1
|
Peng L, Min W, Chen R, Zhang L, Shen B, Xu W, Liu C. PdPtB Electrochemiluminescence Nanoenhancer and SiC@Au-PEDOT Nanowires-Based Detection of β-Amyloid Oligomers in Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59189-59198. [PMID: 38091553 DOI: 10.1021/acsami.3c14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
β-Amyloid oligomers (AβOs) are promising biomarkers for the diagnosis of Alzheimer's disease (AD). The present research introduces a novel electrochemiluminescence (ECL) immunosensor based on PdPtB nanoenhancer and SiC@Au-PEDOT nanowires (NWs) for the specific and ultrasensitive detection of AβOs. The PdPtB nanoenhancer exhibited excellent oxidase-like catalytic activity with in situ generation of reactive oxygen species (ROS) to enhance luminol ECL in neutral media. In addition, SiC@Au-PEDOT NWs were utilized as a biocompatible and conductive substrate for the modification of the glassy carbon electrode (GCE). With this design, the ECL immunosensor showed outstanding AβOs analytical performance without exogenous coreactant. The ECL immunosensor demonstrated a favorable linear range of 20 pM to 20 nM and a detection limit of 10 pM under optimized conditions with potential straightforward clinical application. In general, the developed ECL immunosensor provides a promising strategy for the early diagnosis of AD.
Collapse
Affiliation(s)
- Lingshuang Peng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Weiziyang Min
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Queen Mary School, Nanchang University, Nanchang 330036, China
| | - Rui Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lu Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Bo Shen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wenchun Xu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Changjin Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Zhang Z, Tang Y, Ying Y, Guo J, Gan M, Jiang Y, Xing C, Pan S, Xu M, Zhou Y, Zhang H, Leung CW, Huang H, Mak CL, Fei L. Multistep nucleation visualized during solid-state crystallization. MATERIALS HORIZONS 2022; 9:1670-1678. [PMID: 35470363 DOI: 10.1039/d2mh00174h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mechanisms of nucleation have been debated for more than a century, despite successes of classical nucleation theory. The nucleation process has been recently argued as involving a nonclassical mechanism (the "two-step" mechanism) in which an intermediate step occurs before the formation of a nascent ordered phase. However, a thorough understanding of this mechanism, in terms of both microscopic kinetics and thermodynamics, remains experimentally challenging. Here, in situ observations using transmission electron microscopy on a solid-state nucleation case indicate that early-stage crystallization can follow the non-classical pathway, yet proceed via a more complex manner in which multiple metastable states precede the emergence of a stable nucleus. The intermediate steps were sequentially isolated as spinodal decomposition of amorphous precursor, mass transport and structural oscillations between crystalline and amorphous states. Our experimental and theoretical analyses support the idea that the energetic favorability is the driving force for the observed sequence of events. Due to the broad applicability of solid-state crystallization, the findings of this study offer new insights into modern nucleation theory and a potential avenue for materials design.
Collapse
Affiliation(s)
- Zhouyang Zhang
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Yujie Tang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yiran Ying
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Junqing Guo
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Min Gan
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Yateng Jiang
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Chunxian Xing
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shanshan Pan
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ming Xu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yangbo Zhou
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Haitao Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chi Wah Leung
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Haitao Huang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Chee Leung Mak
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Linfeng Fei
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
3
|
Zhao C, Kisslinger K, Huang X, Bai J, Liu X, Lin CH, Yu LC, Lu M, Tong X, Zhong H, Pattammattel A, Yan H, Chu Y, Ghose S, Liu M, Chen-Wiegart YCK. Design nanoporous metal thin films via solid state interfacial dealloying. NANOSCALE 2021; 13:17725-17736. [PMID: 34515717 DOI: 10.1039/d1nr03709a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thin-film solid-state interfacial dealloying (thin-film SSID) is an emerging technique to design nanoarchitecture thin films. The resulting controllable 3D bicontinuous nanostructure is promising for a range of applications including catalysis, sensing, and energy storage. Using a multiscale microscopy approach, we combine X-ray and electron nano-tomography to demonstrate that besides dense bicontinuous nanocomposites, thin-film SSID can create a very fine (5-15 nm) nanoporous structure. Not only is such a fine feature among one of the finest fabrications by metal-agent dealloying, but a multilayer thin-film design enables creating nanoporous films on a wider range of substrates for functional applications. Through multimodal synchrotron diffraction and spectroscopy analysis with which the materials' chemical and structural evolution in this novel approach is characterized in details, we further deduce that the contribution of change in entropy should be considered to explain the phase evolution in metal-agent dealloying, in addition to the commonly used enthalpy term in prior studies. The discussion is an important step leading towards better explaining the underlying design principles for controllable 3D nanoarchitecture, as well as exploring a wider range of elemental and substrate selections for new applications.
Collapse
Affiliation(s)
- Chonghang Zhao
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Xiaojing Huang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jianming Bai
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Xiaoyang Liu
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Cheng-Hung Lin
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Lin-Chieh Yu
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Ming Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Hui Zhong
- Department of Joint Photon Science Institute, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ajith Pattammattel
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Hanfei Yan
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yong Chu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sanjit Ghose
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Mingzhao Liu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yu-Chen Karen Chen-Wiegart
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
4
|
Zeng S, Shan S, Lu A, Wang S, Caracciolo DT, Robinson RJ, Shang G, Xue L, Zhao Y, Zhang A, Liu Y, Liu S, Liu Z, Bai F, Wu J, Wang H, Zhong CJ. Copper-alloy catalysts: structural characterization and catalytic synergies. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00179e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent progress in the development of copper-alloy catalysts is highlighted, focusing on the structural and mechanistic characterizations of the catalysts in different catalytic reactions, and challenges and opportunities in future research.
Collapse
Affiliation(s)
- Shanghong Zeng
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Shiyao Shan
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Aolin Lu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Shan Wang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Dominic T. Caracciolo
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Richard J. Robinson
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Guojun Shang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Lei Xue
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Yuansong Zhao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Aiai Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Yang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Shangpeng Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Ze Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Fenghua Bai
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Jinfang Wu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Hong Wang
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, 010051, P.R. China
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|