1
|
Schnider ST, Vigano MA, Affolter M, Aguilar G. Functionalized Protein Binders in Developmental Biology. Annu Rev Cell Dev Biol 2024; 40:119-142. [PMID: 39038471 DOI: 10.1146/annurev-cellbio-112122-025214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Developmental biology has greatly profited from genetic and reverse genetic approaches to indirectly studying protein function. More recently, nanobodies and other protein binders derived from different synthetic scaffolds have been used to directly dissect protein function. Protein binders have been fused to functional domains, such as to lead to protein degradation, relocalization, visualization, or posttranslational modification of the target protein upon binding. The use of such functionalized protein binders has allowed the study of the proteome during development in an unprecedented manner. In the coming years, the advent of the computational design of protein binders, together with further advances in scaffold engineering and synthetic biology, will fuel the development of novel protein binder-based technologies. Studying the proteome with increased precision will contribute to a better understanding of the immense molecular complexities hidden in each step along the way to generate form and function during development.
Collapse
Affiliation(s)
| | | | | | - Gustavo Aguilar
- Current affiliation: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Biozentrum, Universität Basel, Basel, Switzerland;
| |
Collapse
|
2
|
Zhang Z, Xue B, Chen Y, Shao Y, Wang D. A systematic review and meta-analysis combined with bioinformatic analysis on the predictive value of E-cadherin in patients with renal cell carcinoma. Expert Rev Mol Diagn 2024; 24:859-871. [PMID: 39187988 DOI: 10.1080/14737159.2024.2392641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 03/08/2024] [Indexed: 08/28/2024]
Abstract
OBJECTIVES Renal cell carcinoma (RCC) is the most common cancer of the kidney. This study aims to evaluate the potential predictive value of E-cadherin, a marker of the epithelial mesenchymal transit (EMT) process that has been associated with tumor metastasis. METHODS We searched PubMed, Embase, and Cochrane Library to identify prospective studies. Hazard ratios (HRs), odds ratios (ORs), and 95% confidence intervals (CIs) were summarized to validate the relationship between E-cadherin and survival and clinical characteristics. The quality of the included studies was assessed using the NOS table. Then, we analyzed genetic data and clinical characteristics from The Cancer Genome Atlas Program (TCGA) database using R language with the dplyr package for validation. RESULTS Including 21 articles. The analysis revealed a strong link between high E-cadherin expression and favorable prognosis (for OS, HR = 0.35, 95% CI: 0.19-0.62; for PFS, HR = 0.19, 95% CI: 0.03-0.53; for DSS, HR = 0.25, 95% CI: 0.08-0.76; for RFS, HR = 0.71, 95% CI: 0.44-1.16; for DFS, HR = 0.28, 95% CI: 0.13-0.61; for T stage, OR = 0.21, 95% CI: 0.11-0.41; for N stage, OR = 0.07, 95%CI: 0.02-0.25; for M stage, OR = 0.12, 95% CI: 0.02-0.60; for clinical stage, OR = 0.29, 95% CI: 0.18-0.47; for nuclear grade, OR = 0.23, 95% CI: 0.13-0.41; for tumor size, OR = 0.49, 95% CI: 0.26-0.92). The findings were supported by bioinformatic analysis which used TCGA RCC patient's cohort (P < 0.01). CONCLUSION Based on the current data, E-cadherin may predict a better prognosis in RCC patients.
Collapse
Affiliation(s)
- Zikuan Zhang
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bo Xue
- Shanxi Medical University, Taiyuan, Shanxi, China
| | | | - Yuan Shao
- Tianjin Medical University, Tianjin, China
| | - Dongwen Wang
- Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Barton LJ, Roa-de la Cruz L, Lehmann R, Lin B. The journey of a generation: advances and promises in the study of primordial germ cell migration. Development 2024; 151:dev201102. [PMID: 38607588 PMCID: PMC11165723 DOI: 10.1242/dev.201102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The germline provides the genetic and non-genetic information that passes from one generation to the next. Given this important role in species propagation, egg and sperm precursors, called primordial germ cells (PGCs), are one of the first cell types specified during embryogenesis. In fact, PGCs form well before the bipotential somatic gonad is specified. This common feature of germline development necessitates that PGCs migrate through many tissues to reach the somatic gonad. During their journey, PGCs must respond to select environmental cues while ignoring others in a dynamically developing embryo. The complex multi-tissue, combinatorial nature of PGC migration is an excellent model for understanding how cells navigate complex environments in vivo. Here, we discuss recent findings on the migratory path, the somatic cells that shepherd PGCs, the guidance cues somatic cells provide, and the PGC response to these cues to reach the gonad and establish the germline pool for future generations. We end by discussing the fate of wayward PGCs that fail to reach the gonad in diverse species. Collectively, this field is poised to yield important insights into emerging reproductive technologies.
Collapse
Affiliation(s)
- Lacy J. Barton
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Lorena Roa-de la Cruz
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Ruth Lehmann
- Whitehead Institute and Department of Biology, MIT, 455 Main Street, Cambridge, MA 02142, USA
| | - Benjamin Lin
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
4
|
Barton LJ, Sanny J, Packard Dawson E, Nouzova M, Noriega FG, Stadtfeld M, Lehmann R. Juvenile hormones direct primordial germ cell migration to the embryonic gonad. Curr Biol 2024; 34:505-518.e6. [PMID: 38215744 PMCID: PMC10872347 DOI: 10.1016/j.cub.2023.12.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/31/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024]
Abstract
Germ cells are essential to sexual reproduction. Across the animal kingdom, extracellular signaling isoprenoids, such as retinoic acids (RAs) in vertebrates and juvenile hormones (JHs) in invertebrates, facilitate multiple processes in reproduction. Here we investigated the role of these potent signaling molecules in embryonic germ cell development, using JHs in Drosophila melanogaster as a model system. In contrast to their established endocrine roles during larval and adult germline development, we found that JH signaling acts locally during embryonic development. Using an in vivo biosensor, we observed active JH signaling first within and near primordial germ cells (PGCs) as they migrate to the developing gonad. Through in vivo and in vitro assays, we determined that JHs are both necessary and sufficient for PGC migration. Analysis into the mechanisms of this newly uncovered paracrine JH function revealed that PGC migration was compromised when JHs were decreased or increased, suggesting that specific titers or spatiotemporal JH dynamics are required for robust PGC colonization of the gonad. Compromised PGC migration can impair fertility and cause germ cell tumors in many species, including humans. In mammals, retinoids have many roles in development and reproduction. We found that like JHs in Drosophila, RA was sufficient to impact mouse PGC migration in vitro. Together, our study reveals a previously unanticipated role of isoprenoids as local effectors of pre-gonadal PGC development and suggests a broadly shared mechanism in PGC migration.
Collapse
Affiliation(s)
- Lacy J Barton
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | - Justina Sanny
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Emily Packard Dawson
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Marcela Nouzova
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, 11200 SW 8(th) Street, Miami, FL 33199, USA; Institute of Parasitology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
| | - Fernando Gabriel Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, 11200 SW 8(th) Street, Miami, FL 33199, USA; Department of Parasitology, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Matthias Stadtfeld
- Sanford I. Weill Department of Medicine, Weill Cornell Medicine, 413 E 69th Street, New York, NY, USA
| | - Ruth Lehmann
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA; Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
Glaser KM, Doon-Ralls J, Walters N, Rima XY, Rambold AS, Réategui E, Lämmermann T. Arp2/3 complex and the pentose phosphate pathway regulate late phases of neutrophil swarming. iScience 2024; 27:108656. [PMID: 38205244 PMCID: PMC10777075 DOI: 10.1016/j.isci.2023.108656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/29/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
Neutrophil swarming is an essential process of the neutrophil response to many pathological conditions. Resultant neutrophil accumulations are hallmarks of acute tissue inflammation and infection, but little is known about their dynamic regulation. Technical limitations to spatiotemporally resolve individual cells in dense neutrophil clusters and manipulate these clusters in situ have hampered recent progress. We here adapted an in vitro swarming-on-a-chip platform for the use with confocal laser-scanning microscopy to unravel the complexity of single-cell responses during neutrophil crowding. Confocal sectioning allowed the live visualization of subcellular components, including mitochondria, cell membranes, cortical actin, and phagocytic cups, inside neutrophil clusters. Based on this experimental setup, we identify that chemical inhibition of the Arp2/3 complex causes cell death in crowding neutrophils. By visualizing spatiotemporal patterns of reactive oxygen species (ROS) production in developing neutrophil swarms, we further demonstrate a regulatory role of the metabolic pentose phosphate pathway for ROS production and neutrophil cluster growth.
Collapse
Affiliation(s)
- Katharina M. Glaser
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), 79108 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Jacob Doon-Ralls
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Nicole Walters
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Xilal Y. Rima
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Angelika S. Rambold
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Eduardo Réategui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, 48149 Münster, Germany
| |
Collapse
|
6
|
Deshpande G, Ng C, Jourjine N, Chiew JW, Dasilva J, Schedl P. Hedgehog signaling guides migration of primordial germ cells to the Drosophila somatic gonad. Genetics 2023; 225:iyad165. [PMID: 37708366 PMCID: PMC10627259 DOI: 10.1093/genetics/iyad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
In addition to inducing nonautonomous specification of cell fate in both Drosophila and vertebrates, the Hedgehog pathway guides cell migration in a variety of different tissues. Although its role in axon guidance in the vertebrate nervous system is widely recognized, its role in guiding the migratory path of primordial germ cells (PGCs) from the outside surface of the Drosophila embryo through the midgut and mesoderm to the SGPs (somatic gonadal precursors) has been controversial. Here we present new experiments demonstrating (1) that Hh produced by mesodermal cells guides PGC migration, (2) that HMG CoenzymeA reductase (Hmgcr) potentiates guidance signals emanating from the SGPs, functioning upstream of hh and of 2 Hh pathway genes important for Hh-containing cytonemes, and (3) that factors required in Hh receiving cells in other contexts function in PGCs to help direct migration toward the SGPs. We also compare the data reported by 4 different laboratories that have studied the role of the Hh pathway in guiding PGC migration.
Collapse
Affiliation(s)
- Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Chris Ng
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Nicholas Jourjine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Joy Wan Chiew
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Juliana Dasilva
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
7
|
Lin B, Luo J, Lehmann R. An AMPK phosphoregulated RhoGEF feedback loop tunes cortical flow-driven amoeboid migration in vivo. SCIENCE ADVANCES 2022; 8:eabo0323. [PMID: 36103538 PMCID: PMC9473612 DOI: 10.1126/sciadv.abo0323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/29/2022] [Indexed: 05/31/2023]
Abstract
Development, morphogenesis, immune system function, and cancer metastasis rely on the ability of cells to move through diverse tissues. To dissect migratory cell behavior in vivo, we developed cell type-specific imaging and perturbation techniques for Drosophila primordial germ cells (PGCs). We find that PGCs use global, retrograde cortical actin flows for orientation and propulsion during guided developmental homing. PGCs use RhoGEF2, a RhoA-specific RGS-RhoGEF, as a dose-dependent regulator of cortical flow through a feedback loop requiring its conserved PDZ and PH domains for membrane anchoring and local RhoA activation. This feedback loop is regulated for directional migration by RhoGEF2 availability and requires AMPK rather than canonical Gα12/13 signaling. AMPK multisite phosphorylation of RhoGEF2 near a conserved EB1 microtubule-binding SxIP motif releases RhoGEF2 from microtubule-dependent inhibition. Thus, we establish the mechanism by which global cortical flow and polarized RhoA activation can be dynamically adapted during natural cell navigation in a changing environment.
Collapse
Affiliation(s)
- Benjamin Lin
- Skirball Institute and Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jonathan Luo
- Skirball Institute and Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ruth Lehmann
- Skirball Institute and Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Lepeta K, Bauer M, Aguilar G, Vigano MA, Matsuda S, Affolter M. Studying Protein Function Using Nanobodies and Other Protein Binders in Drosophila. Methods Mol Biol 2022; 2540:219-237. [PMID: 35980580 DOI: 10.1007/978-1-0716-2541-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The direct manipulation of proteins by nanobodies and other protein binders has become an additional and valuable approach to investigate development and homeostasis in Drosophila. In contrast to other techniques, that indirectly interfere with proteins via their nucleic acids (CRISPR, RNAi, etc.), protein binders permit direct and acute protein manipulation. Since the first use of a nanobody in Drosophila a decade ago, many different applications exploiting protein binders have been introduced. Most of these applications use nanobodies against GFP to regulate GFP fusion proteins. In order to exert specific protein manipulations, protein binders are linked to domains that confer them precise biochemical functions. Here, we reflect on the use of tools based on protein binders in Drosophila. We describe their key features and provide an overview of the available reagents. Finally, we briefly explore the future avenues that protein binders might open up and thus further contribute to better understand development and homeostasis of multicellular organisms.
Collapse
Affiliation(s)
| | - Milena Bauer
- Biozentrum der Universität Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
9
|
Profile of Ruth Lehmann. Proc Natl Acad Sci U S A 2021; 118:2114462118. [PMID: 34518216 DOI: 10.1073/pnas.2114462118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
|
10
|
Kim JH, Hanlon CD, Vohra S, Devreotes PN, Andrew DJ. Hedgehog signaling and Tre1 regulate actin dynamics through PI(4,5)P 2 to direct migration of Drosophila embryonic germ cells. Cell Rep 2021; 34:108799. [PMID: 33657369 PMCID: PMC8023404 DOI: 10.1016/j.celrep.2021.108799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 01/09/2023] Open
Abstract
The Tre1 G-protein coupled receptor (GPCR) was discovered to be required for Drosophila germ cell (GC) coalescence almost two decades ago, yet the molecular events both upstream and downstream of Tre1 activation remain poorly understood. To gain insight into these events, we describe a bona fide null allele and both untagged and tagged versions of Tre1. We find that the primary defect with complete Tre1 loss is the failure of GCs to properly navigate, with GC mis-migration occurring from early stages. We find that Tre1 localizes with F-actin at the migration front, along with PI(4,5)P2; dPIP5K, an enzyme that generates PI(4,5)P2; and dWIP, a protein that binds activated Wiskott-Aldrich syndrome protein (WASP), which stimulates F-actin polymerization. We show that Tre1 is required for polarized accumulation of F-actin, PI(4,5)P2, and dPIP5K. Smoothened also localizes with F-actin at the migration front, and Hh, through Smo, increases levels of Tre1 at the plasma membrane and Tre1’s association with dPIP5K. Kim et al. uncover molecular and cellular events upstream and downstream of the Tre1 G-protein coupled receptor (GPCR), which is required for germ cell navigation in Drosophila. Hedgehog signaling through Smoothened localizes Tre1 to activate F-actin assembly through dPIP5K, PI(4,5)P2, and WASP.
Collapse
Affiliation(s)
- Ji Hoon Kim
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Caitlin D Hanlon
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sunaina Vohra
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deborah J Andrew
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Nelson KA, Warder BN, DiNardo S, Anllo L. Dissection and Live-Imaging of the Late Embryonic Drosophila Gonad. J Vis Exp 2020:10.3791/61872. [PMID: 33135688 PMCID: PMC7878017 DOI: 10.3791/61872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The Drosophila melanogaster male embryonic gonad is an advantageous model to study various aspects of developmental biology including, but not limited to, germ cell development, piRNA biology, and niche formation. Here, we present a dissection technique to live-image the gonad ex vivo during a period when in vivo live-imaging is highly ineffective. This protocol outlines how to transfer embryos to an imaging dish, choose appropriately-staged male embryos, and dissect the gonad from its surrounding tissue while still maintaining its structural integrity. Following dissection, gonads can be imaged using a confocal microscope to visualize dynamic cellular processes. The dissection procedure requires precise timing and dexterity, but we provide insight on how to prevent common mistakes and how to overcome these challenges. To our knowledge this is the first dissection protocol for the Drosophila embryonic gonad, and will permit live-imaging during an otherwise inaccessible window of time. This technique can be combined with pharmacological or cell-type specific transgenic manipulations to study any dynamic processes occurring within or between the cells in their natural gonadal environment.
Collapse
Affiliation(s)
- Kara A. Nelson
- Cell and Developmental Biology Department and the Penn Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Bailey N. Warder
- Cell and Developmental Biology Department and the Penn Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Stephen DiNardo
- Cell and Developmental Biology Department and the Penn Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Lauren Anllo
- Cell and Developmental Biology Department and the Penn Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania;
| |
Collapse
|