1
|
Lv X, Qian L, Tkachenko NV, Zhang T, Qiu F, Aratani N, Ikeue T, Pan J, Xue S. Copper complexation of rosarin: formation of bis-copper rosarin and mono-copper linear tridipyrrin complexes. Dalton Trans 2024; 53:16879-16884. [PMID: 39360845 DOI: 10.1039/d4dt02161d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
A novel rosarin di-Cu complex 2Cu-1 and a linear six-pyrrolic mono-copper complex 1Cu-1 were synthesized using rosarin as the ligand. The molecular conformations of these complexes were confirmed by X-ray crystallography. The optical study of 1Cu-1 indicated NIR-II absorption due to the long six-pyrrolic ligand and the ICT effect. The 2Cu-1 complex exhibited a very narrow electronic reduction-oxidation gap of 0.50 eV, attributed to the antiaromatic characteristics of the rosarin ring. The first HER study of the di-copper rosarin complex 2Cu-1 indicated that the multi-metal poly-pyrrolic complexes are promising molecular hydrogen evolution reaction catalysts.
Collapse
Affiliation(s)
- Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Long Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Nikolay V Tkachenko
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Nara 630-0192, Japan.
| | - Takahisa Ikeue
- Department of Materials Chemistry, Graduate School of Natural Science and Technology Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Huang Y, Zhu B, Li Q, Baryshnikov G, Li C, Sha F, Wu XY, Ågren H, Xie Y. A Class of Heptaphyrins with NIR Absorption Modulated by Metal Coordination and Nucleophilic Substitution. Chem Asian J 2024; 19:e202400575. [PMID: 39031934 DOI: 10.1002/asia.202400575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 07/19/2024] [Indexed: 07/22/2024]
Abstract
The intensive interest in expanded porphyrins can be attributed to their appealing photoelectric and coordination behavior. In this work, an N-confused heptaphyrin 1 was synthesized by an acid-catalyzed [3+4] condensation reaction. The introduction of an N-confused pyrrolic unit into the heptaphyrin macrocycle led to the formation of a figure-eight-like conformation with nonsymmetrical "NNNN" and "NNNC" coordination cavities employable for bimetallic coordination. As a result, chelation of 1 with Zn(II) and Cu(II) afforded mono-Zn(II) complex 2 and bis-Cu(II) complex 3, respectively, with the metal atoms exhibiting distorted square-planar geometries. In complex 3, an oxygen atom is attached to the α-C atom of N-confused pyrrole D, and thus the N and C atoms of ring D participate in coordination within the two cavities. Interestingly, treatment of 1 with Cs2CO3 in MeOH resulted in regioselective substitution of all the seven para-F atoms in the meso-C6F5 groups as well as the α-H of ring D by eight methoxy moieties. Complex 3 displays a red-shifted absorption band edge of ca. 2200 nm, compared to that of ca. 1600 nm observed for 1. This work provides an example of incorporating an N-confused pyrrole to construct expanded porphyrins with distinctive coordination behavior and tunable NIR absorption.
Collapse
Affiliation(s)
- Yanping Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Bin Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qizhao Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Glib Baryshnikov
- Department of Science and Technology, Institution Laboratory of Organic Electronics, Linköping University, Norrköping, SE-60174, Sweden
| | - Chengjie Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng Sha
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xin-Yan Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-75120, Sweden
| | - Yongshu Xie
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
3
|
Rao Y, Lee J, Chen J, Xu L, Zhou M, Yin B, Kim J, Osuka A, Song J. 5,18-Dimesitylorangarin: a Stable Antiaromatic [20]Pentaphyrin(1.0.1.0.0) Displaying Remarkable Oxidative Self-Coupling Reactions. Angew Chem Int Ed Engl 2024; 63:e202409655. [PMID: 38967990 DOI: 10.1002/anie.202409655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/07/2024]
Abstract
5,18-Dimesitylorangarin and its BF2 complex were synthesized by double SNAr reaction of 3,5-dibromo-BODIPY with 2-pyrrolydipyrrin as the first examples of meso-aryl-substituted orangarin. These orangarins, delineated as [20]pentaphyrin(1.0.1.0.0), are strongly antiaromatic but rather stable. The free base orangarin was coupled by oxidation with MnO2 to give a 11,11'-linked dimer, a cyclooctatetraene(COT)-centered trimer, and a spiro-trimer. Fused COT-centered 3H-orangarin dimer was oxidized to the corresponding 2H-orangarin dimer, which was further coupled to give a triply COT-centered 2H-orangarin tetramer. 3H-Orangarin oligomers are all antiaromatic as evinced by extremely low-field-shifted 1H NMR signals of the inner NH and ill-defined absorption spectra with broad tails. In contrast, COT-centered 2H-orangarin dimer and tetramer show moderately low-field-shifted NH signals and intense NIR absorbance over 900 nm, suggesting effective π-conjugation through the COT bridge and almost non-antiaromatic character. These orangarin oligomers exhibit many reversible redox potentials owing to the intramolecular electronic interactions. Regardless of the different aromatic characters, all the orangarin monomers and oligomers exhibit very rapid excited-state decays.
Collapse
Affiliation(s)
- Yutao Rao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Jiyeon Lee
- School of Integrated Technology, College of Computing, Yonsei University, Incheon, 21983, Republic of Korea
- Integrated Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Republic of Korea
- Integrative Biotechnology and Translational Medicine, Graduate School, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jinchao Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Ling Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Mingbo Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Bangshao Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Jiwon Kim
- School of Integrated Technology, College of Computing, Yonsei University, Incheon, 21983, Republic of Korea
- Integrated Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Republic of Korea
- Integrative Biotechnology and Translational Medicine, Graduate School, Yonsei University, Incheon, 21983, Republic of Korea
| | - Atsuhiro Osuka
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Jianxin Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
4
|
He H, Lee J, Zong Z, Kim J, Lynch VM, Oh J, Kim D, Sessler JL, Ke XS. A Janus carbaporphyrin pseudo-dimer. Nat Commun 2024; 15:2913. [PMID: 38575609 PMCID: PMC10994945 DOI: 10.1038/s41467-024-47239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
Carbaporphyrin dimers, investigated for their distinctive electronic structures and exceptional properties, have predominantly consisted of systems containing identical subunits. This study addresses the associated knowledge gap by focusing on asymmetric carbaporphyrin dimers with Janus-like characteristics. The synthesis of a Janus-type carbaporphyrin pseudo-dimer 5 is presented. It displays antiaromatic characteristics on the fused side and nonaromatic behavior on the unfused side. A newly synthesized tetraphenylene (TPE) linked bis-dibenzihomoporphyrin 8 and a previously reported dibenzo[g,p]chrysene (DBC) linked bis-dicarbacorrole 9 were prepared as controls. Comprehensive analyses, including 1H NMR spectral studies, single crystal X-ray diffraction analyses, and DFT calculations, validate the mixed character of 5. A further feature of the Janus pseudo-dimer 5 is that it may be transformed into a heterometallic complex, with one side coordinating a Cu(III) center and the other stabilizing a BODIPY complex. This disparate regiochemical reactivity underscores the potential of carbaporphyrin dimers as versatile frameworks, with electronic features and site-specific coordination chemistry controlled through asymmetry. These findings position carbaporphyrin dimers as promising candidates for advances in electronic structure studies, coordination chemistry, materials science, and beyond.
Collapse
Affiliation(s)
- Haodan He
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jiyeon Lee
- School of Integrated Technology, College of Computing, Yonsei University, Incheon, 21983, Korea
| | - Zhaohui Zong
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jiwon Kim
- School of Integrated Technology, College of Computing, Yonsei University, Incheon, 21983, Korea
- Integrated Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA
| | - Juwon Oh
- Department of Chemistry, Soonchunhyang University, Asan, 31538, Korea.
| | - Dongho Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea.
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA.
| | - Xian-Sheng Ke
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
5
|
Xu Y, Zhu B, Zhang L, Baryshnikov G, Sha F, Nishimoto E, Takano H, Li C, Wu X, Ågren H, Shinokubo H, Xie Y, Li Q. Syntheses of Thiophene-Thiophene-Linked Corrorin Dimers with Tunable Near-Infrared Absorption and Distinctive Reactivity. Org Lett 2024. [PMID: 38190656 DOI: 10.1021/acs.orglett.3c04323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Thiahexaphyrinone 1 and thia-dipyrrin-appended corrorin 2 have been synthesized. Surprisingly, further oxidation of compound 2 with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in dichloromethane afforded dimer 3 with two molecules of compound 2 linked at the α-carbon atoms of the thienyl units. Treatment of compound 3 with DDQ in MeOH and SnCl2 in tetrahydrofuran/H2O afforded the dimethoxy-attached dimer 4 and hydrogenated dihydroxy-attached dimer 5, respectively. These results provide the first examples for synthesizing thiophene-linked porphyrinoid dimers with tunable near-infrared absorption and chirality.
Collapse
Affiliation(s)
- Yue Xu
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Bin Zhu
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Lingfang Zhang
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Glib Baryshnikov
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, SE-601 74 Norrköping, Sweden
| | - Feng Sha
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Emiko Nishimoto
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Hideaki Takano
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Chengjie Li
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xinyan Wu
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Yongshu Xie
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Qizhao Li
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
6
|
Pinjari A, Saraf D, Sengupta D. Molecular mechanisms underlying nanowire formation in pristine phthalocyanine. Phys Chem Chem Phys 2023; 25:30259-30268. [PMID: 37927067 DOI: 10.1039/d3cp03512c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Understanding the molecular processes of nanowire self-assembly is crucial for designing and controlling nanoscale structures that could lead to breakthroughs in functional materials. In this work, we focus on pristine phthalocyanines as a representative example of mesogenic supramolecular assemblies and have analyzed the formation of nanowires using classical molecular dynamics simulations. In the simulations, the molecules spontaneously form multi-columnar structures resembling supramolecular polymers that subsequently grow into more ordered aggregates. These self-assemblies are concentration dependent, leading to the formation of multi-columnar, dynamic aggregates at higher concentrations and nanowires at lower concentrations. The multi-columnar assemblies on a whole are more disordered than the nanowires, but have locally ordered domains of parallel facing molecules that can fluctuate while maintaining their overall shape. The nanowire formation at lower concentrations involves the initial interaction and clustering of randomly oriented phthalocyanine molecules, followed by the merging of small clusters into elongated segments and the eventual formation of a stable nanowire. We observe three main conformers in these self-assemblies, the parallel, T-shaped and edge-to-edge stacking of the phthalocyanine dimers. We calculate the underlying free energy landscape and show that the parallel conformers form the most stable configuration which is followed by the T-shaped and edge-to-edge dimer configurations. The findings provide insights into the mechanisms and pathways of nanowire formation and a step towards the understanding of self-assembly processes in supramolecular mesogens.
Collapse
Affiliation(s)
- Aadil Pinjari
- CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India.
| | - Deepashri Saraf
- CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India.
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| |
Collapse
|
7
|
Moss A, Jang Y, Arvidson J, Wang H, D'Souza F. Highly Coupled Heterobicycle-Fused Porphyrin Dimers: Excitonic Coupling and Charge Separation with Coordinated Fullerene, C 60. CHEMSUSCHEM 2023; 16:e202202289. [PMID: 36655889 DOI: 10.1002/cssc.202202289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Porphyrin dimers have been widely explored and studied owing to their importance in photosynthetic systems. A vast variety of dimers linked by different groups and at different angles have been synthesized and studied; however, the means by which to synthesize rigidly fused porphyrins with direct conjugation of the chromophores remains limited. Such a class of porphyrins may possess interesting properties that unconjugated or stacked dimers may not exhibit. In this study, bisbenzimidazole-fused porphyrin dimers and their mono- and bis-zinc derivatives are synthesized and characterized. As a consequence of excitonic coupling, these dimers exhibit a split Soret band irrespective of the metal ion in the porphyrin cavity. Steady-state fluorescence and excitation spectra followed by femtosecond transient absorption spectral studies of the heterometallated dimer, (free-base and zinc porphyrin) reveals the occurrence of efficient singlet-singlet energy transfer (>95 % efficiency and rate constant >1012 s-1 ) within the dyad. Further, donor-acceptor conjugates were formed by metal-ligand axial coordination of phenyl imidazole functionalized C60 and were characterized by a variety of physicochemical techniques. Excited state charge separation from both singlet and triplet excited states of ZnP in the conjugates has been established. The lifetime of the final charge-separated state was in the 30-40 μs range revealing charge stabilization. Interestingly, no charge separation in the conjugate derived from the heterometallated dimer was observed wherein excitation transfer dominated the process. The present study brings out the importance of the rigid π-spacer connecting porphyrin dimers in governing the energy and electron transfer events when coupled with an electron acceptor.
Collapse
Affiliation(s)
- Austen Moss
- Department of Chemistry, University of North Texas, Denton, TX, 76203, USA
| | - Youngwoo Jang
- Department of Chemistry, University of North Texas, Denton, TX, 76203, USA
| | - Jacob Arvidson
- Department of Chemistry, University of North Texas, Denton, TX, 76203, USA
| | - Hong Wang
- Department of Chemistry, University of North Texas, Denton, TX, 76203, USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, Denton, TX, 76203, USA
| |
Collapse
|
8
|
Tan B, Ding W, Yin Y, Xu K, Yin Y, Chen X, Huang Z, Wu L, Sessler JL, Zhang Z. Quinoxaline-fused octaphyrin(2.0.0.0.2.0.0.0). A rudimentary chemosensor. Chem Commun (Camb) 2023; 59:708-711. [PMID: 36537661 DOI: 10.1039/d2cc05604f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A quinoxaline-fused octaphyrin(2.0.0.0.2.0.0.0) was synthesized by the FeCl3-induced oxidative coupling of an α-free quinoxaline-fused tetrapyrrole. This macrocycle adopts a figure-of-eight conformation in the solid state and acts as a rudimentary chemosensor in solution. The Lewis basic anions fluoride and hydroxide induce a colour change via a deprotonation mechanism.
Collapse
Affiliation(s)
- Bingbin Tan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| | - Wenjing Ding
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| | - Yu Yin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| | - Kui Xu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| | - Ying Yin
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xi Chen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| | - Zhengxi Huang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| | - Lamei Wu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Texas 78712-1224, USA.
| | - Zhan Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
9
|
Li Q, Ishida M, Wang Y, Li C, Baryshnikov G, Zhu B, Sha F, Wu X, Ågren H, Furuta H, Xie Y. Antiaromatic Sapphyrin Isomer: Transformation into Contracted Porphyrinoids with Variable Aromaticity. Angew Chem Int Ed Engl 2023; 62:e202212174. [PMID: 36342501 DOI: 10.1002/anie.202212174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/09/2022]
Abstract
Sapphyrin is a pentapyrrolic expanded porphyrin with a 22π aromatic character. Herein, we report the synthesis of a 20π antiaromatic sapphyrin isomer 1 by oxidative cyclization of a pentapyrrane precursor P5 with a terminal β-linked pyrrole. The resulting isomer 1, containing a mis-linked bipyrrole unit in the skeleton, exhibits a reactivity for further oxidation due to the distinct antiaromatic electronic structure, affording a fused macrocycle 2, possessing a spiro-carbon-containing [5.6.5.6]-tetracyclic structure. Subsequent treatment with an acid afforded a weakly aromatic pyrrolone-appended N-confused corrole 3, and thermal fusion gave a [5.6.5.7]-tetracyclic-ring-embedded 14π aromatic triphyrin(2.1.1) analog 4. The cyclization at the mis-linked pyrrole moiety of P5 played a crucial role in synthesizing the antiaromatic porphyrinoid susceptible to facile transformation to novel porphyrinoids with variable aromaticity.
Collapse
Affiliation(s)
- Qizhao Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Masatoshi Ishida
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Yunyun Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Chengjie Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Glib Baryshnikov
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, 60174, Norrköping, Sweden
| | - Bin Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Feng Sha
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Xinyan Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden
| | - Hiroyuki Furuta
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yongshu Xie
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
10
|
Li J, Zhang J, Wang J, Wang D, Yan Y, Huang J, Tang BZ. Insights into Self-Assembly of Nonplanar Molecules with Aggregation-Induced Emission Characteristics. ACS NANO 2022; 16:20559-20566. [PMID: 36383407 DOI: 10.1021/acsnano.2c07263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Utilizing nonplanar conjugated molecules as building blocks facilitates the development of self-assembly but is fundamentally challenging. To study the self-assembly behavior, we herein demonstrate the self-assembly process of a nonplanar conjugated molecule with aggregation-induced emission (AIE) feature from an isolated molecule to an irregular cluster to a well-defined vesicle driven by amphiphiles. The superhigh aggregation-sensitive emission affords more precise and detailed information about the self-assembly process than traditional dyes. Meanwhile, the arrangements of the AIE-active molecule change from disordered to well-organized forms by reducing the twisted configuration during the transformation process, and the strong hydrophobicity of amphiphiles is crucial for such configuration and morphology transformations. Owing to the thermophilic bacteria-mimetic membranes, the obtained vesicles exhibit a property of superhigh thermal stability. They also display promising light-harvesting applications. This work not only deciphers the self-assembly of AIE molecules but also provides a strategy for nonplanar molecules to build well-organized self-assemblies.
Collapse
Affiliation(s)
- Jie Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jianyu Zhang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jianxing Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
11
|
Toganoh M, Furuta H. Creation from Confusion and Fusion in the Porphyrin World─The Last Three Decades of N-Confused Porphyrinoid Chemistry. Chem Rev 2022; 122:8313-8437. [PMID: 35230807 DOI: 10.1021/acs.chemrev.1c00065] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Confusion is a novel concept of isomerism in porphyrin chemistry, delivering a steady stream of new chemistry since the discovery of N-confused porphyrin, a porphyrin mutant, in 1994. These days, the number of confused porphyrinoids is increasing, and confusion and associated fusion are found in various fields such as supramolecular chemistry, materials chemistry, biological chemistry, and catalysts. In this review, the birth and growth of confused porphyrinoids in the last three decades are described.
Collapse
Affiliation(s)
- Motoki Toganoh
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Xue R, Zhou Y, Lin Q, Zhang L, Li C, Chen Y, Xie Y, Liu X. Loading Phlorins with Fullerenes by a [4 + 2]-Cycloaddition Reaction: Regulation of the Regioselectivity by Pyrrole Linkage Modes. J Org Chem 2022; 87:2758-2766. [PMID: 35166524 DOI: 10.1021/acs.joc.1c02676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfolenopyrrole-based normal and N-confused phlorins have been constructed to address the seldom touched phlorin functionalization and simultaneously explore the effect of the pyrrole linkage modes (αα, αβ) on the [4 + 2] cycloaddition reaction. The common sulfolenophlorin 1 contains two sulfolenopyrroles with the same reactivity upon tautomerization and undergoes stepwise [4 + 2]-cycloaddition with fullerene to furnish monoadduct 1-C60 and bisadduct 1-2C60 with a total yield up to 76%. By contrast, the presence of the confused pyrrole in 2 fixes the π-system owing to the low tendency to tautomerize and enables the two sulfolenopyrroles to exhibit in different fashions (i.e., normal NH-type and imino-type). Notably, under milder conditions (120 °C), the monofullerenoadduct 2-C60 forms rapidly and has been isolated from the [4 + 2] cycloaddition reaction of 2 and fullerene as the predominant fraction, accompanied by a trace amount of bisadduct 2-2C60. Raising the temperature to 140 °C did not improve the yield of 2-2C60. The structural analysis of 2-C60 indicates the attachment of fullerene at the iminopyrrole part. The high regioselectivity in the [4 + 2] cycloaddition of the imino-type sulfolenopyrrole unit has been rationalized thermodynamically by the DFT calculation on the relative energy of the two diene intermediates.
Collapse
Affiliation(s)
- Rongchao Xue
- School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Yongzhu Zhou
- School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Qianghao Lin
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Lei Zhang
- School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Chengjie Li
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yu Chen
- School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Yongshu Xie
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xiujun Liu
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Wang K, Xiao B, Xu L, Zhou M, Tanaka T, Osuka A, Song J. Nitrogen-bridged Ni(II) porphyrinoid trimers with a central quinodiimine unit. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Gao S, Li Q, Baryshnikov G, Ågren H, Xie Y. Synthesis, characterization, and spectroscopic properties of 2‐(3,5,6‐trichloro‐1,4‐benzoquinon‐2‐yl)‐
neo‐fused
hexaphyrin. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shimin Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Qizhao Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Glib Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology Linköping University Norrköping Sweden
| | - Hans Ågren
- Department of Physics and Astronomy Uppsala University Uppsala Sweden
| | - Yongshu Xie
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| |
Collapse
|
15
|
Xu Y, Zhu B, Li Q, Baryshnikov G, Zhou M, Li C, Sha F, Wu X, Ågren H, Song J, Xie Y. Confusion Approach Modulated Syntheses of Corrorin Parasitized Hexaphyrins(1.1.1.1.1.0) and the Oxidative Ring Cleavage Behavior. Org Lett 2021; 23:8307-8311. [PMID: 34633197 DOI: 10.1021/acs.orglett.1c03057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A corrorin parasitized hexaphyrin(1.1.1.1.1.0) 1 was synthesized by [4 + 4] condensation, and subsequent treatment with PbO2 afforded hexaphyrin 2 appended with a dipyrrinone moiety via regioselective opening of the corrorin ring. In contrast, oxidation of the corresponding corrorin-N-confused hexaphyrin(1.1.1.1.1.0) hybrid 3 afforded only a keto adduct 4. As a result, the planarity and aromaticity of the hexaphyrin moiety can be modulated.
Collapse
Affiliation(s)
- Yue Xu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, State Key Laboratory of Bioreactor Engineering, Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science & Technology, 200237 Shanghai, China
| | - Bin Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, State Key Laboratory of Bioreactor Engineering, Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science & Technology, 200237 Shanghai, China
| | - Qizhao Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, State Key Laboratory of Bioreactor Engineering, Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science & Technology, 200237 Shanghai, China.,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, 410081 Changsha, China
| | - Glib Baryshnikov
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, SE-601 74 Norrköping, Sweden
| | - Mingbo Zhou
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, 410081 Changsha, China
| | - Chengjie Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, State Key Laboratory of Bioreactor Engineering, Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science & Technology, 200237 Shanghai, China
| | - Feng Sha
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, State Key Laboratory of Bioreactor Engineering, Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science & Technology, 200237 Shanghai, China
| | - Xinyan Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, State Key Laboratory of Bioreactor Engineering, Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science & Technology, 200237 Shanghai, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Jianxin Song
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, 410081 Changsha, China
| | - Yongshu Xie
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, State Key Laboratory of Bioreactor Engineering, Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science & Technology, 200237 Shanghai, China
| |
Collapse
|
16
|
Wang S, Huang X, Xu Z, Zhu B, Ye Y, Zhang Z, Li S. Influence of solvent and axial coordination on self-assembly of a heteroditopic porphyrin derivative. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s108842462150125x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel heteroditopic porphyrin and its zinc complex with four long aliphatic chains on the same side of the porphyrin ring were synthesized and used for controllable self-assembly. A variety of aggregation morphologies, including nanosheets, nanospheres, films, leaves, trunks, nanorods, and disks, were furnished by using different pyridyl ligands to coordinate with the Zn-porphyrin or selecting different solvents.
Collapse
Affiliation(s)
- Shuping Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Xuechun Huang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Ziwei Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Benyue Zhu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yang Ye
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
17
|
Wang R, Yin Y, Xu K, Wu L, Huang Z, Hsu HY, Sessler JL, Zhang Z. Doubly N-confused phlorin and phlorinone analogue. Chem Commun (Camb) 2021; 57:2772-2775. [PMID: 33596301 DOI: 10.1039/d1cc00216c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A doubly N-confused phlorin and phlorinone analogue were synthesized from a β,β'-linked dipyrromethane precursor and characterized by means of NMR and UV-Vis spectroscopies, X-ray crystallography, and electrochemistry. Solvents have a considerable impact on the optical absorption of the doubly N-confused phlorin so that it can differentiate simple alcohols such as methanol and ethanol.
Collapse
Affiliation(s)
- Runju Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Ying Yin
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Kui Xu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Lamei Wu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Zhengxi Huang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China and Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Jonathan L Sessler
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Zhan Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
18
|
Xu K, Zhang X, Liu G, Ma W, Yin Y, Yin Y, Chen X, Zhao X, Sessler JL, Zhang Z. Pyridazine-bridged expanded rosarin and semi-rosarinogen. Chem Commun (Camb) 2021; 57:1486-1489. [PMID: 33443247 DOI: 10.1039/d0cc07433k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of the pyridazine-bridged expanded rosarin 1 and a reduced precursor, semi-rosarinogen 2, is reported. A single crystal X-ray diffraction analysis of 1 and theoretical calculations show that both 1 and 2 have distorted structures. Expanded rosarin 1 and its precursor 2 can differentiate various thiols in organic solvents by means of species-specific colour changes and reaction times.
Collapse
Affiliation(s)
- Kui Xu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationality, Wuhan, Hubei 430074, China.
| | - Xiaoshuai Zhang
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Guopeng Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationality, Wuhan, Hubei 430074, China.
| | - Wanzun Ma
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationality, Wuhan, Hubei 430074, China.
| | - Yu Yin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationality, Wuhan, Hubei 430074, China.
| | - Ying Yin
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xi Chen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationality, Wuhan, Hubei 430074, China.
| | - Xinyun Zhao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationality, Wuhan, Hubei 430074, China.
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Texas 78712-1224, USA.
| | - Zhan Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationality, Wuhan, Hubei 430074, China.
| |
Collapse
|
19
|
Wang K, Osuka A, Song J. Pd-Catalyzed Cross Coupling Strategy for Functional Porphyrin Arrays. ACS CENTRAL SCIENCE 2020; 6:2159-2178. [PMID: 33376779 PMCID: PMC7760067 DOI: 10.1021/acscentsci.0c01300] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 05/04/2023]
Abstract
Porphyrin arrays are an important class of compounds to study interporphyrin electronic interactions that are crucial in determining the rates of energy transfer and electron transfer reactions. When the electronic interactions become stronger, porphyrin arrays exhibit significantly altered optical and electronic properties owing to large oscillator strength and flexible electronic nature of porphyrins. In addition, porphyrins accept various metal cation in their cavities and the interporphyrin interactions depend upon the coordinated metal. With these in the background, porphyrin arrays have been extensively explored as sensors, multielectron catalysts, photodynamic therapy reagents, artificial photosynthetic antenna, nonlinear optical materials, and so on. Here, we review the synthesis of porphyrin arrays by palladium-catalyzed cross-coupling reactions, which are quite effective to construct carbon-carbon bonds and carbon-nitrogen bonds in porphyrin substrates. Palladium-catalyzed cross coupling reactions employed so far are Suzuki-Miyaura coupling reaction, Sonogashira coupling reaction, Buchwald-Hartwig amination, Mizoroki-Heck reaction, Migita-Kosugi-Stille coupling reaction, and so on. In each case, the representative examples and synthetic advantages are discussed.
Collapse
|