/Mb (mut/Mb) or TMB-low <10 mut/Mb. TMB was significantly highest in tumors with "POLE ExoD driver plus POLE Variant" (colorectal cancer and endometrial cancer, P < 0.001; ovarian cancer, P < 0.05). TMB increased with additional POLE variants (P < 0.001), but plateaued at 2, suggesting an association between the presence of these variants and TMB. Integrated analysis of AlphaFold2 POLE models and quantitative stability estimates predicted the impact of multiple POLE variants on POLE functionality. The prevalence of immunogenic neoepitopes was notably higher in the "POLE ExoD driver plus POLE Variant" tumors. Overall, this study reveals a novel correlation between POLE variants in POLE ExoD-driven tumors, and ultra-high TMB. Currently, only select pathogenic ExoD mutations with a reliable association with ultra-high TMB inform clinical practice. Thus, these findings are hypothesis-generating, require functional validation, and could potentially inform tumor classification, treatment responses, and clinical outcomes. SIGNIFICANCE Somatic POLE ExoD driver mutations cause proofreading deficiency that induces high TMB. This study suggests a novel modifier role for POLE variants in POLE ExoD-driven tumors, associated with ultra-high TMB. These data, in addition to future functional studies, may inform tumor classification, therapeutic response, and patient outcomes.
Collapse
Affiliation(s)
- Shreya M. Shah
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Science Scholars Program, Temple University, Philadelphia, Pennsylvania
| | - Elena V. Demidova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Salena Ringenbach
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Lewis Katz School of Medicine, Temple University, Bethlehem, Pennsylvania
| | - Bulat Faezov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mark Andrake
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Arjun Gandhi
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- University College Dublin School of Medicine and Medical Science, Dublin, Ireland
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Julen Viana-Errasti
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | | | | | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Roland L. Dunbrack
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Michael J. Hall
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sanjeevani Arora
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Lewis JS, van Oijen AM, Spenkelink LM. Embracing Heterogeneity: Challenging the Paradigm of Replisomes as Deterministic Machines. Chem Rev 2023; 123:13419-13440. [PMID: 37971892 PMCID: PMC10790245 DOI: 10.1021/acs.chemrev.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
The paradigm of cellular systems as deterministic machines has long guided our understanding of biology. Advancements in technology and methodology, however, have revealed a world of stochasticity, challenging the notion of determinism. Here, we explore the stochastic behavior of multi-protein complexes, using the DNA replication system (replisome) as a prime example. The faithful and timely copying of DNA depends on the simultaneous action of a large set of enzymes and scaffolding factors. This fundamental cellular process is underpinned by dynamic protein-nucleic acid assemblies that must transition between distinct conformations and compositional states. Traditionally viewed as a well-orchestrated molecular machine, recent experimental evidence has unveiled significant variability and heterogeneity in the replication process. In this review, we discuss recent advances in single-molecule approaches and single-particle cryo-EM, which have provided insights into the dynamic processes of DNA replication. We comment on the new challenges faced by structural biologists and biophysicists as they attempt to describe the dynamic cascade of events leading to replisome assembly, activation, and progression. The fundamental principles uncovered and yet to be discovered through the study of DNA replication will inform on similar operating principles for other multi-protein complexes.
Collapse
Affiliation(s)
- Jacob S. Lewis
- Macromolecular
Machines Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Antoine M. van Oijen
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Lisanne M. Spenkelink
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
18
|
Crevel G, Kearsey S, Cotterill S. A simple bypass assay for DNA polymerases shows that cancer-associated hypermutating variants exhibit differences in vitro. FEBS J 2023; 290:5744-5758. [PMID: 37592814 PMCID: PMC10953417 DOI: 10.1111/febs.16936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
Errors made by DNA polymerases contribute to both natural variation and, in extreme cases, genome instability and its associated diseases. Recently, the importance of polymerase misincorporation in disease has been highlighted by the identification of cancer-associated polymerase variants with mutations in the exonuclease domain. A subgroup of these variants have a hypermutation phenotype in tumours, and when modelled in yeast, they show mutation rates in excess of that seen with polymerase with simple loss of proofreading activity. We have developed a bypass assay to rapidly determine the tendency of a polymerase to misincorporate in vitro. We have used the assay to compare misincorporation by wild-type, exonuclease-defective and two hypermutating human DNA polymerase ε variants, P286R and V411L. The assay clearly distinguished between the misincorporation rates of wild-type, exonuclease dead and P286R polymerases. However, the V411L polymerase showed misincorporation rate comparable to the exonuclease dead enzyme rather than P286R, suggesting that there may be some differences in the way that these variants cause hypermutation. Using this assay, misincorporation opposite a templated C nucleotide was consistently higher than for other nucleotides, and this caused predominantly C-to-T transitions. This is consistent with the observation that C-to-T transitions are commonly seen in DNA polymerase ε mutant tumours.
Collapse
|
19
|
Williams SL, Casas‐Delucchi CS, Raguseo F, Guneri D, Li Y, Minamino M, Fletcher EE, Yeeles JTP, Keyser UF, Waller ZAE, Di Antonio M, Coster G. Replication-induced DNA secondary structures drive fork uncoupling and breakage. EMBO J 2023; 42:e114334. [PMID: 37781931 PMCID: PMC10646557 DOI: 10.15252/embj.2023114334] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023] Open
Abstract
Sequences that form DNA secondary structures, such as G-quadruplexes (G4s) and intercalated-Motifs (iMs), are abundant in the human genome and play various physiological roles. However, they can also interfere with replication and threaten genome stability. Multiple lines of evidence suggest G4s inhibit replication, but the underlying mechanism remains unclear. Moreover, evidence of how iMs affect the replisome is lacking. Here, we reconstitute replication of physiologically derived structure-forming sequences to find that a single G4 or iM arrest DNA replication. Direct single-molecule structure detection within solid-state nanopores reveals structures form as a consequence of replication. Combined genetic and biophysical characterisation establishes that structure stability and probability of structure formation are key determinants of replisome arrest. Mechanistically, replication arrest is caused by impaired synthesis, resulting in helicase-polymerase uncoupling. Significantly, iMs also induce breakage of nascent DNA. Finally, stalled forks are only rescued by a specialised helicase, Pif1, but not Rrm3, Sgs1, Chl1 or Hrq1. Altogether, we provide a mechanism for quadruplex structure formation and resolution during replication and highlight G4s and iMs as endogenous sources of replication stress.
Collapse
Affiliation(s)
- Sophie L Williams
- Genome Replication Lab, Division of Cancer Biology, Institute of Cancer ResearchChester Beatty LaboratoriesLondonUK
| | - Corella S Casas‐Delucchi
- Genome Replication Lab, Division of Cancer Biology, Institute of Cancer ResearchChester Beatty LaboratoriesLondonUK
| | - Federica Raguseo
- Chemistry DepartmentImperial College London, MSRHLondonUK
- Institute of Chemical Biology, MSRHLondonUK
| | | | - Yunxuan Li
- Cavendish LaboratoryUniversity of CambridgeCambridgeUK
| | | | | | | | | | | | - Marco Di Antonio
- Chemistry DepartmentImperial College London, MSRHLondonUK
- Institute of Chemical Biology, MSRHLondonUK
- Francis Crick InstituteLondonUK
| | - Gideon Coster
- Genome Replication Lab, Division of Cancer Biology, Institute of Cancer ResearchChester Beatty LaboratoriesLondonUK
| |
Collapse
|
20
|
Sato K, Knipscheer P. G-quadruplex resolution: From molecular mechanisms to physiological relevance. DNA Repair (Amst) 2023; 130:103552. [PMID: 37572578 DOI: 10.1016/j.dnarep.2023.103552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Guanine-rich DNA sequences can fold into stable four-stranded structures called G-quadruplexes or G4s. Research in the past decade demonstrated that G4 structures are widespread in the genome and prevalent in regulatory regions of actively transcribed genes. The formation of G4s has been tightly linked to important biological processes including regulation of gene expression and genome maintenance. However, they can also pose a serious threat to genome integrity especially by impeding DNA replication, and G4-associated somatic mutations have been found accumulated in the cancer genomes. Specialised DNA helicases and single stranded DNA binding proteins that can resolve G4 structures play a crucial role in preventing genome instability. The large variety of G4 unfolding proteins suggest the presence of multiple G4 resolution mechanisms in cells. Recently, there has been considerable progress in our detailed understanding of how G4s are resolved, especially during DNA replication. In this review, we first discuss the current knowledge of the genomic G4 landscapes and the impact of G4 structures on DNA replication and genome integrity. We then describe the recent progress on the mechanisms that resolve G4 structures and their physiological relevance. Finally, we discuss therapeutic opportunities to target G4 structures.
Collapse
Affiliation(s)
- Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
21
|
Mullins EA, Salay LE, Durie CL, Bradley NP, Jackman JE, Ohi MD, Chazin WJ, Eichman BF. A mechanistic model of primer synthesis from catalytic structures of DNA polymerase α-primase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533013. [PMID: 36993335 PMCID: PMC10055150 DOI: 10.1101/2023.03.16.533013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5'-end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer/template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.
Collapse
|
22
|
Xu Z, Feng J, Yu D, Huo Y, Ma X, Lam WH, Liu Z, Li XD, Ishibashi T, Dang S, Zhai Y. Synergism between CMG helicase and leading strand DNA polymerase at replication fork. Nat Commun 2023; 14:5849. [PMID: 37730685 PMCID: PMC10511561 DOI: 10.1038/s41467-023-41506-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
The replisome that replicates the eukaryotic genome consists of at least three engines: the Cdc45-MCM-GINS (CMG) helicase that separates duplex DNA at the replication fork and two DNA polymerases, one on each strand, that replicate the unwound DNA. Here, we determined a series of cryo-electron microscopy structures of a yeast replisome comprising CMG, leading-strand polymerase Polε and three accessory factors on a forked DNA. In these structures, Polε engages or disengages with the motor domains of the CMG by occupying two alternative positions, which closely correlate with the rotational movement of the single-stranded DNA around the MCM pore. During this process, the polymerase remains stably coupled to the helicase using Psf1 as a hinge. This synergism is modulated by a concerted rearrangement of ATPase sites to drive DNA translocation. The Polε-MCM coupling is not only required for CMG formation to initiate DNA replication but also facilitates the leading-strand DNA synthesis mediated by Polε. Our study elucidates a mechanism intrinsic to the replisome that coordinates the activities of CMG and Polε to negotiate any roadblocks, DNA damage, and epigenetic marks encountered during translocation along replication forks.
Collapse
Affiliation(s)
- Zhichun Xu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Jianrong Feng
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Daqi Yu
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Yunjing Huo
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Xiaohui Ma
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Wai Hei Lam
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Toyotaka Ishibashi
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- HKUST-Shenzhen Research Institute, 518057, Nanshan, Shenzhen, China.
| | - Yuanliang Zhai
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
23
|
Dmowski M, Makiela-Dzbenska K, Sharma S, Chabes A, Fijalkowska IJ. Impairment of the non-catalytic subunit Dpb2 of DNA Pol ɛ results in increased involvement of Pol δ on the leading strand. DNA Repair (Amst) 2023; 129:103541. [PMID: 37481989 DOI: 10.1016/j.dnarep.2023.103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023]
Abstract
The generally accepted model assumes that leading strand synthesis is performed by Pol ε, while lagging-strand synthesis is catalyzed by Pol δ. Pol ε has been shown to target the leading strand by interacting with the CMG helicase [Cdc45 Mcm2-7 GINS(Psf1-3, Sld5)]. Proper functioning of the CMG-Pol ɛ, the helicase-polymerase complex is essential for its progression and the fidelity of DNA replication. Dpb2p, the essential non-catalytic subunit of Pol ε plays a key role in maintaining the correct architecture of the replisome by acting as a link between Pol ε and the CMG complex. Using a temperature-sensitive dpb2-100 mutant previously isolated in our laboratory, and a genetic system which takes advantage of a distinct mutational signature of the Pol δ-L612M variant which allows detection of the involvement of Pol δ in the replication of particular DNA strands we show that in yeast cells with an impaired Dpb2 subunit, the contribution of Pol δ to the replication of the leading strand is significantly increased.
Collapse
Affiliation(s)
- Michal Dmowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | - Karolina Makiela-Dzbenska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
24
|
Pellegrini L. The CMG DNA helicase and the core replisome. Curr Opin Struct Biol 2023; 81:102612. [PMID: 37244171 DOI: 10.1016/j.sbi.2023.102612] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/29/2023]
Abstract
Eukaryotic DNA replication is performed by the replisome, a large and dynamic multi-protein machine endowed with the required enzymatic components for the synthesis of new DNA. Recent cryo-electron microscopy (cryoEM) analyses have revealed the conserved architecture of the core eukaryotic replisome, comprising the CMG (Cdc45-MCM-GINS) DNA helicase, the leading-strand DNA polymerase epsilon, the Timeless-Tipin heterodimer, the hub protein AND-1 and the checkpoint protein Claspin. These results bid well for arriving soon at an integrated understanding of the structural basis of semi-discontinuous DNA replication. They further set the scene for the characterisation of the mechanisms that interface DNA synthesis with concurrent processes such as DNA repair, propagation of chromatin structure and establishment of sister chromatid cohesion.
Collapse
|
25
|
Bocanegra R, Ortíz-Rodríguez M, Zumeta L, Plaza-G A I, Faro E, Ibarra B. DNA replication machineries: Structural insights from crystallography and electron microscopy. Enzymes 2023; 54:249-271. [PMID: 37945174 DOI: 10.1016/bs.enz.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Since the discovery of DNA as the genetic material, scientists have been investigating how the information contained in this biological polymer is transmitted from generation to generation. X-ray crystallography, and more recently, cryo-electron microscopy techniques have been instrumental in providing essential information about the structure, functions and interactions of the DNA and the protein machinery (replisome) responsible for its replication. In this chapter, we highlight several works that describe the structure and structure-function relationships of the core components of the prokaryotic and eukaryotic replisomes. We also discuss the most recent studies on the structural organization of full replisomes.
Collapse
Affiliation(s)
| | | | - Lyra Zumeta
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain
| | | | - Elías Faro
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain.
| |
Collapse
|
26
|
Demidova EV, Serebriiskii IG, Vlasenkova R, Kelow S, Andrake MD, Hartman TR, Kent T, Virtucio J, Rosen GL, Pomerantz RT, Dunbrack RL, Golemis EA, Hall MJ, Chen DYT, Daly MB, Arora S. Candidate variants in DNA replication and repair genes in early-onset renal cell carcinoma patients referred for germline testing. BMC Genomics 2023; 24:212. [PMID: 37095444 PMCID: PMC10123997 DOI: 10.1186/s12864-023-09310-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Early-onset renal cell carcinoma (eoRCC) is typically associated with pathogenic germline variants (PGVs) in RCC familial syndrome genes. However, most eoRCC patients lack PGVs in familial RCC genes and their genetic risk remains undefined. METHODS Here, we analyzed biospecimens from 22 eoRCC patients that were seen at our institution for genetic counseling and tested negative for PGVs in RCC familial syndrome genes. RESULTS Analysis of whole-exome sequencing (WES) data found enrichment of candidate pathogenic germline variants in DNA repair and replication genes, including multiple DNA polymerases. Induction of DNA damage in peripheral blood monocytes (PBMCs) significantly elevated numbers of [Formula: see text]H2AX foci, a marker of double-stranded breaks, in PBMCs from eoRCC patients versus PBMCs from matched cancer-free controls. Knockdown of candidate variant genes in Caki RCC cells increased [Formula: see text]H2AX foci. Immortalized patient-derived B cell lines bearing the candidate variants in DNA polymerase genes (POLD1, POLH, POLE, POLK) had DNA replication defects compared to control cells. Renal tumors carrying these DNA polymerase variants were microsatellite stable but had a high mutational burden. Direct biochemical analysis of the variant Pol δ and Pol η polymerases revealed defective enzymatic activities. CONCLUSIONS Together, these results suggest that constitutional defects in DNA repair underlie a subset of eoRCC cases. Screening patient lymphocytes to identify these defects may provide insight into mechanisms of carcinogenesis in a subset of genetically undefined eoRCCs. Evaluation of DNA repair defects may also provide insight into the cancer initiation mechanisms for subsets of eoRCCs and lay the foundation for targeting DNA repair vulnerabilities in eoRCC.
Collapse
Affiliation(s)
- Elena V Demidova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Kazan Federal University, Kazan, 420008, Russia
| | - Ilya G Serebriiskii
- Kazan Federal University, Kazan, 420008, Russia
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Ramilia Vlasenkova
- Kazan Federal University, Kazan, 420008, Russia
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Simon Kelow
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mark D Andrake
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Tiffiney R Hartman
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Arcadia University, Glenside, PA, USA
| | - Tatiana Kent
- Department of Biochemistry & Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - James Virtucio
- Ecological and Evolutionary Signal-Processing and Informatics Laboratory, Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Gail L Rosen
- Ecological and Evolutionary Signal-Processing and Informatics Laboratory, Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Richard T Pomerantz
- Department of Biochemistry & Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Roland L Dunbrack
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Erica A Golemis
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Michael J Hall
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Department of Clinical Genetics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - David Y T Chen
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Mary B Daly
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
- Department of Clinical Genetics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| | - Sanjeevani Arora
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
27
|
Kannan SR, Sachdev S, Reddy AS, Kandasamy SL, Byrareddy SN, Lorson CL, Singh K. Mutations in the monkeypox virus replication complex: Potential contributing factors to the 2022 outbreak. J Autoimmun 2022; 133:102928. [PMID: 36252459 PMCID: PMC9562781 DOI: 10.1016/j.jaut.2022.102928] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
Attributes contributing to the current monkeypox virus (MPXV) outbreak remain unknown. It has been established that mutations in viral proteins may alter phenotype and pathogenicity. To assess if mutations in the MPXV DNA replication complex (RC) contribute to the outbreak, we conducted a temporal analysis of available MPXV sequences to identify mutations, generated a DNA replication complex (RC) using structures of related viral and eukaryotic proteins, and structure prediction method AlphaFold. Ten mutations within the RC were identified and mapped onto the RC to infer role of mutations. Two mutations in F8L (RC catalytic subunit), and two in G9R (a processivity factor) were ∼100% prevalent in the 2022 sequences. F8L mutation L108F emerged in 2022, whereas W411L emerged in 2018, and persisted in 2022. L108 is topologically located to enhance DNA binding affinity of F8L. Therefore, mutation L108F can change the fidelity, sensitivity to nucleoside inhibitors, and processivity of F8L. Surface exposed W411L likely affects the binding of regulatory factor(s). G9R mutations S30L and D88 N in G9R emerged in 2022, and may impact the interaction of G9R with E4R (uracil DNA glycosylase). The remaining six mutations that appeared in 2001, reverted to the first (1965 Rotterdam) isolate. Two nucleoside inhibitors brincidofovir and cidofovir have been approved for MPXV treatment. Cidofovir resistance in vaccinia virus is achieved by A314T and A684V mutations. Both A314 and A684 are conserved in MPXV. Therefore, resistance to these drugs in MPXV may arise through similar mechanisms.
Collapse
Affiliation(s)
| | - Shrikesh Sachdev
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Athreya S. Reddy
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | | | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Christian L. Lorson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Kamal Singh
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA,Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden,Corresponding author. 471g, Bond Life Sciences Center, 1201 E Rollins Street, Columbia, MO, 65211, USA
| |
Collapse
|
28
|
Vipat S, Gupta D, Jonchhe S, Anderspuk H, Rothenberg E, Moiseeva TN. The non-catalytic role of DNA polymerase epsilon in replication initiation in human cells. Nat Commun 2022; 13:7099. [PMID: 36402816 PMCID: PMC9675812 DOI: 10.1038/s41467-022-34911-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
DNA polymerase epsilon (PolE) in an enzyme essential for DNA replication. Deficiencies and mutations in PolE cause severe developmental abnormalities and cancers. Paradoxically, the catalytic domain of yeast PolE catalytic subunit is dispensable for survival, and its non-catalytic essential function is linked with replicative helicase (CMG) assembly. Less is known about the PolE role in replication initiation in human cells. Here we use an auxin-inducible degron system to study the effect of POLE1 depletion on replication initiation in U2OS cells. POLE1-depleted cells were able to assemble CMG helicase and initiate DNA synthesis that failed shortly after. Expression of POLE1 non-catalytic domain rescued this defect resulting in slow, but continuous DNA synthesis. We propose a model where in human U2OS cells POLE1/POLE2 are dispensable for CMG assembly, but essential during later steps of replication initiation. Our study provides some insights into the role of PolE in replication initiation in human cells.
Collapse
Affiliation(s)
- Sameera Vipat
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, 12618, Estonia
| | - Dipika Gupta
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Sagun Jonchhe
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Hele Anderspuk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, 12618, Estonia
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Tatiana N Moiseeva
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, 12618, Estonia.
| |
Collapse
|
29
|
Lisova AE, Baranovskiy AG, Morstadt LM, Babayeva ND, Stepchenkova EI, Tahirov TH. The iron-sulfur cluster is essential for DNA binding by human DNA polymerase ε. Sci Rep 2022; 12:17436. [PMID: 36261579 PMCID: PMC9581978 DOI: 10.1038/s41598-022-21550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/28/2022] [Indexed: 01/13/2023] Open
Abstract
DNA polymerase ε (Polε) is a key enzyme for DNA replication in eukaryotes. Recently it was shown that the catalytic domain of yeast Polε (PolεCD) contains a [4Fe-4S] cluster located at the base of the processivity domain (P-domain) and coordinated by four conserved cysteines. In this work, we show that human PolεCD (hPolεCD) expressed in bacterial cells also contains an iron-sulfur cluster. In comparison, recombinant hPolεCD produced in insect cells contains significantly lower level of iron. The iron content of purified hPolECD samples correlates with the level of DNA-binding molecules, which suggests an important role of the iron-sulfur cluster in hPolε interaction with DNA. Indeed, mutation of two conserved cysteines that coordinate the cluster abolished template:primer binding as well as DNA polymerase and proofreading exonuclease activities. We propose that the cluster regulates the conformation of the P-domain, which, like a gatekeeper, controls access to a DNA-binding cleft for a template:primer. The binding studies demonstrated low affinity of hPolεCD to DNA and a strong effect of salt concentration on stability of the hPolεCD/DNA complex. Pre-steady-state kinetic studies have shown a maximal polymerization rate constant of 51.5 s-1 and a relatively low affinity to incoming dNTP with an apparent KD of 105 µM.
Collapse
Affiliation(s)
- Alisa E Lisova
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Andrey G Baranovskiy
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lucia M Morstadt
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nigar D Babayeva
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Elena I Stepchenkova
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Genetics and Biotechnology, Vavilov Institute of General Genetics, Saint-Petersburg Branch, Saint-Petersburg State University, Russian Academy of Sciences, St. Petersburg, Russia
| | - Tahir H Tahirov
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
30
|
Mellor C, Perez C, Sale JE. Creation and resolution of non-B-DNA structural impediments during replication. Crit Rev Biochem Mol Biol 2022; 57:412-442. [PMID: 36170051 PMCID: PMC7613824 DOI: 10.1080/10409238.2022.2121803] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
During replication, folding of the DNA template into non-B-form secondary structures provides one of the most abundant impediments to the smooth progression of the replisome. The core replisome collaborates with multiple accessory factors to ensure timely and accurate duplication of the genome and epigenome. Here, we discuss the forces that drive non-B structure formation and the evidence that secondary structures are a significant and frequent source of replication stress that must be actively countered. Taking advantage of recent advances in the molecular and structural biology of the yeast and human replisomes, we examine how structures form and how they may be sensed and resolved during replication.
Collapse
Affiliation(s)
- Christopher Mellor
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Consuelo Perez
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Julian E Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
31
|
Casas-Delucchi CS, Daza-Martin M, Williams SL, Coster G. The mechanism of replication stalling and recovery within repetitive DNA. Nat Commun 2022; 13:3953. [PMID: 35853874 PMCID: PMC9296464 DOI: 10.1038/s41467-022-31657-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/27/2022] [Indexed: 11/09/2022] Open
Abstract
Accurate chromosomal DNA replication is essential to maintain genomic stability. Genetic evidence suggests that certain repetitive sequences impair replication, yet the underlying mechanism is poorly defined. Replication could be directly inhibited by the DNA template or indirectly, for example by DNA-bound proteins. Here, we reconstitute replication of mono-, di- and trinucleotide repeats in vitro using eukaryotic replisomes assembled from purified proteins. We find that structure-prone repeats are sufficient to impair replication. Whilst template unwinding is unaffected, leading strand synthesis is inhibited, leading to fork uncoupling. Synthesis through hairpin-forming repeats is rescued by replisome-intrinsic mechanisms, whereas synthesis of quadruplex-forming repeats requires an extrinsic accessory helicase. DNA-induced fork stalling is mechanistically similar to that induced by leading strand DNA lesions, highlighting structure-prone repeats as an important potential source of replication stress. Thus, we propose that our understanding of the cellular response to replication stress may also be applied to DNA-induced replication stalling.
Collapse
Affiliation(s)
- Corella S Casas-Delucchi
- Genome Replication lab, Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Manuel Daza-Martin
- Genome Replication lab, Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Sophie L Williams
- Genome Replication lab, Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Gideon Coster
- Genome Replication lab, Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK.
| |
Collapse
|
32
|
Lisova AE, Baranovskiy AG, Morstadt LM, Babayeva ND, Tahirov TH. Efficient discrimination against RNA-containing primers by human DNA polymerase ε. Sci Rep 2022; 12:10163. [PMID: 35715491 PMCID: PMC9205888 DOI: 10.1038/s41598-022-14602-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/09/2022] [Indexed: 01/13/2023] Open
Abstract
DNA polymerase ε (Polε) performs bulk synthesis of DNA on the leading strand during genome replication. Polε binds two substrates, a template:primer and dNTP, and catalyzes a covalent attachment of dNMP to the 3' end of the primer. Previous studies have shown that Polε easily inserts and extends ribonucleotides, which may promote mutagenesis and genome instability. In this work, we analyzed the mechanisms of discrimination against RNA-containing primers by human Polε (hPolε), performing binding and kinetic studies at near-physiological salt concentration. Pre-steady-state kinetic studies revealed that hPolεCD extends RNA primers with approximately 3300-fold lower efficiency in comparison to DNA, and addition of one dNMP to the 3' end of an RNA primer increases activity 36-fold. Likewise, addition of one rNMP to the 3' end of a DNA primer reduces activity 38-fold. The binding studies conducted in the presence of 0.15 M NaCl revealed that human hPolεCD has low affinity to DNA (KD of 1.5 µM). Strikingly, a change of salt concentration from 0.1 M to 0.15 M reduces the stability of the hPolεCD/DNA complex by 25-fold. Upon template:primer binding, the incoming dNTP and magnesium ions make hPolε discriminative against RNA and chimeric RNA-DNA primers. In summary, our studies revealed that hPolε discrimination against RNA-containing primers is based on the following factors: incoming dNTP, magnesium ions, a steric gate for the primer 2'OH, and the rigid template:primer binding pocket near the catalytic site. In addition, we showed the importance of conducting functional studies at near-physiological salt concentration.
Collapse
Affiliation(s)
- Alisa E Lisova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lucia M Morstadt
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nigar D Babayeva
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
33
|
Zaffar E, Ferreira P, Sanchez-Pulido L, Boos D. The Role of MTBP as a Replication Origin Firing Factor. BIOLOGY 2022; 11:biology11060827. [PMID: 35741348 PMCID: PMC9219753 DOI: 10.3390/biology11060827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
Abstract
The initiation step of replication at replication origins determines when and where in the genome replication machines, replisomes, are generated. Tight control of replication initiation helps facilitate the two main tasks of genome replication, to duplicate the genome accurately and exactly once each cell division cycle. The regulation of replication initiation must ensure that initiation occurs during the S phase specifically, that no origin fires more than once per cell cycle, that enough origins fire to avoid non-replicated gaps, and that the right origins fire at the right time but only in favorable circumstances. Despite its importance for genetic homeostasis only the main molecular processes of eukaryotic replication initiation and its cellular regulation are understood. The MTBP protein (Mdm2-binding protein) is so far the last core replication initiation factor identified in metazoan cells. MTBP is the orthologue of yeast Sld7. It is essential for origin firing, the maturation of pre-replicative complexes (pre-RCs) into replisomes, and is emerging as a regulation focus targeted by kinases and by regulated degradation. We present recent insight into the structure and cellular function of the MTBP protein in light of recent structural and biochemical studies revealing critical molecular details of the eukaryotic origin firing reaction. How the roles of MTBP in replication and other cellular processes are mutually connected and are related to MTBP's contribution to tumorigenesis remains largely unclear.
Collapse
Affiliation(s)
- Eman Zaffar
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany; (E.Z.); (P.F.)
| | - Pedro Ferreira
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany; (E.Z.); (P.F.)
| | - Luis Sanchez-Pulido
- Medical Research Council Human Genetics Unit, IGC, University of Edinburgh, Edinburgh EH9 3JR, UK;
| | - Dominik Boos
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany; (E.Z.); (P.F.)
- Correspondence: ; Tel.: +49-201-183-4132
| |
Collapse
|
34
|
Ling JA, Frevert Z, Washington MT. Recent Advances in Understanding the Structures of Translesion Synthesis DNA Polymerases. Genes (Basel) 2022; 13:genes13050915. [PMID: 35627300 PMCID: PMC9141541 DOI: 10.3390/genes13050915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
DNA damage in the template strand causes replication forks to stall because replicative DNA polymerases are unable to efficiently incorporate nucleotides opposite template DNA lesions. To overcome these replication blocks, cells are equipped with multiple translesion synthesis polymerases that have evolved specifically to incorporate nucleotides opposite DNA lesions. Over the past two decades, X-ray crystallography has provided a wealth of information about the structures and mechanisms of translesion synthesis polymerases. This approach, however, has been limited to ground state structures of these polymerases bound to DNA and nucleotide substrates. Three recent methodological developments have extended our understanding of the structures and mechanisms of these polymerases. These include time-lapse X-ray crystallography, which allows one to identify novel reaction intermediates; full-ensemble hybrid methods, which allow one to examine the conformational flexibility of the intrinsically disordered regions of proteins; and cryo-electron microscopy, which allows one to determine the high-resolution structures of larger protein complexes. In this article, we will discuss how these three methodological developments have added to our understanding of the structures and mechanisms of translesion synthesis polymerases.
Collapse
|
35
|
Nakano T, Sasahara Y, Kikuchi A, Moriya K, Niizuma H, Niihori T, Shirota M, Funayama R, Nakayama K, Aoki Y, Kure S. Novel POLE mutations identified in patients with IMAGE-I syndrome cause aberrant subcellular localisation and protein degradation in the nucleus. J Med Genet 2022; 59:jmedgenet-2021-108300. [PMID: 35534205 PMCID: PMC9613869 DOI: 10.1136/jmedgenet-2021-108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/23/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND DNA replisome is a molecular complex that plays indispensable roles in normal DNA replication. IMAGE-I syndrome is a DNA replisome-associated genetic disease caused by biallelic mutations in the gene encoding DNA polymerase epsilon catalytic subunit 1 (POLE). However, the underlying molecular mechanisms remain largely unresolved. METHODS The clinical manifestations in two patients with IMAGE-I syndrome were characterised. Whole-exome sequencing was performed and altered mRNA splicing and protein levels of POLE were determined. Subcellular localisation, cell cycle analysis and DNA replication stress were assessed using fibroblasts and peripheral blood from the patients and transfected cell lines to determine the functional significance of POLE mutations. RESULTS Both patients presented with growth retardation, adrenal insufficiency, immunodeficiency and complicated diffuse large B-cell lymphoma. We identified three novel POLE mutations: namely, a deep intronic mutation, c.1226+234G>A, common in both patients, and missense (c.2593T>G) and in-frame deletion (c.711_713del) mutations in each patient. The unique deep intronic mutation produced aberrantly spliced mRNAs. All mutants showed significantly reduced, but not null, protein levels. Notably, the mutants showed severely diminished nuclear localisation, which was rescued by proteasome inhibitor treatment. Functional analysis revealed impairment of cell cycle progression and increase in the expression of phospho-H2A histone family member X in both patients. CONCLUSION These findings provide new insights regarding the mechanism via which POLE mutants are highly susceptible to proteasome-dependent degradation in the nucleus, resulting in impaired DNA replication and cell cycle progression, a characteristic of DNA replisome-associated diseases.
Collapse
Affiliation(s)
- Tomohiro Nakano
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kunihiko Moriya
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hidetaka Niizuma
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Sciences, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
36
|
Abstract
DNA replication in eukaryotic cells initiates from large numbers of sites called replication origins. Initiation of replication from these origins must be tightly controlled to ensure the entire genome is precisely duplicated in each cell cycle. This is accomplished through the regulation of the first two steps in replication: loading and activation of the replicative DNA helicase. Here we describe what is known about the mechanism and regulation of these two reactions from a genetic, biochemical, and structural perspective, focusing on recent progress using proteins from budding yeast. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK;
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London, UK;
| |
Collapse
|
37
|
Multiple roles of Pol epsilon in eukaryotic chromosome replication. Biochem Soc Trans 2022; 50:309-320. [PMID: 35129614 PMCID: PMC9022971 DOI: 10.1042/bst20210082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022]
Abstract
Pol epsilon is a tetrameric assembly that plays distinct roles during eukaryotic chromosome replication. It catalyses leading strand DNA synthesis; yet this function is dispensable for viability. Its non-catalytic domains instead play an essential role in the assembly of the active replicative helicase and origin activation, while non-essential histone-fold subunits serve a critical function in parental histone redeposition onto newly synthesised DNA. Furthermore, Pol epsilon plays a structural role in linking the RFC–Ctf18 clamp loader to the replisome, supporting processive DNA synthesis, DNA damage response signalling as well as sister chromatid cohesion. In this minireview, we discuss recent biochemical and structural work that begins to explain various aspects of eukaryotic chromosome replication, with a focus on the multiple roles of Pol epsilon in this process.
Collapse
|
38
|
DNA Polymerase-Parental DNA Interaction Is Essential for Helicase-Polymerase Coupling during Bacteriophage T7 DNA Replication. Int J Mol Sci 2022; 23:ijms23031342. [PMID: 35163266 PMCID: PMC8835902 DOI: 10.3390/ijms23031342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 11/17/2022] Open
Abstract
DNA helicase and polymerase work cooperatively at the replication fork to perform leading-strand DNA synthesis. It was believed that the helicase migrates to the forefront of the replication fork where it unwinds the duplex to provide templates for DNA polymerases. However, the molecular basis of the helicase-polymerase coupling is not fully understood. The recently elucidated T7 replisome structure suggests that the helicase and polymerase sandwich parental DNA and each enzyme pulls a daughter strand in opposite directions. Interestingly, the T7 polymerase, but not the helicase, carries the parental DNA with a positively charged cleft and stacks at the fork opening using a β-hairpin loop. Here, we created and characterized T7 polymerases each with a perturbed β-hairpin loop and positively charged cleft. Mutations on both structural elements significantly reduced the strand-displacement synthesis by T7 polymerase but had only a minor effect on DNA synthesis performed against a linear DNA substrate. Moreover, the aforementioned mutations eliminated synergistic helicase-polymerase binding and unwinding at the DNA fork and processive fork progressions. Thus, our data suggested that T7 polymerase plays a dominant role in helicase-polymerase coupling and replisome progression.
Collapse
|
39
|
Lo CY, Gao Y. Assembling bacteriophage T7 leading-strand replisome for structural investigation. Methods Enzymol 2022; 672:103-123. [PMID: 35934471 DOI: 10.1016/bs.mie.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Replicative helicase and polymerase form the leading-strand replisome that unwinds parental DNA and performs continuous leading-strand DNA synthesis. Uncoupling of the helicase-polymerase complex results in replication stress, replication errors, and genome instability. Although numerous replisomes from different biological systems have been reconstituted and characterized, structural investigations of the leading-strand replisome complex are hindered by its large size and dynamics. We have determined the first replisome structure on a fork substrate with bacteriophage T7 replisome as a model system. Here, we summarized our protocols to prepare and characterize the coupled T7 replisome complex. Similar methods can potentially be applied for structural investigations of more complicated replisomes.
Collapse
|
40
|
Grabarczyk DB. The Fork Protection Complex: A Regulatory Hub at the Head of the Replisome. Subcell Biochem 2022; 99:83-107. [PMID: 36151374 DOI: 10.1007/978-3-031-00793-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As well as accurately duplicating DNA, the eukaryotic replisome performs a variety of other crucial tasks to maintain genomic stability. For example, organizational elements, like cohesin, must be transferred from the front of the fork to the new strands, and when there is replication stress, forks need to be protected and checkpoint signalling activated. The Tof1-Csm3 (or Timeless-Tipin in humans) Fork Protection Complex (FPC) ensures efficient replisome progression and is required for a range of replication-associated activities. Recent studies have begun to reveal the structure of this complex, and how it functions within the replisome to perform its diverse roles. The core of the FPC acts as a DNA grip on the front of the replisome to regulate fork progression. Other flexibly linked domains and motifs mediate interactions with proteins and specific DNA structures, enabling the FPC to act as a hub at the head of the replication fork.
Collapse
Affiliation(s)
- Daniel B Grabarczyk
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, Würzburg, Germany.
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
41
|
van Schie JJM, de Lange J. The Interplay of Cohesin and the Replisome at Processive and Stressed DNA Replication Forks. Cells 2021; 10:3455. [PMID: 34943967 PMCID: PMC8700348 DOI: 10.3390/cells10123455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex facilitates faithful chromosome segregation by pairing the sister chromatids after DNA replication until mitosis. In addition, cohesin contributes to proficient and error-free DNA replication. Replisome progression and establishment of sister chromatid cohesion are intimately intertwined processes. Here, we review how the key factors in DNA replication and cohesion establishment cooperate in unperturbed conditions and during DNA replication stress. We discuss the detailed molecular mechanisms of cohesin recruitment and the entrapment of replicated sister chromatids at the replisome, the subsequent stabilization of sister chromatid cohesion via SMC3 acetylation, as well as the role and regulation of cohesin in the response to DNA replication stress.
Collapse
Affiliation(s)
- Janne J. M. van Schie
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Job de Lange
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
42
|
Jones ML, Baris Y, Taylor MRG, Yeeles JTP. Structure of a human replisome shows the organisation and interactions of a DNA replication machine. EMBO J 2021; 40:e108819. [PMID: 34694004 PMCID: PMC8634136 DOI: 10.15252/embj.2021108819] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/01/2023] Open
Abstract
The human replisome is an elaborate arrangement of molecular machines responsible for accurate chromosome replication. At its heart is the CDC45-MCM-GINS (CMG) helicase, which, in addition to unwinding the parental DNA duplex, arranges many proteins including the leading-strand polymerase Pol ε, together with TIMELESS-TIPIN, CLASPIN and AND-1 that have key and varied roles in maintaining smooth replisome progression. How these proteins are coordinated in the human replisome is poorly understood. We have determined a 3.2 Å cryo-EM structure of a human replisome comprising CMG, Pol ε, TIMELESS-TIPIN, CLASPIN and AND-1 bound to replication fork DNA. The structure permits a detailed understanding of how AND-1, TIMELESS-TIPIN and Pol ε engage CMG, reveals how CLASPIN binds to multiple replisome components and identifies the position of the Pol ε catalytic domain. Furthermore, the intricate network of contacts contributed by MCM subunits and TIMELESS-TIPIN with replication fork DNA suggests a mechanism for strand separation.
Collapse
|
43
|
Jenkyn-Bedford M, Jones ML, Baris Y, Labib KPM, Cannone G, Yeeles JTP, Deegan TD. A conserved mechanism for regulating replisome disassembly in eukaryotes. Nature 2021; 600:743-747. [PMID: 34700328 PMCID: PMC8695382 DOI: 10.1038/s41586-021-04145-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 11/28/2022]
Abstract
Replisome disassembly is the final step of eukaryotic DNA replication and is triggered by ubiquitylation of the CDC45-MCM-GINS (CMG) replicative helicase1-3. Despite being driven by evolutionarily diverse E3 ubiquitin ligases in different eukaryotes (SCFDia2 in budding yeast1, CUL2LRR1 in metazoa4-7), replisome disassembly is governed by a common regulatory principle, in which ubiquitylation of CMG is suppressed before replication termination, to prevent replication fork collapse. Recent evidence suggests that this suppression is mediated by replication fork DNA8-10. However, it is unknown how SCFDia2 and CUL2LRR1 discriminate terminated from elongating replisomes, to selectively ubiquitylate CMG only after termination. Here we used cryo-electron microscopy to solve high-resolution structures of budding yeast and human replisome-E3 ligase assemblies. Our structures show that the leucine-rich repeat domains of Dia2 and LRR1 are structurally distinct, but bind to a common site on CMG, including the MCM3 and MCM5 zinc-finger domains. The LRR-MCM interaction is essential for replisome disassembly and, crucially, is occluded by the excluded DNA strand at replication forks, establishing the structural basis for the suppression of CMG ubiquitylation before termination. Our results elucidate a conserved mechanism for the regulation of replisome disassembly in eukaryotes, and reveal a previously unanticipated role for DNA in preserving replisome integrity.
Collapse
Affiliation(s)
| | | | | | - Karim P M Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK
| | | | | | - Tom D Deegan
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK.
| |
Collapse
|
44
|
PCNA Loaders and Unloaders-One Ring That Rules Them All. Genes (Basel) 2021; 12:genes12111812. [PMID: 34828416 PMCID: PMC8618651 DOI: 10.3390/genes12111812] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
During each cell duplication, the entirety of the genomic DNA in every cell must be accurately and quickly copied. Given the short time available for the chore, the requirement of many proteins, and the daunting amount of DNA present, DNA replication poses a serious challenge to the cell. A high level of coordination between polymerases and other DNA and chromatin-interacting proteins is vital to complete this task. One of the most important proteins for maintaining such coordination is PCNA. PCNA is a multitasking protein that forms a homotrimeric ring that encircles the DNA. It serves as a processivity factor for DNA polymerases and acts as a landing platform for different proteins interacting with DNA and chromatin. Therefore, PCNA is a signaling hub that influences the rate and accuracy of DNA replication, regulates DNA damage repair, controls chromatin formation during the replication, and the proper segregation of the sister chromatids. With so many essential roles, PCNA recruitment and turnover on the chromatin is of utmost importance. Three different, conserved protein complexes are in charge of loading/unloading PCNA onto DNA. Replication factor C (RFC) is the canonical complex in charge of loading PCNA during the S-phase. The Ctf18 and Elg1 (ATAD5 in mammalian) proteins form complexes similar to RFC, with particular functions in the cell’s nucleus. Here we summarize our current knowledge about the roles of these important factors in yeast and mammals.
Collapse
|
45
|
Pinto MN, Ter Beek J, Ekanger LA, Johansson E, Barton JK. The [4Fe4S] Cluster of Yeast DNA Polymerase ε Is Redox Active and Can Undergo DNA-Mediated Signaling. J Am Chem Soc 2021; 143:16147-16153. [PMID: 34559527 PMCID: PMC8499023 DOI: 10.1021/jacs.1c07150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many DNA replication and DNA repair enzymes have been found to carry [4Fe4S] clusters. The major leading strand polymerase, DNA polymerase ε (Pol ε) from Saccharomyces cerevisiae, was recently reported to have a [4Fe4S] cluster located within the catalytic domain of the largest subunit, Pol2. Here the redox characteristics of the [4Fe4S] cluster in the context of that domain, Pol2CORE, are explored using DNA electrochemistry, and the effects of oxidation and rereduction on polymerase activity are examined. The exonuclease deficient variant D290A/E292A, Pol2COREexo-, was used to limit DNA degradation. While no redox signal is apparent for Pol2COREexo- on DNA-modified electrodes, a large cathodic signal centered at -140 mV vs NHE is observed after bulk oxidation. A double cysteine to serine mutant (C665S/C668S) of Pol2COREexo-, which lacks the [4Fe4S] cluster, shows no similar redox signal upon oxidation. Significantly, protein oxidation yields a sharp decrease in polymerization, while rereduction restores activity almost to the level of untreated enzyme. Moreover, the addition of reduced EndoIII, a bacterial DNA repair enzyme containing [4Fe4S]2+, to oxidized Pol2COREexo- bound to its DNA substrate also significantly restores polymerase activity. In contrast, parallel experiments with EndoIIIY82A, a variant of EndoIII, defective in DNA charge transport (CT), does not show restoration of activity of Pol2COREexo-. We propose a model in which EndoIII bound to the DNA duplex may shuttle electrons through DNA to the DNA-bound oxidized Pol2COREexo- via DNA CT and that this DNA CT signaling offers a means to modulate the redox state and replication by Pol ε.
Collapse
Affiliation(s)
- Miguel N Pinto
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Josy Ter Beek
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-910 87 Umeå, Sweden
| | - Levi A Ekanger
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.,Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-910 87 Umeå, Sweden
| | - Jacqueline K Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
46
|
'PIPs' in DNA polymerase: PCNA interaction affairs. Biochem Soc Trans 2021; 48:2811-2822. [PMID: 33196097 DOI: 10.1042/bst20200678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/15/2023]
Abstract
Interaction of PCNA with DNA polymerase is vital to efficient and processive DNA synthesis. PCNA being a homotrimeric ring possesses three hydrophobic pockets mostly involved in an interaction with its binding partners. PCNA interacting proteins contain a short sequence of eight amino acids, popularly coined as PIP motif, which snuggly fits into the hydrophobic pocket of PCNA to stabilize the interaction. In the last two decades, several PIP motifs have been mapped or predicted in eukaryotic DNA polymerases. In this review, we summarize our understandings of DNA polymerase-PCNA interaction, the function of such interaction during DNA synthesis, and emphasize the lacunae that persist. Because of the presence of multiple ligands in the replisome complex and due to many interaction sites in DNA polymerases, we also propose two modes of DNA polymerase positioning on PCNA required for DNA synthesis to rationalize the tool-belt model of DNA replication.
Collapse
|
47
|
Casari E, Gobbini E, Gnugnoli M, Mangiagalli M, Clerici M, Longhese MP. Dpb4 promotes resection of DNA double-strand breaks and checkpoint activation by acting in two different protein complexes. Nat Commun 2021; 12:4750. [PMID: 34362907 PMCID: PMC8346560 DOI: 10.1038/s41467-021-25090-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Budding yeast Dpb4 (POLE3/CHRAC17 in mammals) is a highly conserved histone fold protein that is shared by two protein complexes: the chromatin remodeler ISW2/hCHRAC and the DNA polymerase ε (Pol ε) holoenzyme. In Saccharomyces cerevisiae, Dpb4 forms histone-like dimers with Dls1 in the ISW2 complex and with Dpb3 in the Pol ε complex. Here, we show that Dpb4 plays two functions in sensing and processing DNA double-strand breaks (DSBs). Dpb4 promotes histone removal and DSB resection by interacting with Dls1 to facilitate the association of the Isw2 ATPase to DSBs. Furthermore, it promotes checkpoint activation by interacting with Dpb3 to facilitate the association of the checkpoint protein Rad9 to DSBs. Persistence of both Isw2 and Rad9 at DSBs is enhanced by the A62S mutation that is located in the Dpb4 histone fold domain and increases Dpb4 association at DSBs. Thus, Dpb4 exerts two distinct functions at DSBs depending on its interactors. The histone folding protein Dpb4 forms histone-like dimers within the ISW2 complex and the Pol ε complex in S. cerevisiae. Here the authors reveal insights into two distinct functions that Dpb4 exerts at DSBs depending on its interactors.
Collapse
Affiliation(s)
- Erika Casari
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Elisa Gobbini
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Marco Gnugnoli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Marco Mangiagalli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy.
| |
Collapse
|
48
|
Le TT, Ainsworth J, Polo Rivera C, Macartney T, Labib KP. Reconstitution of human CMG helicase ubiquitylation by CUL2LRR1 and multiple E2 enzymes. Biochem J 2021; 478:2825-2842. [PMID: 34195792 PMCID: PMC8331092 DOI: 10.1042/bcj20210315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Cullin ubiquitin ligases drive replisome disassembly during DNA replication termination. In worm, frog and mouse cells, CUL2LRR1 is required to ubiquitylate the MCM7 subunit of the CMG helicase. Here, we show that cullin ligases also drive CMG-MCM7 ubiquitylation in human cells, thereby making the helicase into a substrate for the p97 unfoldase. Using purified human proteins, including a panel of E2 ubiquitin-conjugating enzymes, we have reconstituted CMG helicase ubiquitylation, dependent upon neddylated CUL2LRR1. The reaction is highly specific to CMG-MCM7 and requires the LRR1 substrate targeting subunit, since replacement of LRR1 with the alternative CUL2 adaptor VHL switches ubiquitylation from CMG-MCM7 to HIF1. CUL2LRR1 firstly drives monoubiquitylation of CMG-MCM7 by the UBE2D class of E2 enzymes. Subsequently, CUL2LRR1 activates UBE2R1/R2 or UBE2G1/G2 to extend a single K48-linked ubiquitin chain on CMG-MCM7. Thereby, CUL2LRR1 converts CMG into a substrate for p97, which disassembles the ubiquitylated helicase during DNA replication termination.
Collapse
Affiliation(s)
- Thanh Thi Le
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Johanna Ainsworth
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Cristian Polo Rivera
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Thomas Macartney
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Karim P.M. Labib
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
49
|
Guilliam TA. Mechanisms for Maintaining Eukaryotic Replisome Progression in the Presence of DNA Damage. Front Mol Biosci 2021; 8:712971. [PMID: 34295925 PMCID: PMC8290200 DOI: 10.3389/fmolb.2021.712971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 12/04/2022] Open
Abstract
The eukaryotic replisome coordinates template unwinding and nascent-strand synthesis to drive DNA replication fork progression and complete efficient genome duplication. During its advancement along the parental template, each replisome may encounter an array of obstacles including damaged and structured DNA that impede its progression and threaten genome stability. A number of mechanisms exist to permit replisomes to overcome such obstacles, maintain their progression, and prevent fork collapse. A combination of recent advances in structural, biochemical, and single-molecule approaches have illuminated the architecture of the replisome during unperturbed replication, rationalised the impact of impediments to fork progression, and enhanced our understanding of DNA damage tolerance mechanisms and their regulation. This review focusses on these studies to provide an updated overview of the mechanisms that support replisomes to maintain their progression on an imperfect template.
Collapse
Affiliation(s)
- Thomas A. Guilliam
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
50
|
Willhoft O, Costa A. A structural framework for DNA replication and transcription through chromatin. Curr Opin Struct Biol 2021; 71:51-58. [PMID: 34218162 DOI: 10.1016/j.sbi.2021.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
In eukaryotic cells, DNA replication and transcription machineries uncoil nucleosomes along the double helix, to achieve the exposure of the single-stranded DNA template for nucleic acid synthesis. The replisome and RNA polymerases then redeposit histones onto DNA behind the advancing molecular motor, in a process that is crucial for epigenetic inheritance and homeostasis, respectively. Here, we compare and contrast the mechanisms by which these molecular machines advance through nucleosome arrays and discuss how chromatin remodellers can facilitate DNA replication and transcription.
Collapse
Affiliation(s)
- Oliver Willhoft
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|