1
|
Koludarova L, Battersby BJ. Mitochondrial protein synthesis quality control. Hum Mol Genet 2024; 33:R53-R60. [PMID: 38280230 PMCID: PMC11112378 DOI: 10.1093/hmg/ddae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/05/2023] [Indexed: 01/29/2024] Open
Abstract
Human mitochondrial DNA is one of the most simplified cellular genomes and facilitates compartmentalized gene expression. Within the organelle, there is no physical barrier to separate transcription and translation, nor is there evidence that quality control surveillance pathways are active to prevent translation on faulty mRNA transcripts. Mitochondrial ribosomes synthesize 13 hydrophobic proteins that require co-translational insertion into the inner membrane of the organelle. To maintain the integrity of the inner membrane, which is essential for organelle function, requires responsive quality control mechanisms to recognize aberrations in protein synthesis. In this review, we explore how defects in mitochondrial protein synthesis can arise due to the culmination of inherent mistakes that occur throughout the steps of gene expression. In turn, we examine the stepwise series of quality control processes that are needed to eliminate any mistakes that would perturb organelle homeostasis. We aim to provide an integrated view on the quality control mechanisms of mitochondrial protein synthesis and to identify promising avenues for future research.
Collapse
Affiliation(s)
- Lidiia Koludarova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Brendan J Battersby
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
2
|
Fang N, Wu L, Duan S, Li J. The Structural and Molecular Mechanisms of Mycobacterium tuberculosis Translational Elongation Factor Proteins. Molecules 2024; 29:2058. [PMID: 38731549 PMCID: PMC11085428 DOI: 10.3390/molecules29092058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Targeting translation factor proteins holds promise for developing innovative anti-tuberculosis drugs. During protein translation, many factors cause ribosomes to stall at messenger RNA (mRNA). To maintain protein homeostasis, bacteria have evolved various ribosome rescue mechanisms, including the predominant trans-translation process, to release stalled ribosomes and remove aberrant mRNAs. The rescue systems require the participation of translation elongation factor proteins (EFs) and are essential for bacterial physiology and reproduction. However, they disappear during eukaryotic evolution, which makes the essential proteins and translation elongation factors promising antimicrobial drug targets. Here, we review the structural and molecular mechanisms of the translation elongation factors EF-Tu, EF-Ts, and EF-G, which play essential roles in the normal translation and ribosome rescue mechanisms of Mycobacterium tuberculosis (Mtb). We also briefly describe the structure-based, computer-assisted study of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Ning Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| | - Lingyun Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| | - Shuyan Duan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| |
Collapse
|
3
|
Seely SM, Basu RS, Gagnon MG. Mechanistic insights into the alternative ribosome recycling by HflXr. Nucleic Acids Res 2024; 52:4053-4066. [PMID: 38407413 DOI: 10.1093/nar/gkae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024] Open
Abstract
During stress conditions such as heat shock and antibiotic exposure, ribosomes stall on messenger RNAs, leading to inhibition of protein synthesis. To remobilize ribosomes, bacteria use rescue factors such as HflXr, a homolog of the conserved housekeeping GTPase HflX that catalyzes the dissociation of translationally inactive ribosomes into individual subunits. Here we use time-resolved cryo-electron microscopy to elucidate the mechanism of ribosome recycling by Listeria monocytogenes HflXr. Within the 70S ribosome, HflXr displaces helix H69 of the 50S subunit and induces long-range movements of the platform domain of the 30S subunit, disrupting inter-subunit bridges B2b, B2c, B4, B7a and B7b. Our findings unveil a unique ribosome recycling strategy by HflXr which is distinct from that mediated by RRF and EF-G. The resemblance between HflXr and housekeeping HflX suggests that the alternative ribosome recycling mechanism reported here is universal in the prokaryotic kingdom.
Collapse
Affiliation(s)
- Savannah M Seely
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ritwika S Basu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Matthieu G Gagnon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
4
|
Duan X, Luo J, Su Y, Liu C, Feng L, Chen Y. Proteomic profiling of robust acetoclastic methanogen in chrysene-altered anaerobic digestion: Global dissection of enzymes. WATER RESEARCH 2023; 233:119817. [PMID: 36871384 DOI: 10.1016/j.watres.2023.119817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Methanogen is a pivotal player in pollution treatment and energy recovery, and emerging pollutants (EPs) frequently occur in methanogen-applied biotechnology such as anaerobic digestion (AD). However, the direct effect and underlying mechanism of EPs on crucial methanogen involved in its application still remain unclear. The positive effect of chrysene (CH) on semi-continuous AD of sludge and the robust methanogen was dissected in this study. The methane yield in the digester with CH (100 mg/kg dry sludge) was 62.1 mL/g VS substrate, much higher than that in the control (46.1 mL/g VS substrate). Both methane production from acetoclastic methanogenesis (AM) and the AM proportion in the methanogenic pathway were improved in CH-shaped AD. Acetoclastic consortia, especially Methanosarcina and functional profiles of AM were enriched by CH in favor of the corresponding methanogenesis. Further, based on pure cultivation exposed to CH, the methanogenic performance, biomass, survivability and activity of typical Methanosarcina (M. barkeri) were boosted. Notably, iTRAQ proteomics revealed that the manufacturing (transcription and translation), expression and biocatalytic activity of acetoclastic metalloenzymes, particularly tetrahydromethanopterin S-methyltransferase and methyl-coenzyme M reductase with cobalt/nickel-cofactor (F430 and cobalamin), and acetyl-CoA decarbonylase/synthase with cobalt/nickel-active site, of M. barkeri were upregulated significantly with fold changes in the range of 1.21-3.20 due to the CH presence. This study shed light on EPs-affecting industrially crucial methanogen at the molecular biology level during AD and had implications in the technical relevance of methanogens.
Collapse
Affiliation(s)
- Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jingyang Luo
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Yu Su
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
5
|
Ng KY, Lutfullahoglu Bal G, Richter U, Safronov O, Paulin L, Dunn CD, Paavilainen VO, Richer J, Newman WG, Taylor RW, Battersby BJ. Nonstop mRNAs generate a ground state of mitochondrial gene expression noise. SCIENCE ADVANCES 2022; 8:eabq5234. [PMID: 36399564 PMCID: PMC9674279 DOI: 10.1126/sciadv.abq5234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/22/2022] [Indexed: 05/29/2023]
Abstract
A stop codon within the mRNA facilitates coordinated termination of protein synthesis, releasing the nascent polypeptide from the ribosome. This essential step in gene expression is impeded with transcripts lacking a stop codon, generating nonstop ribosome complexes. Here, we use deep sequencing to investigate sources of nonstop mRNAs generated from the human mitochondrial genome. We identify diverse types of nonstop mRNAs on mitochondrial ribosomes that are resistant to translation termination by canonical release factors. Failure to resolve these aberrations by the mitochondrial release factor in rescue (MTRFR) imparts a negative regulatory effect on protein synthesis that is associated with human disease. Our findings reveal a source of underlying noise in mitochondrial gene expression and the importance of responsive ribosome quality control mechanisms for cell fitness and human health.
Collapse
Affiliation(s)
- Kah Ying Ng
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Guleycan Lutfullahoglu Bal
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Uwe Richter
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Omid Safronov
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Cory D. Dunn
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ville O. Paavilainen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Julie Richer
- Department of Medical Genetics, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - William G. Newman
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Brendan J. Battersby
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Wu Y, Tang M, Wang Z, Yang Y, Li Z, Liang S, Yin P, Qi H. Efficient In Vitro Full-Sense-Codons Protein Synthesis. Adv Biol (Weinh) 2022; 6:e2200023. [PMID: 35676219 DOI: 10.1002/adbi.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/14/2022] [Indexed: 01/28/2023]
Abstract
Termination of translation is essential but hinders applications of genetic code engineering, e.g., unnatural amino acids incorporation and codon randomization mediated saturation mutagenesis. Here, for the first time, it is demonstrated that E. coli Pth and ArfB together play an efficient translation termination without codon preference in the absence of class-I release factors. By degradation of the targeted protein, both essential and alternative termination types of machinery are completely removed to disable codon-dependent termination in cell extract. Moreover, a total of 153 engineered tRNAs are screened for efficient all stop-codons decoding to construct a codon-dependent termination defect in vitro protein synthesis with all 64 sense-codons, iPSSC. Finally, this full sense genetic code achieves significant improvement in the incorporation of distinct unnatural amino acids at up to 12 positions and synthesis of protein encoding consecutive NNN codons. By decoding all information in nucleotides to amino acids, iPSSC may hold great potential in building artificial protein synthesis beyond the cell.
Collapse
Affiliation(s)
- Yang Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin, China.,College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Mengtong Tang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin, China
| | - Zhaoguan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin, China
| | - Youhui Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin, China
| | - Zhong Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin, China
| | - Shurui Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin, China
| | - Peng Yin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin, China.,Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang, China
| |
Collapse
|
7
|
Tian Y, Zeng F, Raybarman A, Fatma S, Carruthers A, Li Q, Huang RH. Sequential rescue and repair of stalled and damaged ribosome by bacterial PrfH and RtcB. Proc Natl Acad Sci U S A 2022; 119:e2202464119. [PMID: 35858322 PMCID: PMC9304027 DOI: 10.1073/pnas.2202464119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/10/2022] [Indexed: 01/14/2023] Open
Abstract
RtcB is involved in transfer RNA (tRNA) splicing in archaeal and eukaryotic organisms. However, most RtcBs are found in bacteria, whose tRNAs have no introns. Because tRNAs are the substrates of archaeal and eukaryotic RtcB, it is assumed that bacterial RtcBs are for repair of damaged tRNAs. Here, we show that a subset of bacterial RtcB, denoted RtcB2 herein, specifically repair ribosomal damage in the decoding center. To access the damage site for repair, however, the damaged 70S ribosome needs to be dismantled first, and this is accomplished by bacterial PrfH. Peptide-release assays revealed that PrfH is only active with the damaged 70S ribosome but not with the intact one. A 2.55-Å cryo-electron microscopy structure of PrfH in complex with the damaged 70S ribosome provides molecular insight into PrfH discriminating between the damaged and the intact ribosomes via specific recognition of the cleaved 3'-terminal nucleotide. RNA repair assays demonstrated that RtcB2 efficiently repairs the damaged 30S ribosomal subunit but not the damaged tRNAs. Cell-based assays showed that the RtcB2-PrfH pair reverse the damage inflicted by ribosome-specific ribotoxins in vivo. Thus, our combined biochemical, structural, and cell-based studies have uncovered a bacterial defense system specifically evolved to reverse the lethal ribosomal damage in the decoding center for cell survival.
Collapse
Affiliation(s)
- Yannan Tian
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Fuxing Zeng
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - Adrika Raybarman
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Shirin Fatma
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Amy Carruthers
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Qingrong Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - Raven H. Huang
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
8
|
Kurita D, Himeno H. Bacterial Ribosome Rescue Systems. Microorganisms 2022; 10:372. [PMID: 35208827 PMCID: PMC8874680 DOI: 10.3390/microorganisms10020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022] Open
Abstract
To maintain proteostasis, the cell employs multiple ribosome rescue systems to relieve the stalled ribosome on problematic mRNA. One example of problematic mRNA is non-stop mRNA that lacks an in-frame stop codon produced by endonucleolytic cleavage or transcription error. In Escherichia coli, there are at least three ribosome rescue systems that deal with the ribosome stalled on non-stop mRNA. According to one estimation, 2-4% of translation is the target of ribosome rescue systems even under normal growth conditions. In the present review, we discuss the recent findings of ribosome rescue systems in bacteria.
Collapse
Affiliation(s)
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Hirosaki University, 3, Bunkyo-cho, Hirosaki 036-8561, Japan;
| |
Collapse
|
9
|
Korostelev AA. Diversity and Similarity of Termination and Ribosome Rescue in Bacterial, Mitochondrial, and Cytoplasmic Translation. BIOCHEMISTRY (MOSCOW) 2021; 86:1107-1121. [PMID: 34565314 DOI: 10.1134/s0006297921090066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
When a ribosome encounters the stop codon of an mRNA, it terminates translation, releases the newly made protein, and is recycled to initiate translation on a new mRNA. Termination is a highly dynamic process in which release factors (RF1 and RF2 in bacteria; eRF1•eRF3•GTP in eukaryotes) coordinate peptide release with large-scale molecular rearrangements of the ribosome. Ribosomes stalled on aberrant mRNAs are rescued and recycled by diverse bacterial, mitochondrial, or cytoplasmic quality control mechanisms. These are catalyzed by rescue factors with peptidyl-tRNA hydrolase activity (bacterial ArfA•RF2 and ArfB, mitochondrial ICT1 and mtRF-R, and cytoplasmic Vms1), that are distinct from each other and from release factors. Nevertheless, recent structural studies demonstrate a remarkable similarity between translation termination and ribosome rescue mechanisms. This review describes how these pathways rely on inherent ribosome dynamics, emphasizing the active role of the ribosome in all translation steps.
Collapse
Affiliation(s)
- Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA.
| |
Collapse
|
10
|
Structures of tmRNA and SmpB as they transit through the ribosome. Nat Commun 2021; 12:4909. [PMID: 34389707 PMCID: PMC8363625 DOI: 10.1038/s41467-021-24881-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
In bacteria, trans-translation is the main rescue system, freeing ribosomes stalled on defective messenger RNAs. This mechanism is driven by small protein B (SmpB) and transfer-messenger RNA (tmRNA), a hybrid RNA known to have both a tRNA-like and an mRNA-like domain. Here we present four cryo-EM structures of the ribosome during trans-translation at resolutions from 3.0 to 3.4 Å. These include the high-resolution structure of the whole pre-accommodated state, as well as structures of the accommodated state, the translocated state, and a translocation intermediate. Together, they shed light on the movements of the tmRNA-SmpB complex in the ribosome, from its delivery by the elongation factor EF-Tu to its passage through the ribosomal A and P sites after the opening of the B1 bridges. Additionally, we describe the interactions between the tmRNA-SmpB complex and the ribosome. These explain why the process does not interfere with canonical translation.
Collapse
|
11
|
Kummer E, Schubert KN, Schoenhut T, Scaiola A, Ban N. Structural basis of translation termination, rescue, and recycling in mammalian mitochondria. Mol Cell 2021; 81:2566-2582.e6. [PMID: 33878294 DOI: 10.1016/j.molcel.2021.03.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022]
Abstract
The mitochondrial translation system originates from a bacterial ancestor but has substantially diverged in the course of evolution. Here, we use single-particle cryo-electron microscopy (cryo-EM) as a screening tool to identify mitochondrial translation termination mechanisms and to describe them in molecular detail. We show how mitochondrial release factor 1a releases the nascent chain from the ribosome when it encounters the canonical stop codons UAA and UAG. Furthermore, we define how the peptidyl-tRNA hydrolase ICT1 acts as a rescue factor on mitoribosomes that have stalled on truncated messages to recover them for protein synthesis. Finally, we present structural models detailing the process of mitochondrial ribosome recycling to explain how a dedicated elongation factor, mitochondrial EFG2 (mtEFG2), has specialized for cooperation with the mitochondrial ribosome recycling factor to dissociate the mitoribosomal subunits at the end of the translation process.
Collapse
Affiliation(s)
- Eva Kummer
- Swiss Federal Institute of Technology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zurich, Switzerland.
| | - Katharina Noel Schubert
- Swiss Federal Institute of Technology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
| | - Tanja Schoenhut
- Swiss Federal Institute of Technology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
| | - Alain Scaiola
- Swiss Federal Institute of Technology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
| | - Nenad Ban
- Swiss Federal Institute of Technology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zurich, Switzerland.
| |
Collapse
|
12
|
Zarechenskaia AS, Sergiev PV, Osterman IA. Quality Control Mechanisms in Bacterial Translation. Acta Naturae 2021; 13:32-44. [PMID: 34377554 PMCID: PMC8327144 DOI: 10.32607/actanaturae.11401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/15/2021] [Indexed: 12/24/2022] Open
Abstract
Ribosome stalling during translation significantly reduces cell viability, because cells have to spend resources on the synthesis of new ribosomes. Therefore, all bacteria have developed various mechanisms of ribosome rescue. Usually, the release of ribosomes is preceded by hydrolysis of the tRNA-peptide bond, but, in some cases, the ribosome can continue translation thanks to the activity of certain factors. This review describes the mechanisms of ribosome rescue thanks to trans-translation and the activity of the ArfA, ArfB, BrfA, ArfT, HflX, and RqcP/H factors, as well as continuation of translation via the action of EF-P, EF-4, and EttA. Despite the ability of some systems to duplicate each other, most of them have their unique functional role, related to the quality control of bacterial translation in certain abnormalities caused by mutations, stress cultivation conditions, or antibiotics.
Collapse
Affiliation(s)
- A. S. Zarechenskaia
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Moscow, 119992 Russia
| | - P. V. Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028 Russia
- Lomonosov Moscow State University, Institute of functional genomics, Moscow, 119992 Russia
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119992 Russia
| | - I. A. Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028 Russia
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119992 Russia
- Sirius University of Science and Technology, Genetics and Life Sciences Research Center, Sochi, 354340 Russia
| |
Collapse
|
13
|
Müller C, Crowe-McAuliffe C, Wilson DN. Ribosome Rescue Pathways in Bacteria. Front Microbiol 2021; 12:652980. [PMID: 33815344 PMCID: PMC8012679 DOI: 10.3389/fmicb.2021.652980] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Ribosomes that become stalled on truncated or damaged mRNAs during protein synthesis must be rescued for the cell to survive. Bacteria have evolved a diverse array of rescue pathways to remove the stalled ribosomes from the aberrant mRNA and return them to the free pool of actively translating ribosomes. In addition, some of these pathways target the damaged mRNA and the incomplete nascent polypeptide chain for degradation. This review highlights the recent developments in our mechanistic understanding of bacterial ribosomal rescue systems, including drop-off, trans-translation mediated by transfer-messenger RNA and small protein B, ribosome rescue by the alternative rescue factors ArfA and ArfB, as well as Bacillus ribosome rescue factor A, an additional rescue system found in some Gram-positive bacteria, such as Bacillus subtilis. Finally, we discuss the recent findings of ribosome-associated quality control in particular bacterial lineages mediated by RqcH and RqcP. The importance of rescue pathways for bacterial survival suggests they may represent novel targets for the development of new antimicrobial agents against multi-drug resistant pathogenic bacteria.
Collapse
Affiliation(s)
| | | | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|