1
|
Lall D, Glaser MM, Higgs PI. Myxococcus xanthus fruiting body morphology is important for spore recovery after exposure to environmental stress. Appl Environ Microbiol 2024; 90:e0166024. [PMID: 39365039 PMCID: PMC11497814 DOI: 10.1128/aem.01660-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Environmental microorganisms have evolved a variety of strategies to survive fluctuations in environmental conditions, including the production of biofilms and differentiation into spores. Myxococcus xanthus are ubiquitous soil bacteria that produce starvation-induced multicellular fruiting bodies filled with environmentally resistant spores (a specialized biofilm). Isolated spores have been shown to be more resistant than vegetative cells to heat, ultraviolet radiation, and desiccation. The evolutionary advantage of producing spores inside fruiting bodies is not clear. Here, we examine a hypothesis that the fruiting body provides additional protection from environmental insults. We developed a high-throughput method to compare the recovery (outgrowth) of distinct cell types (vegetative cells, free spores, and spores within intact fruiting bodies) after exposure to ultraviolet radiation or desiccation. Our data indicate that haystack-shaped fruiting bodies protect spores from extended UV radiation but do not provide additional protection from desiccation. Perturbation of fruiting body morphology strongly impedes recovery from both UV exposure and desiccation. These results hint that the distinctive fruiting bodies produced by different myxobacterial species may have evolved to optimize their persistence in distinct ecological niches.IMPORTANCEEnvironmental microorganisms play an important role in the production of greenhouse gases that contribute to changing climate conditions. It is imperative to understand how changing climate conditions feedback to influence environmental microbial communities. The myxobacteria are environmentally ubiquitous social bacteria that influence the local microbial community composition. Defining how these bacteria are affected by environmental insults is a necessary component of predicting climatic feedback effects. When starved, myxobacteria produce multicellular fruiting bodies filled with spores. As spores are resistant to a variety of environmental insults, the evolutionary advantage of building a fruiting body is not clear. Using the model myxobacterium, Myxococcus xanthus, we demonstrate that the tall, haystack-shaped fruiting body morphology enables significantly more resistance to UV exposure than the free spores. In contrast, fruiting bodies are slightly detrimental to recovery from extended desiccation, an effect that is strongly exaggerated if fruiting body morphology is perturbed. These results suggest that the variety of fruiting body morphologies observed in the myxobacteria may dictate their relative resistance to changing climate conditions.
Collapse
Affiliation(s)
- Dave Lall
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Maike M. Glaser
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Penelope I. Higgs
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
2
|
Wang CY, Hu JQ, Wang DG, Li YZ, Wu C. Recent advances in discovery and biosynthesis of natural products from myxobacteria: an overview from 2017 to 2023. Nat Prod Rep 2024; 41:905-934. [PMID: 38390645 DOI: 10.1039/d3np00062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Covering: 2017.01 to 2023.11Natural products biosynthesized by myxobacteria are appealing due to their sophisticated chemical skeletons, remarkable biological activities, and intriguing biosynthetic enzymology. This review aims to systematically summarize the advances in the discovery methods, new structures, and bioactivities of myxobacterial NPs reported in the period of 2017-2023. In addition, the peculiar biosynthetic pathways of several structural families are also highlighted.
Collapse
Affiliation(s)
- Chao-Yi Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Jia-Qi Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - De-Gao Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| |
Collapse
|
3
|
Zhu LL, Yang Q, Wang DG, Niu L, Pan Z, Li S, Li YZ, Zhang W, Wu C. Deciphering the Biosynthesis and Physiological Function of 5-Methylated Pyrazinones Produced by Myxobacteria. ACS CENTRAL SCIENCE 2024; 10:555-568. [PMID: 38559311 PMCID: PMC10979478 DOI: 10.1021/acscentsci.3c01363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024]
Abstract
Myxobacteria are a prolific source of secondary metabolites with sheer chemical complexity, intriguing biosynthetic enzymology, and diverse biological activities. In this study, we report the discovery, biosynthesis, biomimetic total synthesis, physiological function, structure-activity relationship, and self-resistance mechanism of the 5-methylated pyrazinone coralinone from a myxobacterium Corallococcus exiguus SDU70. A single NRPS/PKS gene corA was genetically and biochemically demonstrated to orchestrate coralinone, wherein the integral PKS part is responsible for installing the 5-methyl group. Intriguingly, coralinone exacerbated cellular aggregation of myxobacteria grown in liquid cultures by enhancing the secretion of extracellular matrix, and the 5-methylation is indispensable for the alleged activity. We provided an evolutionary landscape of the corA-associated biosynthetic gene clusters (BGCs) distributed in the myxobacterial realm, revealing the divergent evolution for the diversity-oriented biosynthesis of 5-alkyated pyrazinones. This phylogenetic contextualization provoked us to identify corB located in the proximity of corA as a self-resistance gene. CorB was experimentally verified to be a protease that hydrolyzes extracellular proteins to antagonize the agglutination-inducing effect of coralinone. Overall, we anticipate these findings will provide new insights into the chemical ecology of myxobacteria and lay foundations for the maximal excavation of these largely underexplored resources.
Collapse
Affiliation(s)
| | | | | | - Luo Niu
- State Key Laboratory of Microbial Technology,
Institute of Microbial Technology, Shandong
University, 266237 Qingdao, P.R. China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology,
Institute of Microbial Technology, Shandong
University, 266237 Qingdao, P.R. China
| | - Shengying Li
- State Key Laboratory of Microbial Technology,
Institute of Microbial Technology, Shandong
University, 266237 Qingdao, P.R. China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology,
Institute of Microbial Technology, Shandong
University, 266237 Qingdao, P.R. China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology,
Institute of Microbial Technology, Shandong
University, 266237 Qingdao, P.R. China
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology,
Institute of Microbial Technology, Shandong
University, 266237 Qingdao, P.R. China
| |
Collapse
|
4
|
Guth FM, Lindner F, Rydzek S, Peil A, Friedrich S, Hauer B, Hahn F. Rieske Oxygenase-Catalyzed Oxidative Late-Stage Functionalization during Complex Antifungal Polyketide Biosynthesis. ACS Chem Biol 2023; 18:2450-2456. [PMID: 37948749 DOI: 10.1021/acschembio.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Rieske oxygenases (ROs) from natural product biosynthetic pathways are a poorly studied group of enzymes with significant potential as oxidative functionalization biocatalysts. A study on the ROs JerL, JerP, and AmbP from the biosynthetic pathways of jerangolid A and ambruticin VS-3 is described. Their activity was successfully reconstituted using whole-cell bioconversion systems coexpressing the ROs and their respective natural flavin-dependent reductase (FDR) partners. Feeding authentic biosynthetic intermediates and synthetic surrogates to these strains confirmed the involvement of the ROs in hydroxymethylpyrone and dihydropyran formation and revealed crucial information about the RO's substrate specificity. The pronounced dependence of JerL and JerP on the presence of a methylenolether allowed the precise temporal assignment of RO catalysis to the ultimate steps of jerangolid biosynthesis. JerP and AmbP stand out among the biosynthetic ROs studied so far for their ability to catalyze clean tetrahydropyran desaturation without further functionalizing the formed electron-rich double bonds. This work highlights the remarkable ability of ROs to highly selectively oxidize complex molecular scaffolds.
Collapse
Affiliation(s)
- Florian M Guth
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Frederick Lindner
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Simon Rydzek
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Andreas Peil
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Steffen Friedrich
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Bernhard Hauer
- Institute of Technical Biochemistry, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Frank Hahn
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
5
|
Phillips KE, Akbar S, Stevens DC. Concepts and conjectures concerning predatory performance of myxobacteria. Front Microbiol 2022; 13:1031346. [PMID: 36246230 PMCID: PMC9556981 DOI: 10.3389/fmicb.2022.1031346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/14/2022] [Indexed: 01/28/2023] Open
Abstract
Myxobacteria are excellent model organisms for investigation of predator-prey interactions and predatory shaping of microbial communities. This review covers interdisciplinary topics related to myxobacterial predation and provides current concepts and challenges for determining predatory performance. Discussed topics include the role of specialized metabolites during predation, genetic determinants for predatory performance, challenges associated with methodological differences, discrepancies between sequenced and environmental myxobacteria, and factors that influence predation.
Collapse
Affiliation(s)
- Kayleigh E. Phillips
- Department of BioMolecular Sciences, The University of Mississippi, Oxford, MS, United States
| | - Shukria Akbar
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - D. Cole Stevens
- Department of BioMolecular Sciences, The University of Mississippi, Oxford, MS, United States,*Correspondence: D. Cole Stevens,
| |
Collapse
|
6
|
La Fortezza M, Velicer GJ. Social selection within aggregative multicellular development drives morphological evolution. Proc Biol Sci 2021; 288:20211522. [PMID: 34814750 PMCID: PMC8611335 DOI: 10.1098/rspb.2021.1522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
Aggregative multicellular development is a social process involving complex forms of cooperation among unicellular organisms. In some aggregative systems, development culminates in the construction of spore-packed fruiting bodies and often unfolds within genetically and behaviourally diverse conspecific cellular environments. Here, we use the bacterium Myxococcus xanthus to test whether the character of the cellular environment during aggregative development shapes its morphological evolution. We manipulated the cellular composition of Myxococcus development in an experiment in which evolving populations initiated from a single ancestor repeatedly co-developed with one of several non-evolving partners-a cooperator, three cheaters and three antagonists. Fruiting body morphology was found to diversify not only as a function of partner genotype but more broadly as a function of partner social character, with antagonistic partners selecting for greater fruiting body formation than cheaters or the cooperator. Yet even small degrees of genetic divergence between distinct cheater partners sufficed to drive treatment-level morphological divergence. Co-developmental partners also determined the magnitude and dynamics of stochastic morphological diversification and subsequent convergence. In summary, we find that even just a few genetic differences affecting developmental and social features can greatly impact morphological evolution of multicellular bodies and experimentally demonstrate that microbial warfare can promote cooperation.
Collapse
Affiliation(s)
- Marco La Fortezza
- Institute for Integrative Biology, ETH Zürich, Zürich 8092, Switzerland
| | | |
Collapse
|
7
|
Akbar S, Phillips KE, Misra SK, Sharp JS, Stevens DC. Differential response to prey quorum signals indicates predatory specialization of myxobacteria and ability to predate Pseudomonas aeruginosa. Environ Microbiol 2021; 24:1263-1278. [PMID: 34674390 PMCID: PMC9257966 DOI: 10.1111/1462-2920.15812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/20/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022]
Abstract
Multiomic analysis of transcriptional and metabolic responses from the predatory myxobacteria Myxococcus xanthus and Cystobacter ferrugineus exposed to prey signalling molecules of the acylhomoserine lactone and quinolone quorum signalling classes provided insight into predatory specialization. Acylhomoserine lactone quorum signals elicited a general response from both myxobacteria. We suggest that this is likely due to the generalist predator lifestyles of myxobacteria and ubiquity of acylhomoserine lactone signals. We also provide data that indicates the core homoserine lactone moiety included in all acylhomoserine lactone scaffolds to be sufficient to induce this general response. Comparing both myxobacteria, unique transcriptional and metabolic responses were observed from Cystobacter ferrugineus exposed to the quinolone signal 2‐heptylquinolin‐4(1H)‐one (HHQ) natively produced by Pseudomonas aeruginosa. We suggest that this unique response and ability to metabolize quinolone signals contribute to the superior predation of P. aeruginosa observed from C. ferrugineus. These results further demonstrate myxobacterial eavesdropping on prey signalling molecules and provide insight into how responses to exogenous signals might correlate with prey range of myxobacteria.
Collapse
Affiliation(s)
- Shukria Akbar
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - Kayleigh E Phillips
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - Sandeep K Misra
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - Joshua S Sharp
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA.,Department of Chemistry and Biochemistry, University of Mississippi, University, University, MS, USA
| | - D Cole Stevens
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| |
Collapse
|
8
|
Trentadue K, Chang CF, Nalin A, Taylor RE. Enantioselective Total Synthesis of the Putative Biosynthetic Intermediate Ambruticin J. Chemistry 2021; 27:11126-11131. [PMID: 33887073 DOI: 10.1002/chem.202100975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 11/09/2022]
Abstract
The family of anti-fungal natural products known as the ambruticins are structurally distinguished by a pair of pyran rings adorning a divinylcyclopropane core. Previous characterization of their biosynthesis, including the expression of a genetically modified producing organism, revealed that the polyketide synthase pathway proceeds via a diol intermediate, known as ambruticin J. Herein, we report the first enantioselective total synthesis of the putative PKS product, ambruticin J, according to a triply convergent synthetic route featuring a Suzuki-Miyaura cross-coupling and a Julia-Kocienski olefination for fragment assembly. This synthesis takes advantage of synthetic methodology previously developed by our laboratory for the stereoselective generation of the trisubstituted cyclopropyl linchpin.
Collapse
Affiliation(s)
- Kathryn Trentadue
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Chia-Fu Chang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA, 02138, USA
| | - Ansel Nalin
- College of Medicine, The Ohio State University, 370 W. 9th Avenue, Columbus, OH, 43210, USA
| | - Richard E Taylor
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|