1
|
Sonnemann HM, Pazdrak B, Nassif B, Sun Y, Elzohary L, Talukder AH, Katailiha AS, Bhat K, Lizée G. Placental co-transcriptional activator Vestigial-like 1 (VGLL1) drives tumorigenesis via increasing transcription of proliferation and invasion genes. Front Oncol 2024; 14:1403052. [PMID: 38912065 PMCID: PMC11190739 DOI: 10.3389/fonc.2024.1403052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Vestigial-like 1 (VGLL1) is a co-transcriptional activator that binds to TEA domain-containing transcription factors (TEADs). Its expression is upregulated in a variety of aggressive cancer types, including pancreatic and basal-like breast cancer, and increased transcription of VGLL1 is strongly correlated with poor prognosis and decreased overall patient survival. In normal tissues, VGLL1 is most highly expressed within placental trophoblast cells, which share the common attributes of rapid cellular proliferation and invasion with tumor cells. The impact of VGLL1 in cancer has not been fully elucidated and no VGLL1-targeted therapy currently exists. Methods The aim of this study was to evaluate the cellular function and downstream genomic targets of VGLL1 in placental, pancreatic, and breast cancer cells. Functional assays were employed to assess the role of VGLL1 in cellular invasion and proliferation, and ChIP-seq and RNAseq assays were performed to identify VGLL1 target genes and potential impact using pathway analysis. Results ChIP-seq analysis identified eight transcription factors with a VGLL1-binding motif that were common between all three cell types, including TEAD1-4, AP-1, and GATA6, and revealed ~3,000 shared genes with which VGLL1 interacts. Furthermore, increased VGLL1 expression led to an enhancement of cell invasion and proliferation, which was supported by RNAseq analysis showing transcriptional changes in several genes known to be involved in these processes. Discussion This work expands our mechanistic understanding of VGLL1 function in tumor cells and provides a strong rationale for developing VGLL1-targeted therapies for treating cancer patients.
Collapse
Affiliation(s)
- Heather M. Sonnemann
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Barbara Pazdrak
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Barbara Nassif
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Yimo Sun
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Lama Elzohary
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Amjad H. Talukder
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Arjun S. Katailiha
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Krishna Bhat
- Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Gregory Lizée
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
- Department of Immunology, UT MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
2
|
Parimita S, Das A, Samanta S. VGLL1 stabilization of cytoplasmic TAZ promotes EGFR expression and maintains tumor initiating cells in breast cancer independent of TEAD. Cell Signal 2024; 118:111120. [PMID: 38417636 DOI: 10.1016/j.cellsig.2024.111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Vestigial-like family member 1 (VGLL1) is one of the X-linked genes whose expression is elevated in basal-like breast cancer (BLBC) because of X-chromosome isodisomy. As an approach towards understanding its function, we performed correlation study using transcript data of breast cancer patients from cBioPortal for Cancer Genomics. Our analysis identified EGFR as the most correlated transcript with VGLL1. We demonstrate that VGLL1 promotes EGFR expression and increases the frequency of breast tumor initiating cells (CD44high/+CD24low/-). These findings are crucial because an elevated EGFR expression and high frequency of CD44high/+CD24low/- cells are defining features of BLBC, and we provide a new mechanistic insight into how their expressions are controlled. Importantly, VGLL1 regulation of EGFR and CD44high/+CD24low/- population is mediated by the hippo-transducer TAZ which exerts its oncogenic roles by binding and activating TEAD transcription factors. A crucial finding is that TEAD-binding domain of TAZ is dispensable for its regulation of EGFR and CD44high/+CD24low/- cells. Instead, VGLL1 stabilization of cytoplasmic TAZ is essential for these functions. Also, we show that VGLL1/TAZ restricts the surface expression of CD24 which contributes to the increased number of CD44high/+CD24low/- cells. In addition, we observed that VGLL1 represses AXL expression and suppresses claudin-low phenotype, and that is caused by the VGLL1 mediated nuclear expulsion of TAZ. Therefore, EGFR and AXL seem to represent two different breast tumor subtypes, and their differential expressions is controlled by VGLL1.
Collapse
Affiliation(s)
- Shubhashree Parimita
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjoy Samanta
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Khorami-Sarvestani S, Vanaki N, Shojaeian S, Zarnani K, Stensballe A, Jeddi-Tehrani M, Zarnani AH. Placenta: an old organ with new functions. Front Immunol 2024; 15:1385762. [PMID: 38707901 PMCID: PMC11066266 DOI: 10.3389/fimmu.2024.1385762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Negar Vanaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, School of Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Kayhan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Chen Q, Guo Q, Wang D, Zhu S, Wu D, Wang Z, Lu Y. Diagnosis and prognosis of pancreatic cancer with immunoglobulin heavy constant delta blood marker. J Cancer Res Clin Oncol 2023; 149:12977-12992. [PMID: 37466798 DOI: 10.1007/s00432-023-05161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/09/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Pancreatic cancer (PC) is highly malignant and difficult to detect, while few blood markers are currently available for diagnosing PC. METHODS We obtained differential expression genes (DEGs) from GEO (gene expression omnibus) database and assessed by quantitative real-time polymerase chain reaction (qRT-PCR), receiver operating characteristic (ROC), univariate and multifactorial regression analysis, and survival analysis in our clinic center. Through the TCGA (the cancer genome atlas) database, we analyzed functional enrichment, different risk groups with survival analysis, immunological features, and the risk score established by the Cox regression model and constructed a nomogram. RESULT Immunoglobulin heavy constant delta (IGHD) was remarkably upregulated in peripheral blood from PC patients, and IGHD was a potential independent biomarker for PC diagnosis (ROC sensitivity, 76.0%; specificity, 74.2%; area under the curve (AUC) = 0.817; univariate logistic regression analysis: odds ratio (OR) 1.488; 95% confidence interval (CI) 1.182-1.872; P < 0.001; multiple logistic: OR 2.097; 95% CI 1.276-3.389, P = 0.003). In addition, the IGHD expression was remarkably reduced after resectioning the primary tumor. High IGHD expression indicated higher lymphocyte infiltration and increased activities of immunological pathways in PC patients. KRAS and SMAD were observed with a prominent difference among top mutated genes between the two groups. The risk score predicted reliable clinical prognosis and drug responses. Furthermore, a nomogram with the risk score and clinical characteristics was constructed, showing a better predictive performance. CONCLUSION IGHD is a valuable PC diagnosis, prognosis, and therapeutic response marker.
Collapse
Affiliation(s)
- Qiyang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Qingsong Guo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Dongzhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Shajun Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Di Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
5
|
Sonnemann HM, Pazdrak B, Antunes DA, Roszik J, Lizée G. Vestigial-like 1 (VGLL1): An ancient co-transcriptional activator linking wing, placenta, and tumor development. Biochim Biophys Acta Rev Cancer 2023; 1878:188892. [PMID: 37004960 DOI: 10.1016/j.bbcan.2023.188892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Vestigial-like 1 (VGLL1) is a recently discovered driver of proliferation and invasion that is expressed in many aggressive human malignancies and is strongly associated with poor prognosis. The VGLL1 gene encodes for a co-transcriptional activator that shows intriguing structural similarity to key activators in the hippo pathway, providing important clues to its functional role. VGLL1 binds to TEADs in an analogous fashion to YAP1 but appears to activate a distinct set of downstream gene targets. In mammals, VGLL1 expression is found almost exclusively in placental trophoblasts, cells that share many hallmarks of cancer. Due to its role as a driver of tumor progression, VGLL1 has become a target of interest for potential anticancer therapies. In this review, we discuss VGLL1 from an evolutionary perspective, contrast its role in placental and tumor development, summarize the current knowledge of how signaling pathways can modulate VGLL1 function, and discuss potential approaches for targeting VGLL1 therapeutically.
Collapse
|
6
|
Jackson KR, Antunes DA, Talukder AH, Maleki AR, Amagai K, Salmon A, Katailiha AS, Chiu Y, Fasoulis R, Rigo MM, Abella JR, Melendez BD, Li F, Sun Y, Sonnemann HM, Belousov V, Frenkel F, Justesen S, Makaju A, Liu Y, Horn D, Lopez-Ferrer D, Huhmer AF, Hwu P, Roszik J, Hawke D, Kavraki LE, Lizée G. Charge-based interactions through peptide position 4 drive diversity of antigen presentation by human leukocyte antigen class I molecules. PNAS NEXUS 2022; 1:pgac124. [PMID: 36003074 PMCID: PMC9391200 DOI: 10.1093/pnasnexus/pgac124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Human leukocyte antigen class I (HLA-I) molecules bind and present peptides at the cell surface to facilitate the induction of appropriate CD8+ T cell-mediated immune responses to pathogen- and self-derived proteins. The HLA-I peptide-binding cleft contains dominant anchor sites in the B and F pockets that interact primarily with amino acids at peptide position 2 and the C-terminus, respectively. Nonpocket peptide-HLA interactions also contribute to peptide binding and stability, but these secondary interactions are thought to be unique to individual HLA allotypes or to specific peptide antigens. Here, we show that two positively charged residues located near the top of peptide-binding cleft facilitate interactions with negatively charged residues at position 4 of presented peptides, which occur at elevated frequencies across most HLA-I allotypes. Loss of these interactions was shown to impair HLA-I/peptide binding and complex stability, as demonstrated by both in vitro and in silico experiments. Furthermore, mutation of these Arginine-65 (R65) and/or Lysine-66 (K66) residues in HLA-A*02:01 and A*24:02 significantly reduced HLA-I cell surface expression while also reducing the diversity of the presented peptide repertoire by up to 5-fold. The impact of the R65 mutation demonstrates that nonpocket HLA-I/peptide interactions can constitute anchor motifs that exert an unexpectedly broad influence on HLA-I-mediated antigen presentation. These findings provide fundamental insights into peptide antigen binding that could broadly inform epitope discovery in the context of viral vaccine development and cancer immunotherapy.
Collapse
Affiliation(s)
- Kyle R Jackson
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Amjad H Talukder
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ariana R Maleki
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Kano Amagai
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Avery Salmon
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Immunology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Arjun S Katailiha
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yulun Chiu
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Romanos Fasoulis
- Department of Computer Science, Rice University, Houston, TX, USA
| | | | - Jayvee R Abella
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Brenda D Melendez
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Fenge Li
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yimo Sun
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Heather M Sonnemann
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | - Yang Liu
- ThermoFisher Scientific, San Jose, CA, USA
| | - David Horn
- ThermoFisher Scientific, San Jose, CA, USA
| | | | | | - Patrick Hwu
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Roszik
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
| | - David Hawke
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Lydia E Kavraki
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Gregory Lizée
- Department of Melanoma, UT MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, UT MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Bonté PE, Arribas YA, Merlotti A, Carrascal M, Zhang JV, Zueva E, Binder ZA, Alanio C, Goudot C, Amigorena S. Single-cell RNA-seq-based proteogenomics identifies glioblastoma-specific transposable elements encoding HLA-I-presented peptides. Cell Rep 2022; 39:110916. [PMID: 35675780 DOI: 10.1016/j.celrep.2022.110916] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/22/2022] [Accepted: 05/12/2022] [Indexed: 11/03/2022] Open
Abstract
We analyze transposable elements (TEs) in glioblastoma (GBM) patients using a proteogenomic pipeline that combines single-cell transcriptomics, bulk RNA sequencing (RNA-seq) samples from tumors and healthy-tissue cohorts, and immunopeptidomic samples. We thus identify 370 human leukocyte antigen (HLA)-I-bound peptides encoded by TEs differentially expressed in GBM. Some of the peptides are encoded by repeat sequences from intact open reading frames (ORFs) present in up to several hundred TEs from recent long interspersed nuclear element (LINE)-1, long terminal repeat (LTR), and SVA subfamilies. Other HLA-I-bound peptides are encoded by single copies of TEs from old subfamilies that are expressed recurrently in GBM tumors and not expressed, or very infrequently and at low levels, in healthy tissues (including brain). These peptide-coding, GBM-specific, highly recurrent TEs represent potential tumor-specific targets for cancer immunotherapies.
Collapse
Affiliation(s)
- Pierre-Emmanuel Bonté
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Yago A Arribas
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Antonela Merlotti
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Montserrat Carrascal
- Biological and Environmental Proteomics, Institut d'Investigacions Biomèdiques de Barcelona-CSIC, IDIBAPS, Roselló 161, 6a planta, 08036 Barcelona, Spain
| | - Jiasi Vicky Zhang
- GBM Translational Center of Excellence, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elina Zueva
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Zev A Binder
- GBM Translational Center of Excellence, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cécile Alanio
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France; Laboratoire d'Immunologie Clinique, Institut Curie, Paris 75005, France; Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
| | - Christel Goudot
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France.
| | - Sebastian Amigorena
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France.
| |
Collapse
|
8
|
Sun X, Liswaniso S, Shan X, Zhao J, Chimbaka IM, Xu R, Qin N. The opposite effects of VGLL1 and VGLL4 genes on granulosa cell proliferation and apoptosis of hen ovarian prehierarchical follicles. Theriogenology 2022; 181:95-104. [PMID: 35074718 DOI: 10.1016/j.theriogenology.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/26/2022]
Abstract
Transcription cofactors Vestigial like family (VGLL) members consisting of four homologs (VGLL1-4) are associated with cell growth and metastasis in mammals, among which VGLL1 gene has been documented to possess tumorigenic functions in various types of tumor, and VGLL4 acts as a new tumor suppressor; likewise several studies indicated that they potentially play a role in the regulation of ovary growth and function. However, the biological effects of chicken VGLL1 and VGLL4 on the proliferation, apoptosis, and steroidogenesis of the granulosa cells (GCs) during ovarian follicle development remain unknown now. This study found that VGLL1 and VGLL4 genes present divergent expression patterns of the transcripts in the GCs of various sized prehierarchical follicles (PFs) before follicle selection. Specific small interfering RNA (siRNA) was employed to elucidate the exact roles of VGLL1 and VGLL4 in regulating the PF development of the hen ovary. The results demonstrated that the mRNA expression levels of the steroidogenic-related enzyme steroidogenic acute regulatory protein (STAR) gene and the cell proliferation-related factors B-cell lymphoma-2 (BCL2), and cyclin D1 (CCND1) genes were significantly down-regulated in the cells with VGLL1 silence but remarkably up-regulated in the cells lacking VGLL4. Whereas the expression level of the cell apoptosis biomarker caspase-3 (CASP3) transcript was noticeably enhanced in the GCs without VGLL1 but significantly decreased in the GCs deprived of VGLL4. Further results showed that the siRNA-mediated silence of VGLL1 caused a significant increase in apoptosis with a reduction in the proliferation of GCs. Nevertheless, knockdown of VGLL4 resulted in a remarkable decrement in apoptosis but a memorable augment in proliferation of the GCs. Taken together, this study proved that VGLL1 promotes cell proliferation and steroidogenesis but inhibits apoptosis. In contrast, VGLL4 stimulates GC apoptosis while suppressing the GC proliferation and steroidogenesis in the hen ovarian follicles. We conluded that VGLL1 and VGLL4 affect oppositely the ovarian prehierarchical follicle development by the different regulatory manner in the GC proliferation and apoptosis of chicken ovary.
Collapse
Affiliation(s)
- Xue Sun
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Simushi Liswaniso
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xuesong Shan
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jinghua Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ignatius Musenge Chimbaka
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Rifu Xu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Ning Qin
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
9
|
Ge P, Luo Y, Chen H, Liu J, Guo H, Xu C, Qu J, Zhang G, Chen H. Application of Mass Spectrometry in Pancreatic Cancer Translational Research. Front Oncol 2021; 11:667427. [PMID: 34707986 PMCID: PMC8544753 DOI: 10.3389/fonc.2021.667427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignant tumors in the digestive tract worldwide, with increased morbidity and mortality. In recent years, with the development of surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy, and the change of the medical thinking model, remarkable progress has been made in researching comprehensive diagnosis and treatment of PC. However, the present situation of diagnostic and treatment of PC is still unsatisfactory. There is an urgent need for academia to fully integrate the basic research and clinical data from PC to form a research model conducive to clinical translation and promote the proper treatment of PC. This paper summarized the translation progress of mass spectrometry (MS) in the pathogenesis, diagnosis, prognosis, and PC treatment to promote the basic research results of PC into clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Haiyang Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiayue Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haoya Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jialin Qu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Chen R, Sheng C, Ma R, Zhang L, Yang L, Chen Y. PLAC1 is an independent predictor of poor survival, and promotes cell proliferation and invasion in cervical cancer. Mol Med Rep 2021; 24:800. [PMID: 34523695 PMCID: PMC8456314 DOI: 10.3892/mmr.2021.12440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
Placenta-specific protein 1 (PLAC1) is inversely associated with survival in several types of cancer. However, whether PLAC1 is involved in the progression of cervical cancer (CC) remains to be elucidated. Therefore, the present study aimed to evaluate the prognostic role of PLAC1 in CC by determining the relationship between clinicopathological factors, PLAC1 gene expression and survival prognosis using univariate and multivariate Cox proportional-hazards regression analyses. Similarly, Kaplan-Meier curves were evaluated with the log-rank test. Subsequently, gene set enrichment analysis was performed to compare the high- and low-PLAC1 expression phenotypes. Functional studies were further conducted in PLAC1-overexpressing HeLa cells and PLAC1-silenced MS751 cells, and western blotting was performed to determine whether PLAC1 promoted CC progression via epithelial-mesenchymal transition (EMT). The findings demonstrated that high expression of PLAC1 was associated with American Joint Committee on Cancer metastasis pathological score and suggested a poor overall survival. ‘mTOR complex 1 signaling’, ‘interferon α response’ and ‘hypoxia’ were differentially enriched in the high-PLAC1 phenotype. Furthermore, PLAC1 promoted the invasion of CC cells in vitro. E-cadherin expression was decreased in the PLAC1-overexpressing cells, accompanied by increased expression of the mesenchymal markers, Vimentin, MMP2 and Slug, and the opposite effects were observed in PLAC1-silenced cells. Taken together, the present results indicated that high expression of PLAC1 was associated with poor survival and PLAC1 promoted metastasis via EMT in CC.
Collapse
Affiliation(s)
- Rujun Chen
- Department of Gynaecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Chan Sheng
- Department of Gynaecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Ruyue Ma
- Department of Gynaecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Liwen Zhang
- Department of Gynaecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Lina Yang
- Department of Gynaecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Yaping Chen
- Department of Gynaecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
11
|
Sun Y, Li F, Sonnemann H, Jackson KR, Talukder AH, Katailiha AS, Lizee G. Evolution of CD8 + T Cell Receptor (TCR) Engineered Therapies for the Treatment of Cancer. Cells 2021; 10:cells10092379. [PMID: 34572028 PMCID: PMC8469972 DOI: 10.3390/cells10092379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Engineered T cell receptor T (TCR-T) cell therapy has facilitated the generation of increasingly reliable tumor antigen-specific adaptable cellular products for the treatment of human cancer. TCR-T cell therapies were initially focused on targeting shared tumor-associated peptide targets, including melanoma differentiation and cancer-testis antigens. With recent technological developments, it has become feasible to target neoantigens derived from tumor somatic mutations, which represents a highly personalized therapy, since most neoantigens are patient-specific and are rarely shared between patients. TCR-T therapies have been tested for clinical efficacy in treating solid tumors in many preclinical studies and clinical trials all over the world. However, the efficacy of TCR-T therapy for the treatment of solid tumors has been limited by a number of factors, including low TCR avidity, off-target toxicities, and target antigen loss leading to tumor escape. In this review, we discuss the process of deriving tumor antigen-specific TCRs, including the identification of appropriate tumor antigen targets, expansion of antigen-specific T cells, and TCR cloning and validation, including techniques and tools for TCR-T cell vector construction and expression. We highlight the achievements of recent clinical trials of engineered TCR-T cell therapies and discuss the current challenges and potential solutions for improving their safety and efficacy, insights that may help guide future TCR-T studies in cancer.
Collapse
Affiliation(s)
- Yimo Sun
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Fenge Li
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Heather Sonnemann
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Kyle R. Jackson
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Amjad H. Talukder
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Arjun S. Katailiha
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Gregory Lizee
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
- Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
12
|
Pan K, Chiu Y, Huang E, Chen M, Wang J, Lai I, Singh S, Shaw R, MacCoss M, Yee C. Immunogenic SARS-CoV2 Epitopes Defined by Mass Spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34312620 DOI: 10.1101/2021.07.20.453160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
SARS-CoV-2 infections elicit both humoral and cellular immune responses. For the prevention and treatment of COVID19, the disease caused by SARS-CoV-2, T cell responses are important in mediating recovery and immune-protection. The identification of immunogenic epitopes that can elicit a meaningful T cell response can be elusive. Traditionally, this has been achieved using sophisticated in silico methods to predict putative epitopes; however, our previous studies find that 'immunodominant' SARS-CoV-2 peptides defined by such in silico methods often fail to elicit T cell responses recognizing SARS-CoV-2. We postulated that immunogenic epitopes for SARS-CoV-2 are best defined by directly analyzing peptides eluted from the peptide-MHC complex and then validating immunogenicity empirically by determining if such peptides can elicit T cells recognizing SARS-CoV-2 antigen-expressing cells. Using a tandem mass spectrometry approach, we identified epitopes of SARS-CoV-2 derived not only from structural but also non-structural genes in regions highly conserved among SARS-CoV-2 strains including recently recognized variants. We report here, for the first time, several novel SARS-CoV-2 epitopes from membrane glycol-protein (MGP) and non-structure protein-13 (NSP13) defined by mass-spectrometric analysis of MHC-eluted peptides, provide empiric evidence for their immunogenicity to induce T cell response. Significance Statement Current state of the art uses putative epitope peptides based on in silico prediction algorithms to evaluate the T cell response among COVID-19 patients. However, none of these peptides have been tested for immunogenicity, i.e. the ability to elicit a T cell response capable of recognizing endogenously presented peptide. In this study, we used MHC immune-precipitation, acid elution and tandem mass spectrometry to define the SARS-CoV-2 immunopeptidome for membrane glycol-protein and the non-structural protein. Furthermore, taking advantage of a highly robust endogenous T cell (ETC) workflow, we verify the immunogenicity of these MS-defined peptides by in vitro generation of MGP and NSP13 peptide-specific T cells and confirm T cell recognition of MGP or NSP13 endogenously expressing cell lines.
Collapse
|
13
|
Ascierto PA, Blank C, Dummer R, Ernstoff MS, Ferrone S, Fox BA, Gajewski TF, Garbe C, Hwu P, Kalinski P, Krogsgaard M, Lo RS, Luke JJ, Neyns B, Postow MA, Quezada SA, Teng MWL, Trinchieri G, Testori A, Caracò C, Osman I, Puzanov I, Thurin M. Perspectives in Melanoma: meeting report from the Melanoma Bridge (December 3rd-5th, 2020, Italy). J Transl Med 2021; 19:278. [PMID: 34193182 PMCID: PMC8243582 DOI: 10.1186/s12967-021-02951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/18/2021] [Indexed: 11/10/2022] Open
Abstract
Advances in immune checkpoint therapy and targeted therapy have led to improvement in overall survival for patients with advanced melanoma. Single agent checkpoint PD-1 blockade and combination with BRAF/MEK targeted therapy demonstrated benefit in overall survival (OS). Superior response rates have been demonstrated with combined PD-1/CTLA-4 blockade, with a significant OS benefit compared with single-agent PD-1 blockade. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic therapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers but they have yet to be fully characterized and implemented clinically. Overall, the progress in melanoma therapeutics and translational research will help to optimize treatment regimens to overcome resistance and develop robust biomarkers to guide clinical decision-making. During the Melanoma Bridge meeting (December 3rd-5th, 2020, Italy) we reviewed the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Innovative Therapy, Instituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy.
| | | | - Reinhard Dummer
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Marc S Ernstoff
- Developmental Therapeutics Program, Division of Cancer Therapy & Diagnosis, NCI, NIH, Bethesda, MD, USA
| | - Soldano Ferrone
- Department of Surgery Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bernard A Fox
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, OR, USA
| | - Thomas F Gajewski
- Department of Pathology and Department of Medicine (Section of Hematology/Oncology), University of Chicago, Chicago, IL, USA
| | - Claus Garbe
- Center for Dermato-Oncology, University-Department of Dermatology, Tuebingen, Germany
| | | | - Pawel Kalinski
- Cancer Vaccine and Dendritic Cell Therapies, Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Developmental Therapeutics, Buffalo, NY, USA
| | | | - Roger S Lo
- Jonsson Comprehensive Cancer Center David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jason J Luke
- Cancer Immunotherapeutic Center of UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bart Neyns
- Medical Oncology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Michael A Postow
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, London, UK
| | - Michele W L Teng
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology (LICI), Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Alessandro Testori
- Image Rigenerative Clinic-Skin Oncology Division, Milan, Italy
- Chairman Surgical Subgroup EORTC Melanoma Group Brussels, Brussels, Belgium
| | - Corrado Caracò
- Division of Surgery of Melanoma and Skin Cancer, Istituto Nazionale Tumori "Fondazione Pascale" IRCCS, Naples, Italy
| | - Iman Osman
- New York University Langone Medical Center, New York, NY, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Magdalena Thurin
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, MD, USA
| |
Collapse
|
14
|
Clinical Perspective on Proteomic and Glycomic Biomarkers for Diagnosis, Prognosis, and Prediction of Pancreatic Cancer. Int J Mol Sci 2021; 22:ijms22052655. [PMID: 33800786 PMCID: PMC7961509 DOI: 10.3390/ijms22052655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is known as a highly aggressive malignant disease. Prognosis for patients is notoriously poor, despite improvements in surgical techniques and new (neo)adjuvant chemotherapy regimens. Early detection of PDAC may increase the overall survival. It is furthermore foreseen that precision medicine will provide improved prognostic stratification and prediction of therapeutic response. In this review, omics-based discovery efforts are presented that aim for novel diagnostic and prognostic biomarkers of PDAC. For this purpose, we systematically evaluated the literature published between 1999 and 2020 with a focus on protein- and protein-glycosylation biomarkers in pancreatic cancer patients. Besides genomic and transcriptomic approaches, mass spectrometry (MS)-based proteomics and glycomics of blood- and tissue-derived samples from PDAC patients have yielded new candidates with biomarker potential. However, for reasons discussed in this review, the validation and clinical translation of these candidate markers has not been successful. Consequently, there has been a change of mindset from initial efforts to identify new unimarkers into the current hypothesis that a combination of biomarkers better suits a diagnostic or prognostic panel. With continuing development of current research methods and available techniques combined with careful study designs, new biomarkers could contribute to improved detection, prognosis, and prediction of pancreatic cancer.
Collapse
|