1
|
Lü Z, Su L, Han M, Wang X, Li M, Wang S, Cui S, Chen J, Yang B. Genomic characteristics and virulence of common but overlooked Yersinia intermedia, Y. frederiksenii, and Y. kristensenii in food. Int J Food Microbiol 2025; 430:111052. [PMID: 39798383 DOI: 10.1016/j.ijfoodmicro.2024.111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
Yersinia intermedia, Y. frederiksenii, and Y. kristensenii are a group of pathogens that are commonly found in food and are often overlooked in terms of their pathogenic potential. This study conducted a systematic and comprehensive genomic analysis of 114 Y. intermedia genomes, 20 Y. frederiksenii genomes, and 65 Y. kristensenii genomes from public database and our previous study. The results showed that these species were most frequently detected in Europe (56.28 %, 112/199), followed by in Asia (20.6 %, 41/199). Additionally, 33.17 % (66/199) genomes were isolated from food. Y. intermedia were grouped into Bayesian analysis of population structure (Baps) groups 3 and 4, demonstrating significant genomic diversity. This species has a high proportion of accessory genes (79.43 %), approximately 50 % of which have unknown functions, indicating a high degree of genomic plasticity. The three species carried a large number of mobile genetic elements (MGEs), including plasmids such as ColRNAI_1, ColE10_1, Col440II_1, Col440I_1, and Col (Ye4449) _1; insertion sequences (ISs) like MITEYpe1, MITEEc1, and IS1635; genomic islands (GIs); and prophages. In Y. intermedia, the following antibiotics resistance genes (ARGs) were detected: qnrD1 in 3.51 % (4/114), aph(3')-Ia in 2.63 % (3/114), blaA in 1.75 % (2/114), and catA1, vat(F), and tet(C) each in 0.88 % (1/114). In Y. kristensenii, vat(F) was present in 98.46 % (64/65), blaTEM-116 in 7.69 % (5/65), and aph(3')-Ia in 1.54 % (1/65). However, only one Y. frederiksenii genome carried vat(F). There were differences in the virulence gene composition of the three species, with Y. kristensenii having the highest number of virulence genes, particularly its complete cytotoxic genes (yaxA and yaxB) and flagellar motor proteins genes (motA and motB). The pathogenic mechanisms of Y. intermedia and Y. frederiksenii were more similar, especially in the carriage of O-antigen related genes. Y. frederiksenii's unique mechanisms also include the yapC gene, which encodes the autotransporter protein YapC from Y. pestis. After co-cultured with human colonic epithelial cell lines Caco-2 and HT-29, Y. intermedia and Y. kristensenii demonstrated different adhesive and invasive capabilities, particularly the Y. intermedia strain y7, which exhibited stronger adhesion and invasion in both cell lines. In strains y118 and y119 of Y. intermedia, an Arg378del mutation in the UreC protein was identified, resulting in the loss of urease activity. Therefore, this study revealed the pathogenic potential of Y. intermedia, Y. frederiksenii, and Y. kristensenii. Future research should focus on identifying their unknown virulence genes and strengthening public food safety measures to mitigate potential risks.
Collapse
Affiliation(s)
- Zexun Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengting Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siyue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Jia Chen
- Shijiazhuang University, Shijiazhuang 050035, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Mazzei L, Tria G, Ciurli S, Cianci M. Exploring the conformational space of the mobile flap in Sporosarcina pasteurii urease by cryo-electron microscopy. Int J Biol Macromol 2024; 283:137904. [PMID: 39571870 DOI: 10.1016/j.ijbiomac.2024.137904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
To fully understand enzymatic dynamics, it is essential to explore the complete conformational space of a biological catalyst. The catalytic mechanism of the nickel-dependent urease, the most efficient enzyme known, holds significant relevance for medical, pharmaceutical, and agro-environmental applications. A critical aspect of urease function is the conformational change of a helix-turn-helix motif that covers the active site cavity, known as the mobile flap. This motif has been observed in either an open or a closed conformation through X-ray crystallography studies and has been proposed to stabilize the coordination of a urea molecule to the essential dinuclear Ni(II) cluster in the active site, a requisite for subsequent substrate hydrolysis. This study employs cryo-electron microscopy (cryo-EM) to investigate the transient states within the conformational space of the mobile flap, devoid of the possible constraints of crystallization conditions and solid-state effects. By comparing two cryo-EM structures of Sporosarcina pasteurii urease, one in its native form and the other inhibited by N-(n-butyl) phosphoric triamide (NBPTO), we have unprecedently identified an intermediate state between the open and the catalytically efficient closed conformation of the helix-turn-helix motif, suggesting a role of its tip region in this transition between the two states.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, I-40138 Bologna, Italy.
| | - Giancarlo Tria
- Florence Center for Electron Nanoscopy (FloCEN), c/o Chemistry Department "Ugo Schiff", University of Florence, I-50019 Sesto Fiorentino, (FI), Italy; National Research Council, Institute of Cristallography URT Caserta c/o University of Campania "Luigi Vanvitelli", I-81100 Caserta, Italy.
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, I-40138 Bologna, Italy.
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy.
| |
Collapse
|
3
|
Sapre A, Mandal NS, Somasundar A, Bhide A, Song J, Borhan A, Sen A. Enzyme Catalysis Causes Fluid Flow, Motility, and Directional Transport on Supported Lipid Bilayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9380-9387. [PMID: 38319873 DOI: 10.1021/acsami.3c15383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The dynamic interplay between the composition of lipid membranes and the behavior of membrane-bound enzymes is critical to the understanding of cellular function and viability, and the design of membrane-based biosensing platforms. While there is a significant body of knowledge about how lipid composition and dynamics affect membrane-bound enzymes, little is known about how enzyme catalysis influences the motility and lateral transport on lipid membranes. Using enzyme-attached lipids in supported bilayers (SLBs), we provide direct evidence of catalysis-induced fluid flow that underlies the observed motility on SLBs. Additionally, by using active enzyme patches, we demonstrate the directional transport of tracer particles on SLBs. As expected, enhancing the membrane viscosity by incorporating cholesterol into the bilayer suppresses the overall movement. These are the first steps in understanding diffusion and transport on lipid membranes due to active, out-of-equilibrium processes that are the hallmark of living systems. In general, our study demonstrates how active enzymes can be used to control diffusion and transport in confined 2-D environments.
Collapse
Affiliation(s)
- Aditya Sapre
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Niladri Sekhar Mandal
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ambika Somasundar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ashlesha Bhide
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jiaqi Song
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ali Borhan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ayusman Sen
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Subramaniyan Y, Khan A, Fathima F, Rekha PD. Differential expression of urease genes and ureolytic activity of uropathogenic Escherichia coli and Pseudomonas aeruginosa isolates in different nutritional conditions. Arch Microbiol 2023; 205:383. [PMID: 37973630 DOI: 10.1007/s00203-023-03722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Uropathogens have adaptation strategies to survive in the host urinary tract by efficiently utilizing and tolerating the urinary metabolites. Many uropathogens harbour the enzyme urease for the breakdown of urea and the enzymatic breakdown of urea increases the pH and facilitate the struvite crystallization. In this study, the differential urease activity of uropathogenic Escherichia coli and Pseudomonas aeruginosa strains was investigated under different nutritional conditions. The experiments included measurement of growth, pH, urease activity, NH4-N generation and urease gene (ureC) expression among the bacterial strains under different conditions. Further, the implications of urea breakdown on the struvite crystallization in vitro and biofilm formation were also assessed. The study included urease positive isolates and for comparison urease negative isolates were included. Compared to the urease negative strains the urease positive strains formed higher biofilms and motility. The urease positive P. aeruginosa showed significantly higher (p < 0.01) pH and urease activity (A557-A630) compared to E. coli under experimental conditions. Further, supplementation of glucose to the growth media significantly increased the urease activity in P. aeruginosa and in contrast, it was significantly lower in E. coli. The expression profile of urease gene (ureC) was significantly higher (p < 0.001) in P. aeruginosa compared to E. coli and was consistent with the biochemical results of the urease activity under the nutritional conditions. The differential urease activity under two nutritional conditions influenced the biogenic struvite crystallization. It correlated with the urease activity showing higher crystallization rate in P. aeruginosa compared to E. coli. The results highlight the differential urease activity in two common uropathogens under different nutritional conditions that may have significant role on the regulation of virulence, pathogenicity and in the kidney stone disease.
Collapse
Affiliation(s)
- Yuvarajan Subramaniyan
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Altaf Khan
- Department of Urology, Yenepoya Medical College and Hospital, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Fida Fathima
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Punchappady Devasya Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
5
|
Fang X, Kang L, Qiu YF, Li ZS, Bai Y. Yersinia enterocolitica in Crohn’s disease. Front Cell Infect Microbiol 2023; 13:1129996. [PMID: 36968108 PMCID: PMC10031030 DOI: 10.3389/fcimb.2023.1129996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Increasing attention is being paid to the unique roles gut microbes play in both physiological and pathological processes. Crohn’s disease (CD) is a chronic, relapsing, inflammatory disease of the gastrointestinal tract with unknown etiology. Currently, gastrointestinal infection has been proposed as one initiating factor of CD. Yersinia enterocolitica, a zoonotic pathogen that exists widely in nature, is one of the most common bacteria causing acute infectious gastroenteritis, which displays clinical manifestations similar to CD. However, the specific role of Y. enterocolitica in CD is controversial. In this Review, we discuss the current knowledge on how Y. enterocolitica and derived microbial compounds may link to the pathogenesis of CD. We highlight examples of Y. enterocolitica-targeted interventions in the diagnosis and treatment of CD, and provide perspectives for future basic and translational investigations on this topic.
Collapse
Affiliation(s)
| | | | | | | | - Yu Bai
- *Correspondence: Zhao-Shen Li, ; Yu Bai,
| |
Collapse
|
6
|
Huber ST, Sarajlic E, Huijink R, Weis F, Evers WH, Jakobi AJ. Nanofluidic chips for cryo-EM structure determination from picoliter sample volumes. eLife 2022; 11:72629. [PMID: 35060902 PMCID: PMC8786315 DOI: 10.7554/elife.72629] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/07/2021] [Indexed: 01/25/2023] Open
Abstract
Cryogenic electron microscopy has become an essential tool for structure determination of biological macromolecules. In practice, the difficulty to reliably prepare samples with uniform ice thickness still represents a barrier for routine high-resolution imaging and limits the current throughput of the technique. We show that a nanofluidic sample support with well-defined geometry can be used to prepare cryo-EM specimens with reproducible ice thickness from picoliter sample volumes. The sample solution is contained in electron-transparent nanochannels that provide uniform thickness gradients without further optimisation and eliminate the potentially destructive air-water interface. We demonstrate the possibility to perform high-resolution structure determination with three standard protein specimens. Nanofabricated sample supports bear potential to automate the cryo-EM workflow, and to explore new frontiers for cryo-EM applications such as time-resolved imaging and high-throughput screening.
Collapse
Affiliation(s)
- Stefan T Huber
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology
| | | | | | - Felix Weis
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL)
| | - Wiel H Evers
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology
| | - Arjen J Jakobi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology
| |
Collapse
|
7
|
Gao S, Han R, Zeng X, Liu Z, Xu M, Zhang F. Macromolecules Structural Classification With a 3D Dilated Dense Network in Cryo-Electron Tomography. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:209-219. [PMID: 33729943 PMCID: PMC8446108 DOI: 10.1109/tcbb.2021.3065986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cryo-electron tomography, combined with subtomogram averaging (STA), can reveal three-dimensional (3D) macromolecule structures in the near-native state from cells and other biological samples. In STA, to get a high-resolution 3D view of macromolecule structures, diverse macromolecules captured by the cellular tomograms need to be accurately classified. However, due to the poor signal-to-noise-ratio (SNR) and severe ray artifacts in the tomogram, it remains a major challenge to classify macromolecules with high accuracy. In this paper, we propose a new convolutional neural network, named 3D-Dilated-DenseNet, to improve the performance of macromolecule classification. In 3D-Dilated-DenseNet, there are two key strategies to guarantee macromolecule classification accuracy: 1) Using dense connections to enhance feature map utilization (corresponding to the baseline 3D-C-DenseNet); 2) Adopting dilated convolution to enrich multi-level information in feature maps. We tested 3D-Dilated-DenseNet and 3D-C-DenseNet both on synthetic data and experimental data. The results show that, on synthetic data, compared with the state-of-the-art method in the SHREC contest (SHREC-CNN), both 3D-C-DenseNet and 3D-Dilated-DenseNet outperform SHREC-CNN. In particular, 3D-Dilated-DenseNet improves 0.393 of F1 metric on tiny-size macromolecules and 0.213 on small-size macromolecules. On experimental data, compared with 3D-C-DenseNet, 3D-Dilated-DenseNet can increase classification performance by 2.1 percent.
Collapse
|
8
|
Desulfovibrio desulfuricans AY5 Isolated from a Patient with Autism Spectrum Disorder Binds Iron in Low-Soluble Greigite and Pyrite. Microorganisms 2021; 9:microorganisms9122558. [PMID: 34946159 PMCID: PMC8705596 DOI: 10.3390/microorganisms9122558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/25/2023] Open
Abstract
The sulphate-reducing bacteria (SRB) of genus Desulfovibrio are a group of prokaryotes associated with autism spectrum disorders (ASD). The connection between the elevated numbers of Desulfovibrio in the gut of children with ASD compared with healthy children remains unresolved. A conceivable consequence of SRB overgrowth in the gut is the conversion of bioavailable iron into low-soluble crystalline iron sulphides, causing iron deficiency in the organism. In this study, we report the draft genome sequence and physiological features of the first cultivable isolate from a patient with ASD, Desulfovibrio desulfuricans strain AY5.The capability of the strain to produce crystalline iron sulphides was studied under different pH conditions. The most notable greigite(Fe3S4) and pyrite (FeS2) formation was revealed at pH 6.0, which suggests that the iron loss due to insoluble sulphide formation may occur in the proximal part of the gastrointestinal tract. Strain AY5 was adapted to grow under nitrogen-limiting conditions by N2 fixation. The urease found in the strain’s genome may play a role in resistance to acidic pH.
Collapse
|
9
|
|
10
|
Edmonds KA, Jordan MR, Giedroc DP. COG0523 proteins: a functionally diverse family of transition metal-regulated G3E P-loop GTP hydrolases from bacteria to man. Metallomics 2021; 13:6327566. [PMID: 34302342 PMCID: PMC8360895 DOI: 10.1093/mtomcs/mfab046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
Transition metal homeostasis ensures that cells and organisms obtain sufficient metal to meet cellular demand while dispensing with any excess so as to avoid toxicity. In bacteria, zinc restriction induces the expression of one or more Zur (zinc-uptake repressor)-regulated Cluster of Orthologous Groups (COG) COG0523 proteins. COG0523 proteins encompass a poorly understood sub-family of G3E P-loop small GTPases, others of which are known to function as metallochaperones in the maturation of cobalamin (CoII) and NiII cofactor-containing metalloenzymes. Here, we use genomic enzymology tools to functionally analyse over 80 000 sequences that are evolutionarily related to Acinetobacter baumannii ZigA (Zur-inducible GTPase), a COG0523 protein and candidate zinc metallochaperone. These sequences segregate into distinct sequence similarity network (SSN) clusters, exemplified by the ZnII-Zur-regulated and FeIII-nitrile hydratase activator CxCC (C, Cys; X, any amino acid)-containing COG0523 proteins (SSN cluster 1), NiII-UreG (clusters 2, 8), CoII-CobW (cluster 4), and NiII-HypB (cluster 5). A total of five large clusters that comprise ≈ 25% of all sequences, including cluster 3 which harbors the only structurally characterized COG0523 protein, Escherichia coli YjiA, and many uncharacterized eukaryotic COG0523 proteins. We also establish that mycobacterial-specific protein Y (Mpy) recruitment factor (Mrf), which promotes ribosome hibernation in actinomycetes under conditions of ZnII starvation, segregates into a fifth SSN cluster (cluster 17). Mrf is a COG0523 paralog that lacks all GTP-binding determinants as well as the ZnII-coordinating Cys found in CxCC-containing COG0523 proteins. On the basis of this analysis, we discuss new perspectives on the COG0523 proteins as cellular reporters of widespread nutrient stress induced by ZnII limitation.
Collapse
Affiliation(s)
- Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Matthew R Jordan
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
11
|
Sharov G, Morado DR, Carroni M, de la Rosa-Trevín JM. Using RELION software within the Scipion framework. Acta Crystallogr D Struct Biol 2021; 77:403-410. [PMID: 33825701 PMCID: PMC8025880 DOI: 10.1107/s2059798321001856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/15/2021] [Indexed: 11/10/2022] Open
Abstract
Scipion is a modular image-processing framework that integrates several software packages under a unified interface while taking care of file formats and conversions. Here, new developments and capabilities of the Scipion plugin for the widely used RELION software package are presented and illustrated with an image-processing pipeline for published data. The user interfaces of Scipion and RELION are compared and the key differences are highlighted, allowing this manuscript to be used as a guide for both new and experienced users of this software. Different on-the-fly image-processing options are also discussed, demonstrating the flexibility of the Scipion framework.
Collapse
Affiliation(s)
- Grigory Sharov
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Dustin R Morado
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|