1
|
Shao W, Xing Z, Xu X, Ye D, Yan R, Ma T, Wang Y, Zeng Z, Yin B, Cheng C, Li S. Bioinspired Proton Pump on Ferroelectric HfO 2-Coupled Ir Catalysts with Bidirectional Hydrogen Spillover for pH-Universal and Superior Hydrogen Production. J Am Chem Soc 2024; 146:27486-27498. [PMID: 39198263 DOI: 10.1021/jacs.4c08100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
The improvement of hydrogen evolution reaction kinetics can be largely accelerated by introducing a well-designed hydrogen spillover pathway into the catalysts. However, the driving force and mechanism of hydrogen migration on the surface of catalysts are poorly understood and are rarely explored in depth. Here, inspired by the specific ferroelectric property of HfO2, Mn-O-Ca sites in Mn4CaO5, and Fe-Fe sites in hydrogenases, we constructed a bioinspired HfO2 coupled with Ir catalysts (Ir/HfO2@C) with an alkaline hydrogen reverse spillover effect from HfO2 to interface and acid hydrogen spillover effect from Ir to interface. Benefiting from the bidirectional hydrogen spillover pathways controlled by pH, Ir/HfO2@C displays a narrow overpotential difference between acidic and alkaline electrolytes. Remarkably, Ir/HfO2@C shows a remarkable mass current density and turnover frequency value, far exceeding the benchmark Ir/C by 20.6 times. More importantly, this Ir/HfO2@C achieves extraordinarily low overpotentials of 146 and 39 mV at 10 mV cm-2 in seawater and alkaline seawater, respectively. The anion-exchange membrane water electrolyzer equipped with Ir/HfO2@C as a cathode exhibits excellent and stable H2-evolution performance on 2.22 V at 1.0 A cm-2. We expect that the bioinspired strategy will provide a new concept for designing catalytic materials for efficient and pH-universal electrochemical hydrogen production.
Collapse
Affiliation(s)
- Wenjie Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaohui Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Daoping Ye
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Wang
- Center for Microscopy and Analysis, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Bo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Yue H, Guo Z, Zhou Z, Zhang X, Guo W, Zhen S, Wang P, Wang K, Yuan W. S-S Bond Strategy at Sulfide Heterointerface: Reversing Charge Transfer and Constructing Hydrogen Spillover for Boosted Hydrogen Evolution. Angew Chem Int Ed Engl 2024:e202409465. [PMID: 39196822 DOI: 10.1002/anie.202409465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 08/30/2024]
Abstract
Developing efficient electrocatalyst in sulfides for hydrogen evolution reaction (HER) still poses challenges due to the lack of understanding the role of sulfide heterointerface. Here, we report a sulfide heterostructure RuSx/NbS2, which is composed of 3R-type NbS2 loaded by amorphous RuSx nanoparticles with S-S bonds formed at the interface. As HER electrocatalyst, the RuSx/NbS2 shows remarkable low overpotential of 38 mV to drive a current density of 10 mA cm-2 in acid, and also low Tafel slope of 51.05 mV dec-1. The intrinsic activity of RuSx/NbS2 is much higher than that of Ru/NbS2 reference as well as the commercial Pt/C. Both experiments and theoretical calculations unveil a reversed charge transfer at the interface from NbS2 to RuSx that driven by the formation of S-S bonds, resulting in electron-rich Ru configuration for strong hydrogen adsorption. Meanwhile, electronic redistribution induced by the sulfide heterostructure facilitates hydrogen spillover (HSo) effect in this system, leading to accelerated hydrogen desorption at the basal plane of NbS2. This study provides an effective S-S bond strategy in sulfide heterostructure to synergistically modulate the charge transfer and adsorption thermodynamics, which is very valuable for the development of efficient electrocatalysts in practical applications.
Collapse
Affiliation(s)
- Haoyu Yue
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhongnan Guo
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ziwen Zhou
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xuemeng Zhang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenjing Guo
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuang Zhen
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Pu Wang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kang Wang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenxia Yuan
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
3
|
Bai XJ, Yang C, Tang Z. Enabling long-distance hydrogen spillover in nonreducible metal-organic frameworks for catalytic reaction. Nat Commun 2024; 15:6263. [PMID: 39048573 PMCID: PMC11269641 DOI: 10.1038/s41467-024-50706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
Hydrogen spillover is an extraordinary effect in heterogeneous catalysis and hydrogen storage, which refers to the surface migration of metal particle-activated hydrogen atoms over the solid supports. Historical studies on this phenomenon have mostly been limited to reducible metal oxides where the long-distance proton-electron coupled migration mechanism has been established, yet the key question remains on how to surmount short-distance and defect-dependent hydrogen migration on nonreducible supports. By demerging hydrogen migration and hydrogenation reaction, here we demonstrate that the hydrogen spillover in nonreducible metal-organic frameworks (MOFs) can be finely modulated by the ligand functional groups or embedded water molecules, enabling significant long-distance (exceed 50 nm) movement of activated hydrogen. Furthermore, using sandwich nanostructured MOFs@Pt@MOFs as catalysts, we achieve highly selective hydrogenation of N-heteroarenes via controllable hydrogen spillover from Pt to MOFs-shell. We anticipate that this work will enhance the understanding of hydrogen spillover and shed light on de novo design of MOFs supported catalysts for many important reactions involving hydrogen.
Collapse
Affiliation(s)
- Xiao-Jue Bai
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
| | - Caoyu Yang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhiyong Tang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology, Beijing, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
4
|
Wang Z, Zhang Y, Zhang H, Sun Q, He X, Ji H. Waste Plastic-Supported Pd Single-Atom Catalyst for Hydrogenation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3058. [PMID: 38998141 PMCID: PMC11242047 DOI: 10.3390/ma17133058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
As worldwide plastic pollution continues to rise, innovative ideas for effective reuse and recycling of waste plastic are needed. Single-atom catalysts (SACs), which are known for their high activity and selectivity, present unique advantages in facilitating plastic degradation and conversion. Waste plastic can be used as a support or raw material to create SACs, which reduces waste generation while simultaneously utilizing waste as a resource. This work successfully utilized waste plastic polyurethane (PU) as a support, through a unique Rapid Thermal Processing Reactor (RTPR) to synthesize an efficient Pd1/PU SACs. At 25 °C and 0.5 MPa H2, Pd1/PU displayed outstanding activity and selectivity in the hydrogenation of styrene, as well as remarkable stability. Pd1/PU performed well in hydrogenating a variety of common substrates. These findings highlight the great potential of SACs in plastic waste reuse and recycling, offering intriguing solutions to the global plastic pollution problem.
Collapse
Affiliation(s)
- Ziyue Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Z.W.); (Y.Z.); (H.Z.); (Q.S.)
| | - Ying Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Z.W.); (Y.Z.); (H.Z.); (Q.S.)
| | - Hao Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Z.W.); (Y.Z.); (H.Z.); (Q.S.)
| | - Qingdi Sun
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Z.W.); (Y.Z.); (H.Z.); (Q.S.)
| | - Xiaohui He
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Z.W.); (Y.Z.); (H.Z.); (Q.S.)
- Guangdong Technology Research Center for Synthesis and Separation of Thermosensitive Chemicals, Guangzhou 510275, China
| | - Hongbing Ji
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Z.W.); (Y.Z.); (H.Z.); (Q.S.)
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
5
|
Tan R, Wang X, Kong Y, Ji Q, Zhan Q, Xiong Q, Mu X, Li L. Liberating C-H Bond Activation: Achieving 56% Quantum Efficiency in Photocatalytic Cyclohexane Dehydrogenation. J Am Chem Soc 2024; 146:14149-14156. [PMID: 38717984 DOI: 10.1021/jacs.4c02792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The technology of liquid organic hydrogen carriers presents great promise for large-scale hydrogen storage. Nevertheless, the activation of inert C(sp3)-H bonds in hydrocarbon carriers poses formidable challenges, resulting in a sluggish dehydrogenation process and necessitating high operating temperatures. Here, we break the shackles of C-H bond activation under visible light irradiation by fabricating subnanometer Pt clusters on defective Ce-Zr solid solutions. We achieved an unprecedented hydrogen production rate of 2601 mmol gcat.-1 h-1 (turnover frequency >50,000 molH2 molPt-1 h-1) from cyclohexane, surpassing the most advanced thermo- and photocatalysts. By optimizing the temperature-dominated hydrogen transfer process, achievable by harnessing hitherto wasted infrared light in sunlight, an astonishing 56% apparent quantum efficiency and a 5.2% solar-to-hydrogen efficiency are attained at 353 K. Our research stands as one of the most effective photocatalytic processes to date, holding profound practical significance in the utilization of solar energy and the exploitation of alkanes.
Collapse
Affiliation(s)
- Ruike Tan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xinhui Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yuxiang Kong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Qing Ji
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Qingyun Zhan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Qingchuan Xiong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaoyue Mu
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Lu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
6
|
Zheng Q, Xu H, Yao Y, Dai J, Wang J, Hou W, Zhao L, Zou X, Zhan G, Wang R, Wang K, Zhang L. Cobalt Single-Atom Reverse Hydrogen Spillover for Efficient Electrochemical Water Dissociation and Dechlorination. Angew Chem Int Ed Engl 2024; 63:e202401386. [PMID: 38488840 DOI: 10.1002/anie.202401386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 04/05/2024]
Abstract
Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single-atom electrode with Co single atoms anchored on the inherent oxide layer of titanium foam (Co1-TiOx/Ti), which can efficiently dissociate water into H* and simultaneously inhibit the recombination of H*, by taking advantage of the single-atom reverse hydrogen spillover effect. Experimental and theoretical calculations demonstrated that H* could be rapidly generated on the oxide layer of titanium foam, and then overflowed to the adjacent Co single atom for the reductive dechlorination. Using chloramphenicol as a proof-of-concept verification, the resulting Co1-TiOx/Ti monolithic electrode exhibited an unprecedented performance with almost 100 % dechlorination at -1.0 V, far superior to that of traditional indirect reduction-driven commercial Pd/C (52 %) and direct reduction-driven Co1-N-C (44 %). Moreover, its dechlorination rate constant of 1.64 h-1 was 4.3 and 8.6 times more active than those of Pd/C (0.38 h-1) and Co1-N-C (0.19 h-1), respectively. Our research sheds light on the rational design of hydrogen spillover-related electrocatalysts to simultaneously improve the H* generation, transfer, and utilization for environmental and energy applications.
Collapse
Affiliation(s)
- Qian Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| | - Hengyue Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, R. P., China
| | - Yancai Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| | - Jie Dai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| | - Jiaxian Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| | - Wei Hou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| | - Long Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| | - Xingyue Zou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| | - Guangming Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| | - Ruizhao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| | - Kaiyuan Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, R. P., China
| |
Collapse
|
7
|
Meng F, Yang X, Zhao S, Li Z, Qi Y, Yang H, Qin Y, Zhang B. Tailoring the Brønsted acidity of Ti-OH species by regulating Pt-TiO 2 interaction. CHEMSUSCHEM 2024; 17:e202301410. [PMID: 38117254 DOI: 10.1002/cssc.202301410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Bifunctional catalysts comprising metal and acid sites are commonly used for many reactions. Interfacial acid sites impact intermediate reactions more than other sites. However, controlling the type and amounts of interfacial acid sites by regulating metal-support interaction (MSI) via traditional methods is difficult. Thus, the influence of MSI on interfacial acid sites remains unclear. We prepared Pt-mTiO2/α-Al2O3 (m represents the cycle number of TiO2) catalysts via atomic layer deposition (ALD). New Brønsted acid sites were generated via Pt-TiO2 interaction, and the acidity was precisely regulated by regulating Pt-TiO2 interaction by changing the TiO2 nanolayer thickness. We chose levulinic acid (LA) hydrogenation as a model reaction. The catalytic activity varied with the TiO2 nanolayer thickness and was linearly correlated with the Ti-OH species (Brønsted acid) content. Pt-40TiO2/α-Al2O3, with the highest acid site content of 0.486 mmol/g, exhibited the best catalytic activity. Hydrogen spillover and water dissociation at the Pt-TiO2 interface promoted Ti-OH species generation.
Collapse
Affiliation(s)
- Fanchun Meng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinchun Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shichao Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Zhuo Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuntao Qi
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Zhou Z, Wang T, Hu T, Xu H, Cui L, Xue B, Zhao X, Pan X, Yu S, Li H, Qin Y, Zhang J, Ma L, Liang R, Tan C. Synergistic Interaction between Metal Single-Atoms and Defective WO 3- x Nanosheets for Enhanced Sonodynamic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2311002. [PMID: 38408758 DOI: 10.1002/adma.202311002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/03/2024] [Indexed: 02/28/2024]
Abstract
Although metal single-atom (SA)-based nanomaterials are explored as sonosensitizers for sonodynamic therapy (SDT), they normally exhibit poor activities and need to combine with other therapeutic strategies. Herein, the deposition of metal SAs on oxygen vacancy (OV)-rich WO3- x nanosheets to generate a synergistic effect for efficient SDT is reported. Crystalline WO3 and OV-rich WO3- x nanosheets are first prepared by simple calcination of the WO3 ·H2 O nanosheets under an air and N2 atmosphere, respectively. Pt, Cu, Fe, Co, and Ni metal SAs are then deposited on WO3- x nanosheets to obtain metal SA-decorated WO3- x nanocomposites (M-WO3- x ). Importantly, the Cu-WO3- x sonosensitizer exhibits a much higher activity for ultrasound (US)-induced production of reactive oxygen species than that of the WO3- x and Cu SA-decorated WO3 , which is also higher than other M-WO3- x nanosheets. Both the experimental and theoretical results suggest that the excellent SDT performance of the Cu-WO3- x nanosheets should be attributed to the synergistic effect between Cu SAs and WO3- x OVs. Therefore, after polyethylene glycol modification, the Cu-WO3- x can quickly kill cancer cells in vitro and effectively eradicate tumors in vivo under US irradiation. Transcriptome sequencing analysis and further molecular validation suggest that the Cu-WO3- x -mediated SDT-activated apoptosis and TNF signaling pathways are potential drivers of tumor apoptosis induction.
Collapse
Affiliation(s)
- Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Tao Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tingting Hu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Hao Xu
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lin Cui
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Baoli Xue
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xinshuo Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xiangrong Pan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Shilong Yu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Hai Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yong Qin
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Jiankang Zhang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
9
|
He D, Li T, Dai X, Liu S, Cui X, Shi F. Construction of Highly Active and Selective Molecular Imprinting Catalyst for Hydrogenation. J Am Chem Soc 2023; 145:20813-20824. [PMID: 37722009 DOI: 10.1021/jacs.3c04576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Surface molecular imprinting (MI) is one of the most efficient techniques to improve selectivity in a catalytic reaction. Heretofore, a prerequisite to fabricating selective catalysts by MI strategies is to sacrifice the number of surface-active sites, leading to a remarkable decrease of activity. Thus, it is highly desirable to design molecular imprinting catalysts (MICs) in which both the catalytic activity and selectivity are significantly enhanced. Herein, a series of MICs are prepared by sequentially adsorbing imprinting molecules (nitro compounds, N) and imprinting ligand (1,10-phenanthroline, L) over the copper surface of Cu/Al2O3. The resulting Cu/Al2O3-N-L MICs not only offer promoted catalytic selectivity but also enhance catalytic activity for nitro compounds hydrogenation by an creating imprinting cavity derived from the presorption of N and forming new active Cu-N sites at the interface of the copper sites and L. Characterizations by means of various experimental investigations and DFT calculations disclose that the molecular imprinting effect (promoted activity and selectivity) originates from the formation of new active Cu-N sites and precise imprinting cavities, endowing promoted catalytic selectivity and activity on the hydrogenation of nitro compounds.
Collapse
Affiliation(s)
- Dongcheng He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, China
| | - Teng Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Xingchao Dai
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Shujuan Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| |
Collapse
|
10
|
Gu Z, Li M, Chen C, Zhang X, Luo C, Yin Y, Su R, Zhang S, Shen Y, Fu Y, Zhang W, Huo F. Water-assisted hydrogen spillover in Pt nanoparticle-based metal-organic framework composites. Nat Commun 2023; 14:5836. [PMID: 37730807 PMCID: PMC10511639 DOI: 10.1038/s41467-023-40697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/03/2023] [Indexed: 09/22/2023] Open
Abstract
Hydrogen spillover is the migration of activated hydrogen atoms from a metal particle onto the surface of catalyst support, which has made significant progress in heterogeneous catalysis. The phenomenon has been well researched on oxide supports, yet its occurrence, detection method and mechanism on non-oxide supports such as metal-organic frameworks (MOFs) remain controversial. Herein, we develop a facile strategy for efficiency enhancement of hydrogen spillover on various MOFs with the aid of water molecules. By encapsulating platinum (Pt) nanoparticles in MOF-801 for activating hydrogen and hydrogenation of C=C in the MOF ligand as activated hydrogen detector, a research platform is built with Pt@MOF-801 to measure the hydrogenation region for quantifying the efficiency and spatial extent of hydrogen spillover. A water-assisted hydrogen spillover path is found with lower migration energy barrier than the traditional spillover path via ligand. The synergy of the two paths explains a significant boost of hydrogen spillover in MOF-801 from imperceptible existence to spanning at least 100-nm-diameter region. Moreover, such strategy shows universality in different MOF and covalent organic framework materials for efficiency promotion of hydrogen spillover and improvement of catalytic activity and antitoxicity, opening up new horizons for catalyst design in porous crystalline materials.
Collapse
Affiliation(s)
- Zhida Gu
- College of Science, Northeastern University, Shenyang, 100819, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Mengke Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Cheng Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xinglong Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Chengyang Luo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yutao Yin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Ruifa Su
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Suoying Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yu Shen
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yu Fu
- College of Science, Northeastern University, Shenyang, 100819, China.
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China.
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China.
| |
Collapse
|
11
|
Dong C, Mu R, Li R, Wang J, Song T, Qu Z, Fu Q, Bao X. Disentangling Local Interfacial Confinement and Remote Spillover Effects in Oxide-Oxide Interactions. J Am Chem Soc 2023; 145:17056-17065. [PMID: 37493082 DOI: 10.1021/jacs.3c02483] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Supported oxides are widely used in many important catalytic reactions, in which the interaction between the oxide catalyst and oxide support is critical but still remains elusive. Here, we construct a chemically bonded oxide-oxide interface by chemical deposition of Co3O4 onto ZnO powder (Co3O4/ZnO), in which complete reduction of Co3O4 to Co0 has been strongly impeded. It was revealed that the local interfacial confinement effect between Co oxide and the ZnO support helps to maintain a metastable CoOx state in CO2 hydrogenation reaction, producing 93% CO. In contrast, a physically contacted oxide-oxide interface was formed by mechanically mixing Co3O4 and ZnO powders (Co3O4-ZnO), in which reduction of Co3O4 to Co0 was significantly promoted, demonstrating a quick increase of CO2 conversion to 45% and a high selectivity toward CH4 (92%) in the CO2 hydrogenation reaction. This interface effect is ascribed to unusual remote spillover of dissociated hydrogen species from ZnO nanoparticles to the neighboring Co oxide nanoparticles. This work clearly illustrates the equally important but opposite local and remote effects at the oxide-oxide interfaces. The distinct oxide-oxide interactions contribute to many diverse interface phenomena in oxide-oxide catalytic systems.
Collapse
Affiliation(s)
- Cui Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tongyuan Song
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenping Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
12
|
Ji H, Wang X, Wei X, Peng Y, Zhang S, Song S, Zhang H. Boosting Polyethylene Hydrogenolysis Performance of Ru-CeO 2 Catalysts by Finely Regulating the Ru Sizes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300903. [PMID: 37096905 DOI: 10.1002/smll.202300903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Hydrogenolysis is an effective method for converting polyolefins into high-value chemicals. For the supported catalysts commonly used, the size of active metals is of great importance. In this study, it is discovered that the activity of CeO2 -supported Ru single atom, nanocluster, and nanoparticle catalysts shows a volcanic trend in low-density polyethylene (LDPE) hydrogenolysis. Compared with CeO2 supported Ru single atoms and nanoparticles, CeO2 -supported Ru nanoclusters possess the highest conversion efficiency, as well as the best selectivity toward liquid alkanes. Through comprehensive investigations, the metal-support interactions (MSI) and hydrogen spillover effect are revealed as the two key factors in the reaction. On the one hand, the MSI is strongly related to the Ru surface states and the more electronegative Ru centers are beneficial to the activation of CH and CC bonds. On the other hand, the hydrogen spillover capability directly affects the affinity of catalysts and active H atoms, and increasing this affinity is advantageous to the hydrogenation of alkane species. Decreasing the Ru sizes can promote the MSI, but it can also reduce the hydrogen spillover effect. Therefore, only when the two effects achieve a balance, as is the case in CeO2 -supported Ru nanoclusters, can the hydrogenolysis activity be promoted to the optimal value.
Collapse
Affiliation(s)
- Hongyan Ji
- School of Rare Earths, University of Science and Technology of China, Hefei, 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou, 341000, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoxu Wei
- School of Rare Earths, University of Science and Technology of China, Hefei, 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou, 341000, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yuxuan Peng
- School of Rare Earths, University of Science and Technology of China, Hefei, 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou, 341000, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shuaishuai Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
13
|
Wang X, Zhang Z, Yan Z, Li Q, Zhang C, Liang X. Synergistic contribution of metal-acid sites in selective hydrodeoxygenation of biomass derivatives over Cu/CoO x catalysts. J Colloid Interface Sci 2023; 648:1-11. [PMID: 37295360 DOI: 10.1016/j.jcis.2023.05.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
The efficient hydrodeoxygenation (HDO) of biomass derivatives to yield specific products is a significant yet challenging task. In the present study, a Cu/CoOx catalyst was synthesized using a facile co-precipitation method, and subsequently used for the HDO of biomass derivatives. Under optimal reaction conditions, the conversion of 5-hydroxymethylfurfural reached 100% with a selectivity of ∼99% to 2,5-diformylfuran. In combination with the experimental results, systematic characterizations revealed that CoOx, as the acid site, tended to adsorb CO bonds, and the metal sites of Cu+ were inclined to adsorb CO bonds and enhance CO bond hydrogenation. Meanwhile, Cu0 was the main active site for 2-propanol dehydrogenation. The excellent catalytic performance could be attributed to the synergistic effects of Cu and CoOx. Further, by optimizing the ratio of Cu to CoOx, the Cu/CoOx catalysts exhibited notable performance in HDO of acetophenone, levulinic acid, and furfural, which verified the universality of the catalysts in the HDO of biomass derivatives.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Green Shipping and Carbon Neutrality Lab, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Zuyi Zhang
- Green Shipping and Carbon Neutrality Lab, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Ziyi Yan
- Green Shipping and Carbon Neutrality Lab, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Qingbo Li
- Green Shipping and Carbon Neutrality Lab, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Chengcheng Zhang
- Green Shipping and Carbon Neutrality Lab, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xinhua Liang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
| |
Collapse
|
14
|
Zhang J, Pan Y, Feng D, Cui L, Zhao S, Hu J, Wang S, Qin Y. Mechanistic Insight into the Synergy between Platinum Single Atom and Cluster Dual Active Sites Boosting Photocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300902. [PMID: 36977472 DOI: 10.1002/adma.202300902] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
In the energy transition context, the design and synthesis of high-performance Pt-based photocatalysts with low Pt content and ultrahigh atom-utilization efficiency for hydrogen production are essential. Herein, a facile approach for decorating atomically dispersed Pt cocatalysts having single-atom (SA) and atomic cluster (C) dual active sites on CdS nanorods (PtSA+C /CdS) via atomic layer deposition is reported. The size of the cocatalyst and the spatial intimacy of the cocatalyst active sites are precisely engineered at the atomic scale. The PtSA+C /CdS photocatalysts show the optimized photocatalytic hydrogen evolution activity, achieving a reaction rate of 80.4 mmol h-1 g-1 , which is 1.6- and 7.3-fold higher than those of the PtSA /CdS and PtNP /CdS photocatalysts, respectively. Thorough characterization and theoretical calculations reveal that the enhanced photocatalytic activity is due to a remarkable synergy between SAs and atomic clusters as dual active sites, which are responsible for water adsorption-dissociation and hydrogen desorption, respectively. A similar synergetic effect is found in a representative Pt/TiO2 system, indicating the generality of the strategy. This study demonstrates the significance of the synergy between active sites for enhancing the reaction efficiency, opening a new avenue for the rational design of atomically dispersed photocatalysts with high efficiency.
Collapse
Affiliation(s)
- Jiankang Zhang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yukun Pan
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, P. R. China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Dan Feng
- Analytical & Testing Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lin Cui
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Shichao Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Jinlong Hu
- Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Yong Qin
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| |
Collapse
|
15
|
Xu H, Li J, Chu X. Interfacial built-in electric-field for boosting energy conversion electrocatalysis. NANOSCALE HORIZONS 2023; 8:441-452. [PMID: 36762488 DOI: 10.1039/d2nh00549b] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The formation of a built-in electric field (BIEF) can induce electron-rich and electron-poor counterparts to synergistically modify electronic configurations and optimize the binding strengths with intermediates, thereby leading to outstanding electrocatalytic performance. Herein, a critical review regarding the concept, modulation strategies, and applications of BIEFs is comprehensively summarized, which begins with the fundamental concepts, together with the advantages of BIEF for boosting electrocatalytic reactions. Then, a systematic summary of the advanced strategies for the modulation of BIEF along with the in-detail mechanisms in its formation are also added. Finally, the applications of BIEF in driving electrocatalytic reactions and some cascade systems for illustrating the conclusive role from the induced BIEF are also systematically discussed, followed by perspectives on the future deployment and opportunity of the BIEF design.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Junru Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan Province, P. R. China.
| | - Xianxu Chu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan Province, P. R. China.
| |
Collapse
|
16
|
Xing S, Xiong M, Zhao S, Zhang B, Qin Y, Gao Z. Improving the Efficiency of Hydrogen Spillover by an Organic Molecular Decoration Strategy for Enhanced Catalytic Hydrogenation Performance. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Affiliation(s)
- Shuangfeng Xing
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mi Xiong
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Shichao Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Bianqin Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Gao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
17
|
Dong Q, Zhang C, Zhang H, Yu F, Liu S, Fan B, Li R. Design and preparation of Pt@SSZ-13@β core-shell catalyst for hydrocracking of naphthalene. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
18
|
Xu H, Li J, Chu X. Intensifying Hydrogen Spillover for Boosting Electrocatalytic Hydrogen Evolution Reaction. CHEM REC 2023; 23:e202200244. [PMID: 36482015 DOI: 10.1002/tcr.202200244] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Indexed: 12/13/2022]
Abstract
Hydrogen spillover has attracted increasing interests in the field of electrocatalytic hydrogen evolution reaction (HER) in recent years because of their distinct reaction mechanism and beneficial terms for simultaneously weakening the strong hydrogen adsorption on metal and strengthening the weak hydrogen adsorption on support. By taking advantageous merits of efficient hydrogen transfer, hydrogen spillover-based binary catalysts have been widely investigated, which paves a new way for boosting the development of hydrogen production by water electrolysis. In this paper, we summarize the recent progress of this interesting field by focusing on the advanced strategies for intensifying the hydrogen spillover towards HER. In addition, the challenging issues and some perspective insights in the future development of hydrogen spillover-based electrocatalysts are also systematically discussed.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province, 213164, China.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Junru Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Xianxu Chu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
19
|
Yu X, Tian H, Fu Z, Pei F, Peng L, Meng G, Kong F, Chen Y, Chen C, Chang Z, Cui X, Shi J. Strengthening the Hydrogen Spillover Effect via the Phase Transformation of W 18O 49 for Boosted Hydrogen Oxidation Reaction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Xu Yu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Han Tian
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Zhengqian Fu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Fenglai Pei
- Shanghai Motor Vehicle Inspection Certification & Tech Innovation Center Co., Ltd., Shanghai 201805, P. R China
| | - Lingxin Peng
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ge Meng
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fantao Kong
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Yafeng Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Chang Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ziwei Chang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Xiangzhi Cui
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Jianlin Shi
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
20
|
Huang D, Zhao X, Zhai Z, Chu J, Sun L, Zhuang C, Min C, Wang Y. Synergistic Effect of Fe and Zn Doping on Multimetallic Catalysts for the Catalytic Hydrogenation of Furfural to Furfuryl Alcohol. ChemistrySelect 2023. [DOI: 10.1002/slct.202203938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Dejin Huang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education School of Chemical Engineering Southwest Forestry University Kunming 650051 P. R. China
| | - Xu Zhao
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education School of Chemical Engineering Southwest Forestry University Kunming 650051 P. R. China
| | - Zhouxiao Zhai
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education School of Chemical Engineering Southwest Forestry University Kunming 650051 P. R. China
| | - Jie Chu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education School of Chemical Engineering Southwest Forestry University Kunming 650051 P. R. China
| | - Lu Sun
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education School of Chemical Engineering Southwest Forestry University Kunming 650051 P. R. China
| | - Changfu Zhuang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education School of Chemical Engineering Southwest Forestry University Kunming 650051 P. R. China
| | - Chungang Min
- Research Center for Analysis and Measurement Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Ying Wang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education School of Chemical Engineering Southwest Forestry University Kunming 650051 P. R. China
| |
Collapse
|
21
|
Zhang Y, Cheng Y, Wang X, Sun Q, He X, Ji H. Enhanced Hydrogenation Properties of Pd Single Atom Catalysts with Atomically Dispersed Ba Sites as Electronic Promoters. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ying Zhang
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yujie Cheng
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xilun Wang
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qingdi Sun
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaohui He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515041, Guangdong China
- Huizhou Research Institute, Sun Yat-sen University, Huizhou, 516081, China
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515041, Guangdong China
- Huizhou Research Institute, Sun Yat-sen University, Huizhou, 516081, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| |
Collapse
|
22
|
Steric hindrance effect induced photopurification of styrene oxide over surface modified polymeric carbon nitride. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Zhai Z, Chu J, Sun L, Zhao X, Huang D, Yang X, Zhuang C, Min C, Wang Y. Ultrahigh Metal Content Carbon-Based Catalyst for Efficient Hydrogenation of Furfural: The Regulatory Effect of Glycerol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44439-44449. [PMID: 36129173 DOI: 10.1021/acsami.2c12874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of high-content non-noble metal nanocatalysts is important for multiphase catalysis applications. However, it is a challenge to solve the agglomeration in the preparation of high-content metal catalysts. In this paper, a carbon-based catalyst (Co@CN-G-600) with 71.28 wt % cobalt metal content was prepared using a new strategy of gas-phase carbon coating assisted by glycerol. The core of this strategy is to maintain the spacing of metallic cobalt by continuous replenishment of dissociated ligands during pyrolysis over gas-phase glycerol. This approach is also applicable to other non-noble metals. When Co@CN-G-600 was further used as a catalyst for the selective hydrogenation of furfural (FF) to prepare furfuryl alcohol (FOL), the yield of FOL was >99.9% under mild conditions of 80 °C, compared to only 8.23% catalytic yield at up to 130 °C for Co@CN-600 without glycerol. The excellent catalytic performance mainly lies in the fact that the introduction of glycerol modulates the size effect, electronic effect, and acidic site intensity of the high-content Co catalyst, which promotes the activation of FF and hydrogen. Meanwhile, the optimized specific surface area and pore structure by glycerol improve the accessibility of high-density active sites and promote more efficient mass transfer. In addition, the introduction of glycerol produced a graphitic carbon layer encapsulation structure relative to Co@CN-600, which substantially improved the cycling stability of the catalyst. This study resolves the paradox of high content and high dispersion of non-noble metal catalysts in the synthesis process and provides a general pathway and example for the preparation of stable high-content metal catalysts.
Collapse
Affiliation(s)
- Zhouxiao Zhai
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650051, P. R. China
| | - Jie Chu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650051, P. R. China
| | - Lu Sun
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650051, P. R. China
| | - Xu Zhao
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650051, P. R. China
| | - Dejin Huang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650051, P. R. China
| | - Xiaoqin Yang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650051, P. R. China
| | - Changfu Zhuang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650051, P. R. China
| | - Chungang Min
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Ying Wang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650051, P. R. China
| |
Collapse
|
24
|
Hülsey MJ, Fung V, Hou X, Wu J, Yan N. Hydrogen Spillover and Its Relation to Hydrogenation: Observations on Structurally Defined Single‐Atom Sites**. Angew Chem Int Ed Engl 2022; 61:e202208237. [DOI: 10.1002/anie.202208237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Max J. Hülsey
- Department of Chemical and Biomolecular Engineering National University of Singapore 1 Engineering Drive 3 117580 Singapore Singapore
| | - Victor Fung
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory One Bethel Valley Road Oak Ridge TN 37831 USA
| | - Xudong Hou
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Jishan Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering National University of Singapore 1 Engineering Drive 3 117580 Singapore Singapore
| |
Collapse
|
25
|
Zhu L, Zhang H, Zhu H, Fu H, Kroner A, Yang Z, Ye H, Chen BH, Luque R. Controlling nanostructures of PtNiCo/C trimetallic nanocatalysts and relationship of structure-catalytic performance for selective hydrogenation of nitroarenes. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
|
27
|
Wang S, Lv Y, Wang X, Gao D, Duan A, Zhao H, Zheng P, Chen G. Insights into the Active Sites of
Dual‐Zone
Synergistic Catalysts for
Semi‐Hydrogenation
under Hydrogen Spillover. AIChE J 2022. [DOI: 10.1002/aic.17886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuai Wang
- School of Chemistry and Chemical Engineering University of Jinan Jinan PR China
| | - Yipin Lv
- School of Chemistry and Chemical Engineering University of Jinan Jinan PR China
| | - Xilong Wang
- KAUST Catalysis Center and Division of Physical Sciences and Engineering King Abdullah University of Science and Technology Thuwal Saudi Arabia
| | - Daowei Gao
- School of Chemistry and Chemical Engineering University of Jinan Jinan PR China
| | - Aijun Duan
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing PR China
| | - Huaiqing Zhao
- School of Chemistry and Chemical Engineering University of Jinan Jinan PR China
| | - Peng Zheng
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing PR China
| | - Guozhu Chen
- School of Chemistry and Chemical Engineering University of Jinan Jinan PR China
| |
Collapse
|
28
|
Fang B, Zhang C, Qi Z, Li C, Ni J, Wang X, Lin J, Au C, Lin B, Jiang L. Combining molybdenum carbide with ceria overlayers to boost Mo/
CeO
2
catalyzed ammonia synthesis. AIChE J 2022. [DOI: 10.1002/aic.17849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Biyun Fang
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering Fuzhou University Fuzhou Fujian China
| | - Chuanfeng Zhang
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering Fuzhou University Fuzhou Fujian China
| | - Zeliang Qi
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering Fuzhou University Fuzhou Fujian China
| | - Chunyan Li
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering Fuzhou University Fuzhou Fujian China
| | - Jun Ni
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering Fuzhou University Fuzhou Fujian China
| | - Xiuyun Wang
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering Fuzhou University Fuzhou Fujian China
| | - Jianxin Lin
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering Fuzhou University Fuzhou Fujian China
| | - Chak‐tong Au
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering Fuzhou University Fuzhou Fujian China
| | - Bingyu Lin
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering Fuzhou University Fuzhou Fujian China
| | - Lilong Jiang
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering Fuzhou University Fuzhou Fujian China
| |
Collapse
|
29
|
Li C, Yu S, Shi Y, Li M, Fang B, Lin J, Ni J, Wang X, Lin B, Jiang L. Combining silica to boost the ammonia synthesis activity of ceria-supported Ru catalyst. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Hydrogen spillover and its relation to hydrogenation: observations on structurally defined single‐atom sites. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Bai F, Qu X, Li C, Liu S, Sun J, Chen X, Yang W. Nickel Nanoflowers with Controllable Cation Vacancy for Enhanced Electrochemical Nitrogen Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28033-28043. [PMID: 35687747 DOI: 10.1021/acsami.2c08071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The key to the design of electrochemical nitrogen reduction (NRR) catalysts is that the reaction sites can not only activate the N≡N bond but also have high catalytic selectivity. Vacancy engineering is an effective way to modulate active sites, and cation vacancies are considered to have enormous potential in tuning catalytic selectivity. However, research on NRR activity is still at an early stage due to the difficulty in preparation and precise regulation. Here, we provided an adjusted method of cation vacancy through topotactic transformation, which combines solvothermal reduction with etching via lattice confinement effect to accomplish precursor reduction and vacancy construction while maintaining consistent material morphologies. Based on the topotactic transformation, NiAl-LDH precursor was reduced to Ni metal nanoflower, while Al is simultaneously etched by alkali, thus the precise tunability of the cation vacancy can be achieved by adjusting the Al content in the LDH. The Ni nanoflower achieved excellent stability and high ammonia yield by adjusting the vacancy concentration. In addition, the insight into the selectivity and intrinsic activity of cation vacancies on NRR process has been revealed. For the reaction selectivity, the cation vacancy is beneficial to activate N≡N but not conducive to the HER process. For the intrinsic NRR activity, the generation of cation vacancies can also significantly reduce the energy barrier of NRR process and accelerate the reaction kinetics.
Collapse
Affiliation(s)
- Fan Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xin Qu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Cong Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shuo Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jie Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xu Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wensheng Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
32
|
Aireddy D, Yu H, Cullen DA, Ding K. Elucidating the Roles of Amorphous Alumina Overcoat in Palladium-Catalyzed Selective Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24290-24298. [PMID: 35584363 PMCID: PMC9164194 DOI: 10.1021/acsami.2c02132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Amorphous alumina overcoats generated by atomic layer deposition (ALD) have been shown to improve the selectivity and durability of supported metal catalysts in many reactions. Several mechanisms have been proposed to explain the enhanced catalytic performance, but the accessibilities of reactants through the amorphous overcoats remain elusive, which is crucial for understanding reaction mechanisms. Here, we show that an AlOx ALD overcoat is able to improve the alkene product selectivity of a supported Pd catalyst in acetylene (C2H2) hydrogenation. We further demonstrate that the AlOx ALD overcoat blocks the access of C2H2 (kinetic diameter of 0.33 nm), O2 (0.35 nm), and CO (0.38 nm) but allows H2 (0.29 nm) to access Pd surfaces. A H-D exchange experiment suggests that H2 might dissociate heterolytically at the Pd-AlOx interface. These findings are in favor of a hydrogen spillover mechanism.
Collapse
Affiliation(s)
- Divakar
R. Aireddy
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Haoran Yu
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David A. Cullen
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Ding
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
33
|
Dai J, Zhu Y, Chen Y, Wen X, Long M, Wu X, Hu Z, Guan D, Wang X, Zhou C, Lin Q, Sun Y, Weng SC, Wang H, Zhou W, Shao Z. Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis. Nat Commun 2022; 13:1189. [PMID: 35246542 PMCID: PMC8897394 DOI: 10.1038/s41467-022-28843-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
Improving the catalytic efficiency of platinum for the hydrogen evolution reaction is valuable for water splitting technologies. Hydrogen spillover has emerged as a new strategy in designing binary-component Pt/support electrocatalysts. However, such binary catalysts often suffer from a long reaction pathway, undesirable interfacial barrier, and complicated synthetic processes. Here we report a single-phase complex oxide La2Sr2PtO7+δ as a high-performance hydrogen evolution electrocatalyst in acidic media utilizing an atomic-scale hydrogen spillover effect between multifunctional catalytic sites. With insights from comprehensive experiments and theoretical calculations, the overall hydrogen evolution pathway proceeds along three steps: fast proton adsorption on O site, facile hydrogen migration from O site to Pt site via thermoneutral La-Pt bridge site serving as the mediator, and favorable H2 desorption on Pt site. Benefiting from this catalytic process, the resulting La2Sr2PtO7+δ exhibits a low overpotential of 13 mV at 10 mA cm−2, a small Tafel slope of 22 mV dec−1, an enhanced intrinsic activity, and a greater durability than commercial Pt black catalyst. While renewable H2 production offers a promising route for clean energy production, there is an urgent need to improve catalyst performances. Here, authors design a Pt-containing complex oxide that utilizes atomic-scale hydrogen spillover to promote H2 evolution electrocatalysis in acidic media.
Collapse
Affiliation(s)
- Jie Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia.
| | - Yu Chen
- Monash Centre for Electron Microscopy, Monash University, Clayton, VIC, 3800, Australia
| | - Xue Wen
- School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinhao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Daqin Guan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Xixi Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Chuan Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Qian Lin
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Yifei Sun
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Shih-Chang Weng
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China. .,WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6845, Australia.
| |
Collapse
|
34
|
Wang X, Zhang C, Zhang Z, Gai Y, Li Q. Insights into the interfacial effects in Cu-Co/CeO x catalysts on hydrogenolysis of 5-hydroxymethylfurfural to biofuel 2,5-dimethylfuran. J Colloid Interface Sci 2022; 615:19-29. [PMID: 35123358 DOI: 10.1016/j.jcis.2022.01.168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 01/23/2023]
Abstract
The interface site between metal and support possess unique electronic and morphological structure, providing distinct active centers for favorable reaction in catalytic conversion of biomass derivatives to valuable chemicals. In this study, a series of Cu-Co/CeOx catalysts were prepared for hydrogenolysis of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) via reduction of the corresponding layered double hydroxide precursors. The characterizations indicated the formation of CoCe-Vö interface (Vö denotes oxygen vacancy) and the effect of hydrogen spillover from Cu species to CoCe-Vö interface. Furthermore, the experiments and theoretical calculations verified that CoCe-Vö interface could activate the CO bond. The optimized catalyst showed a DMF yield of > 90% at 180 °C and 1.5 MPa H2 with no deactivation in the cycling tests. This study reveals the interfacial effects of the nanocatalysts, including the oxygen vacancies and hydrogen spillover, on hydrogenolysis of HMF, which provided a simple and efficient approach for synthesis of high-performance non-noble metal nanocatalysts applied to the hydrogenolysis of various biomass derivatives.
Collapse
Affiliation(s)
- Xiaofeng Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Chengcheng Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zuyi Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yaoming Gai
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Qingbo Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
35
|
Gao Z, Wang G, Lei T, Lv Z, Xiong M, Wang L, Xing S, Ma J, Jiang Z, Qin Y. Enhanced hydrogen generation by reverse spillover effects over bicomponent catalysts. Nat Commun 2022; 13:118. [PMID: 35013274 PMCID: PMC8748832 DOI: 10.1038/s41467-021-27785-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022] Open
Abstract
The contribution of the reverse spillover effect to hydrogen generation reactions is still controversial. Herein, the promotion functions for reverse spillover in the ammonia borane hydrolysis reaction are proven by constructing a spatially separated NiO/Al2O3/Pt bicomponent catalyst via atomic layer deposition and performing in situ quick X-ray absorption near-edge structure (XANES) characterization. For the NiO/Al2O3/Pt catalyst, NiO and Pt nanoparticles are attached to the outer and inner surfaces of Al2O3 nanotubes, respectively. In situ XANES results reveal that for ammonia borane hydrolysis, the H species generated at NiO sites spill across the support to the Pt sites reversely. The reverse spillover effects account for enhanced H2 generation rates for NiO/Al2O3/Pt. For the CoOx/Al2O3/Pt and NiO/TiO2/Pt catalysts, reverse spillover effects are also confirmed. We believe that an in-depth understanding of the reverse effects will be helpful to clarify the catalytic mechanisms and provide a guide for designing highly efficient catalysts for hydrogen generation reactions.
Collapse
Affiliation(s)
- Zhe Gao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guofu Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingyu Lei
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Zhengxing Lv
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Mi Xiong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liancheng Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuangfeng Xing
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yong Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
36
|
Lyu J, Tian Y, Zhang Y, Wu P, Pan Y, Ding T, Song S, Li X. Hydrogen reverse spillover eliminating methanation over efficient Pt–Ni catalysts for the water–gas shift reaction. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00952h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen reverse spillover from Ni0 sites to Pt sites completely eliminated the side reaction of methanation and improved the catalytic activity of Ni0 sites over a nickel phyllosilicate-supported Pt–Ni catalyst during the water–gas shift reaction.
Collapse
Affiliation(s)
- Jing Lyu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Institute of Shaoxing, Tianjin University, Tianjin, 300350, P. R. China
| | - Ye Tian
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Institute of Shaoxing, Tianjin University, Tianjin, 300350, P. R. China
| | - Yingtian Zhang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Institute of Shaoxing, Tianjin University, Tianjin, 300350, P. R. China
| | - Peipei Wu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Institute of Shaoxing, Tianjin University, Tianjin, 300350, P. R. China
| | - Yu Pan
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Institute of Shaoxing, Tianjin University, Tianjin, 300350, P. R. China
| | - Tong Ding
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Institute of Shaoxing, Tianjin University, Tianjin, 300350, P. R. China
| | - Song Song
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Institute of Shaoxing, Tianjin University, Tianjin, 300350, P. R. China
| | - Xingang Li
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Institute of Shaoxing, Tianjin University, Tianjin, 300350, P. R. China
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, P. R. China
| |
Collapse
|
37
|
Shun K, Mori K, Masuda S, Hashimoto N, Hinuma Y, Kobayashi H, Yamashita H. Revealing hydrogen spillover pathways in reducible metal oxides. Chem Sci 2022; 13:8137-8147. [PMID: 35919430 PMCID: PMC9278487 DOI: 10.1039/d2sc00871h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Hydrogen spillover, the migration of dissociated hydrogen atoms from noble metals to their support materials, is a ubiquitous phenomenon and is widely utilized in heterogeneous catalysis and hydrogen storage materials. However, in-depth understanding of the migration of spilled hydrogen over different types of supports is still lacking. Herein, hydrogen spillover in typical reducible metal oxides, such as TiO2, CeO2, and WO3, was elucidated by combining systematic characterization methods involving various in situ techniques, kinetic analysis, and density functional theory calculations. TiO2 and CeO2 were proven to be promising platforms for the synthesis of non-equilibrium RuNi binary solid solution alloy nanoparticles displaying a synergistic promotional effect in the hydrolysis of ammonia borane. Such behaviour was driven by the simultaneous reduction of both metal cations under a H2 atmosphere over TiO2 and CeO2, in which hydrogen spillover favorably occurred over their surfaces rather than within their bulk phases. Conversely, hydrogen atoms were found to preferentially migrate within the bulk prior to the surface over WO3. Thus, the reductions of both metal cations occurred individually on WO3, which resulted in the formation of segregated NPs with no activity enhancement. The hydrogen spillover pathway in typical reducible metal oxides, such as TiO2, CeO2, and WO3, was investigated by combining various in situ characterization techniques, kinetic analysis, and density functional theory calculations.![]()
Collapse
Affiliation(s)
- Kazuki Shun
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Unit of Elements Strategy Initiative for Catalysts Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinya Masuda
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoki Hashimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoyo Hinuma
- Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Hisayoshi Kobayashi
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Unit of Elements Strategy Initiative for Catalysts Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
38
|
Chu J, Fan Y, Sun L, Zhuang C, Li Y, Zou X, Min C, Liu X, Wang Y, Zhu G. Exploring the Zn-regulated function in Co–Zn catalysts for efficient hydrogenation of ethyl levulinate to γ-valerolactone. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00244b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A series of CoZn catalysts supported on N-doped porous carbon (CoxZny@NPC-T) prepared at different calcination temperatures are studied for catalytic hydrogenation of biomass-based ethyl levulinate to γ-valerolactone, in which Zn is introduced as a regulator.
Collapse
Affiliation(s)
- Jie Chu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Yafei Fan
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Lu Sun
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Changfu Zhuang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Yunxian Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Chungang Min
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Xiaoteng Liu
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Ying Wang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
39
|
Fang B, Qi Z, Liu F, Zhang C, Li C, Ni J, Lin J, Lin B, Jiang L. Activity Enhancement of Ceria-supported Co-Mo Bimetallic Catalysts by Tuning Reducibility and Metal Enrichment. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Zhao J, Zhang Y, Zhang H, Wang H, Wang J. H-spilled storage to maximize the catalytic performances of Pd-based bimetals@Ti3C2Tx MXene in selective semihydrogenations. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01861b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen spillover is an important theme for hydrogen storage and H-involving catalytic reactions. This work shows that catalytic reactivity and selectivity can be revealed by differentiating energetic characteristics of the...
Collapse
|
41
|
Xiong M, Wang G, Zhao S, Lv Z, Xing S, Zhang J, Zhang B, Qin Y, Gao Z. Engineering of platinum–oxygen vacancy interfacial sites in confined catalysts for enhanced hydrogenation selectivity. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00131d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Confined TiO2/Pt-700-Ar with rich Pt–Ov interfacial sites exhibits superior p-ABC selectivity compared with confined TiO2/Pt and unconfined Pt/TiO2-700-Ar with poor Pt–Ov interfacial sites.
Collapse
Affiliation(s)
- Mi Xiong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guofu Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Shichao Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Zhengxing Lv
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Shuangfeng Xing
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyuan Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bianqin Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Gao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
42
|
Xu H, Yu W, Zhang J, Zhou Z, Zhang H, Ge H, Wang G, Qin Y. Rhodium nanoparticles confined in titania nanotubes for efficient Hydrogen evolution from Ammonia Borane. J Colloid Interface Sci 2021; 609:755-763. [PMID: 34823851 DOI: 10.1016/j.jcis.2021.11.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
Designing efficient catalysts for hydrogen evolution from hydrolysis of ammonia borane (AB) have attracted considerable attention. Rhodium (Rh) based catalysts with rational design present remarkable catalytic performance for the reaction. Herein, we report the confined Rh@TiO2 catalysts synthesized by atomic layer deposition combining with the sacrificial template approach, in which the Rh nanoparticles are uniformly confined on the inner surface of the porous titania nanotubes. The optimized catalysts show high catalytic activity with a turnover frequency value of 334.1 molH2·molRh-1·min-1 and better durability. Mechanistic investigation demonstrates that the cleavage of OH bands in water should be the rate determining step, and the appropriate concentration of NaOH can further enhance the hydrogen evolution activity. The catalysts can also achieve the hydrogenation of various organic substrates using AB as the hydrogen source. In addition, our present strategy is general and can be extended to the synthesis of other confined catalysts for various catalytic reactions.
Collapse
Affiliation(s)
- Hao Xu
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenlong Yu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiankang Zhang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Hongxia Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huibin Ge
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guangjian Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yong Qin
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
43
|
Bonelli B, Tammaro O, Martinovic F, Nasi R, Dell’Agli G, Rivolo P, Giorgis F, Ditaranto N, Deorsola FA, Esposito S. Reverse Micelle Strategy for the Synthesis of MnO x -TiO 2 Active Catalysts for NH 3-Selective Catalytic Reduction of NO x at Both Low Temperature and Low Mn Content. ACS OMEGA 2021; 6:24562-24574. [PMID: 34604638 PMCID: PMC8482467 DOI: 10.1021/acsomega.1c03153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/06/2021] [Indexed: 06/02/2023]
Abstract
MnO x -TiO2 catalysts (0, 1, 5, and 10 wt % Mn nominal content) for NH3-SCR (selective catalytic reduction) of NO x have been synthesized by the reverse micelle-assisted sol-gel procedure, with the aim of improving the dispersion of the active phase, usually poor when obtained by other synthesis methods (e.g., impregnation) and thereby lowering its amount. For comparison, a sample at nominal 10 wt % Mn was obtained by impregnation of the (undoped) TiO2 sample. The catalysts were characterized by using an integrated multitechnique approach, encompassing X-ray diffraction followed by Rietveld refinement, micro-Raman spectroscopy, N2 isotherm measurement at -196 °C, energy-dispersive X-ray analysis, diffuse reflectance UV-vis spectroscopy, temperature-programmed reduction technique, and X-ray photoelectron spectroscopy. The obtained results prove that the reverse micelle sol-gel approach allowed for enhancing the catalytic activity, in that the catalysts were active in a broad temperature range at a substantially low Mn loading, as compared to the impregnated catalyst. Particularly, the 5 wt % Mn catalyst showed the best NH3-SCR activity in terms of both NO x conversion (ca. 90%) and the amount of produced N2O (ca. 50 ppm) in the 200-250 °C temperature range.
Collapse
Affiliation(s)
- Barbara Bonelli
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Olimpia Tammaro
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Ferenc Martinovic
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Roberto Nasi
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Gianfranco Dell’Agli
- Dipartimento di Ingegneria Civile e Meccanica, Università degli Studi di Cassino e del Lazio Meridionale, Via G. Di Biasio 43, 03043 Cassino, Frosinone, Italy
| | - Paola Rivolo
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Fabrizio Giorgis
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Nicoletta Ditaranto
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Fabio Alessandro Deorsola
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Serena Esposito
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| |
Collapse
|
44
|
She W, Wang J, Li X, Li J, Mao G, Li W, Li G. Highly chemoselective synthesis of imine over Co/Zn bimetallic MOFs derived Co3ZnC-ZnO embed in carbon nanosheet catalyst. J Catal 2021. [DOI: 10.1016/j.jcat.2021.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
45
|
Zou H, Dai J, Suo J, Ettelaie R, Li Y, Xue N, Wang R, Yang H. Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation. Nat Commun 2021; 12:4968. [PMID: 34404796 PMCID: PMC8371113 DOI: 10.1038/s41467-021-25226-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/28/2021] [Indexed: 12/02/2022] Open
Abstract
Controlling localization of multiple metal nanoparticles on a single support is at the cutting edge of designing cascade catalysts, but is still a scientific and technological challenge because of the lack of nanostructured materials that can not only host metal nanoparticles in different sub-compartments but also enable efficient molecular transport between different metals. Herein we report a multicompartmentalized mesoporous organosilica with spatially separated sub-compartments that are connected by short nanochannels. Such a unique structure allows co-localization of Ru and Pd nanoparticles in a nanoscale proximal fashion. The so designed cascade catalyst exhibits an order of magnitude activity enhancement in the sequential hydrogenation of nitroarenes to cyclohexylamines compared with its mono/bi-metallic counterparts. Crucially, an interesting phenomenon of neighboring metal-assisted hydrogenation via hydrogen spillover is observed, contributing to the significant enhancement in catalytic efficiency. The multicompartmentalized architectures along with the revealed mechanism of accelerated hydrogenation provide vast opportunity for designing efficient cascade catalysts.
Collapse
Affiliation(s)
- Houbing Zou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Jinyu Dai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Jinquan Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Rammile Ettelaie
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Yuan Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Nan Xue
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Runwei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China.
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China.
| |
Collapse
|
46
|
Sun G, Xiao B, Shi JW, Mao S, He C, Ma D, Cheng Y. Hydrogen spillover effect induced by ascorbic acid in CdS/NiO core-shell p-n heterojunction for significantly enhanced photocatalytic H 2 evolution. J Colloid Interface Sci 2021; 596:215-224. [PMID: 33845229 DOI: 10.1016/j.jcis.2021.03.150] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/20/2021] [Accepted: 03/27/2021] [Indexed: 12/25/2022]
Abstract
A new variety of CdS/NiO core-shell p-n heterojunction is synthesized by in-situ chemically depositing NiO shell on single-crystal CdS nanorods for the first time. With this method, the range of NiO shell thickness can be accurately controlled within a few nanometers. The optimized CdS/NiO sample (CSN0.5) with a NiO shell layer of 1.5 nm exhibits a highly efficient photocatalytic H2 evolution rate of 731.7 μmol/h (corresponding to 243.9 mmol/g/h) without using co-catalyst, which is among the highest value of all the CdS-based photocatalysts. The apparent quantum efficiency (AQE) of CSN0.5 at 365 nm wavelength reaches 28.19%. The remarkably enhanced photocatalytic performance can be attributed to a hydrogen spillover effect induced by ascorbic acid in CdS/NiO, which promotes the transmission of adsorbed H* from hydrogen-rich NiO (electron-poor region) to hydrogen-poor CdS (electron-rich region) where the adsorbed H* reacts in time with the photogenerated electron to produce H2, facilitating the H2 evolution reaction. This work provides a method to promote the photocatalytic H2 evolution reaction by using hydrogen spillover effect.
Collapse
Affiliation(s)
- Guotai Sun
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Center for Nano Energy Materials, State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Bing Xiao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Siman Mao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dandan Ma
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
47
|
Mitamura K, Yatabe T, Yamamoto K, Yabe T, Suzuki K, Yamaguchi K. Heterogeneously Ni-Pd nanoparticle-catalyzed base-free formal C-S bond metathesis of thiols. Chem Commun (Camb) 2021; 57:3749-3752. [PMID: 33876120 DOI: 10.1039/d1cc00995h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study rationally designed a heterogeneously catalyzed system (i.e., using Ni-Pd alloy nanoparticles supported on hydroxyapatite (Ni-Pd/HAP) under an H2 atmosphere) achieving an efficient base-free formal C-S bond metathesis of various thiols via suppression of the Ni catalysis deactivation.
Collapse
Affiliation(s)
- Kanju Mitamura
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Mi Xiong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Gao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Yong Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Li S, Fan Y, Wu C, Zhuang C, Wang Y, Li X, Zhao J, Zheng Z. Selective Hydrogenation of Furfural over the Co-Based Catalyst: A Subtle Synergy with Ni and Zn Dopants. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8507-8517. [PMID: 33570382 DOI: 10.1021/acsami.1c01436] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A multimetal doping strategy has aroused extensive attention in promoting a non-noble catalyst for selective hydrogenation reaction. Herein, a multimetallic catalyst (NiCoZn@CN) with excellent catalytic performance for hydrogenation of furfural (FAL) to furfuryl alcohol (FOL) is prepared through a facile, inexpensive, and efficient pyrolysis method. Using H2 as a H donor, extremely high selectivity (>99%) with 100% conversion is attained over the optimal NiCoZn@CN-600 catalyst. The subtle synergy between Co and Ni, Zn dopants, which remarkably promotes the performance of the Co-based catalyst, is revealed. In the NiCoZn@CN system, Co0 is proven to be the main active site, whose content is greatly improved by Ni and Co dopants. Additionally, the Ni dopant could also benefit activation of H2 and the Zn dopant could enhance metal nanoparticle dispersion and the porous structure of the catalyst. In situ FTIR indicates that the vertical adsorption mode of FAL with the Oaldehyde terminal on NiCoZn@CN-600 ensures a selective hydrogenation process. With a N-doped carbon matrix, NiCoZn@CN-600 shows good cycling stability in five times run. NiCoZn@CN-600 is also competent in the catalytic transfer hydrogenation (CTH) of FOL, affording >99% yield with 2-propanol as a H donor. This study opens an avenue toward rational design of multimetallic doping catalysts with high selectivity for challenging reactions in the conversion of biomass-derived compounds.
Collapse
Affiliation(s)
- Shangjing Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Yafei Fan
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Chunhua Wu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Changfu Zhuang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Ying Wang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Xuemei Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, P. R. China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, P. R. China
| | - Zhifeng Zheng
- College of Energy, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
50
|
Zhao P, Wang W, Wang X, Liu C, Lu J, Luo M, Chen J. The effects of MoO3 impregnation order on the catalytic activity for propane combustion over Pt/ZrO2 catalysts: the crucial roles of Pt–MoO3 interfacial sites density. NEW J CHEM 2021. [DOI: 10.1039/d1nj02764f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MoO3 promoted Pt/ZrO2 catalysts were prepared by co-impregnation (Pt–Mo/ZrO2) or stepwise impregnation (Pt/Mo/ZrO2 and Mo/Pt/ZrO2) for propane combustion.
Collapse
Affiliation(s)
- Peipei Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| | - Weiyue Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| | - Xufang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| | - Chufeng Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| | - Jiqing Lu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| | - Mengfei Luo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| | - Jian Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| |
Collapse
|