1
|
Quinn JP, Fisher K, Corbett N, Warwood S, Knight D, Kellett KAB, Hooper NM. Proteolysis of tau by granzyme A in tauopathies generates fragments that are aggregation prone. Biochem J 2024; 481:1255-1274. [PMID: 39248243 DOI: 10.1042/bcj20240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
Tauopathies, including Alzheimer's disease, corticobasal degeneration and progressive supranuclear palsy, are characterised by the aggregation of tau into insoluble neurofibrillary tangles in the brain. Tau is subject to a range of post-translational modifications, including proteolysis, that can promote its aggregation. Neuroinflammation is a hallmark of tauopathies and evidence is growing for a role of CD8+ T cells in disease pathogenesis. CD8+ T cells release granzyme proteases but what role these proteases play in neuronal dysfunction is currently lacking. Here, we identified that granzyme A (GzmA) is present in brain tissue and proteolytically cleaves tau. Mass spectrometric analysis of tau fragments produced on digestion of tau with GzmA identified three cleavage sites at R194-S195, R209-S210 and K240-S241. Mutation of the critical Arg or Lys residues at the cleavage sites in tau or chemical inhibition of GzmA blocked the proteolysis of tau by GzmA. Development of a semi-targeted mass spectrometry approach identified peptides in tauopathy brain tissue corresponding to proteolysis by GzmA at R209-S210 and K240-S241 in tau. When expressed in cells the GzmA-cleaved C-terminal fragments of tau were highly phosphorylated and aggregated upon incubation of the cells with tauopathy brain seed. The C-terminal fragment tau195-441 was able to transfer between cells and promote aggregation of tau in acceptor cells, indicating the propensity for such tau fragments to propagate between cells. Collectively, these results raise the possibility that GzmA, released from infiltrating cytotoxic CD8+ T cells, proteolytically cleaves tau into fragments that may contribute to its pathological properties in tauopathies.
Collapse
Affiliation(s)
- James P Quinn
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Kate Fisher
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Nicola Corbett
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Stacey Warwood
- Biological Mass Spectrometry Core Research Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - David Knight
- Biological Mass Spectrometry Core Research Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Katherine A B Kellett
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Nigel M Hooper
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, U.K
| |
Collapse
|
2
|
Hu X, Ma YN, Karako K, Song P, Tang W, Xia Y. Guardians of memory: The urgency of early dementia screening in an aging society. Intractable Rare Dis Res 2024; 13:133-137. [PMID: 39220280 PMCID: PMC11350203 DOI: 10.5582/irdr.2024.01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 09/04/2024] Open
Abstract
The global aging population has led to a significant rise in the prevalence of age-related non-communicable diseases such as dementia and other cognitive disorders. In 2019, there were 57.4 million people with dementia worldwide, and this number is projected to triple by 2050. Intervening in and managing 12 potentially modifiable dementia risk factors can prevent or delay the onset and progression of about 40% of dementia cases. Neuroimaging, biomarkers, and advanced neuropsychological testing offer promising pathways for the early detection of dementia. Emphasis should be placed on educating the public about the importance of brain health and the early signs of cognitive impairment, as well as promoting dementia prevention measures. Adopting a healthy lifestyle - including a balanced diet, regular physical exercise, active social engagement, cognitive activities, and avoiding smoking and excessive alcohol consumption - can help reduce the risk of cognitive decline and prevent cognitive disorders. Government policies on dementia prevention and health care, along with early and regular dementia screening programs, can enhance the early identification and management of individuals at risk. In addition, integrating cognitive health assessments into routine medical check-ups is essential for the early screening and management of dementia.
Collapse
Affiliation(s)
- Xiqi Hu
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Ya-nan Ma
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Kenji Karako
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Peipei Song
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Wei Tang
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| |
Collapse
|
3
|
Chu D, Yang X, Wang J, Zhou Y, Gu JH, Miao J, Wu F, Liu F. Tau truncation in the pathogenesis of Alzheimer's disease: a narrative review. Neural Regen Res 2024; 19:1221-1232. [PMID: 37905868 PMCID: PMC11467920 DOI: 10.4103/1673-5374.385853] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 07/25/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Alzheimer's disease is characterized by two major neuropathological hallmarks-the extracellular β-amyloid plaques and intracellular neurofibrillary tangles consisting of aggregated and hyperphosphorylated Tau protein. Recent studies suggest that dysregulation of the microtubule-associated protein Tau, especially specific proteolysis, could be a driving force for Alzheimer's disease neurodegeneration. Tau physiologically promotes the assembly and stabilization of microtubules, whereas specific truncated fragments are sufficient to induce abnormal hyperphosphorylation and aggregate into toxic oligomers, resulting in them gaining prion-like characteristics. In addition, Tau truncations cause extensive impairments to neural and glial cell functions and animal cognition and behavior in a fragment-dependent manner. This review summarizes over 60 proteolytic cleavage sites and their corresponding truncated fragments, investigates the role of specific truncations in physiological and pathological states of Alzheimer's disease, and summarizes the latest applications of strategies targeting Tau fragments in the diagnosis and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xingyue Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Jing Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Jin-Hua Gu
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province, China
| | - Jin Miao
- Laboratory of Animal Center, Nantong University, Nantong, Jiangsu Province, China
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
4
|
Dou J, Zhang X, Hu C, Gao Y, Zhao Y, Hei M, Wang Z, Guo N, Zhu H. QKL injection ameliorates Alzheimer's disease-like pathology by regulating expression of RAGE. Exp Gerontol 2024; 190:112422. [PMID: 38599502 DOI: 10.1016/j.exger.2024.112422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The onset of Alzheimer's disease is related to neuron damage caused by massive deposition of Aβ in the brain. Recent studies suggest that excessive Aβ in the brain mainly comes from peripheral blood, and BBB is the key to regulate Aβ in and out of the brain. In this study, we explored the pathogenesis of AD from the perspective of Aβ transport through the BBB and the effect of QKL injection in AD mice. The results showed that QKL could improve the cognitive dysfunction of AD mice, decrease the level of Aβ and Aβ transporter-RAGE, which was supported by the results of network pharmacology, molecular docking and molecular dynamics simulation. In conclusion, RAGE is a potential target for QKL's therapeutic effect on AD.
Collapse
Affiliation(s)
- Jinfang Dou
- Beijing University of Chinese Medicine, Beijing, China
| | - Xin'ai Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chaoqun Hu
- Beijing University of Chinese Medicine, Beijing, China
| | - Yuqian Gao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Murong Hei
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Zhimiao Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Nan Guo
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.
| | - Haiyan Zhu
- Beijing University of Chinese Medicine, Beijing, China; Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
5
|
Therriault J, Schindler SE, Salvadó G, Pascoal TA, Benedet AL, Ashton NJ, Karikari TK, Apostolova L, Murray ME, Verberk I, Vogel JW, La Joie R, Gauthier S, Teunissen C, Rabinovici GD, Zetterberg H, Bateman RJ, Scheltens P, Blennow K, Sperling R, Hansson O, Jack CR, Rosa-Neto P. Biomarker-based staging of Alzheimer disease: rationale and clinical applications. Nat Rev Neurol 2024; 20:232-244. [PMID: 38429551 DOI: 10.1038/s41582-024-00942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Disease staging, whereby the spatial extent and load of brain pathology are used to estimate the severity of Alzheimer disease (AD), is pivotal to the gold-standard neuropathological diagnosis of AD. Current in vivo diagnostic frameworks for AD are based on abnormal concentrations of amyloid-β and tau in the cerebrospinal fluid or on PET scans, and breakthroughs in molecular imaging have opened up the possibility of in vivo staging of AD. Focusing on the key principles of disease staging shared across several areas of medicine, this Review highlights the potential for in vivo staging of AD to transform our understanding of preclinical AD, refine enrolment criteria for trials of disease-modifying therapies and aid clinical decision-making in the era of anti-amyloid therapeutics. We provide a state-of-the-art review of recent biomarker-based AD staging systems and highlight their contributions to the understanding of the natural history of AD. Furthermore, we outline hypothetical frameworks to stage AD severity using more accessible fluid biomarkers. In addition, by applying amyloid PET-based staging to recently published anti-amyloid therapeutic trials, we highlight how biomarker-based disease staging frameworks could illustrate the numerous pathological changes that have already taken place in individuals with mildly symptomatic AD. Finally, we discuss challenges related to the validation and standardization of disease staging and provide a forward-looking perspective on potential clinical applications.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Quebec, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andréa Lessa Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- NIHR Biomedical Research Centre, South London and Maudsley NHS Foundation, London, UK
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Liana Apostolova
- Department of Neurology, University of Indiana School of Medicine, Indianapolis, IN, USA
| | | | - Inge Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Jacob W Vogel
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Clinical Sciences, Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Charlotte Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Philip Scheltens
- Alzheimer Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Reisa Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Li W, Li JY. Overlaps and divergences between tauopathies and synucleinopathies: a duet of neurodegeneration. Transl Neurodegener 2024; 13:16. [PMID: 38528629 DOI: 10.1186/s40035-024-00407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Proteinopathy, defined as the abnormal accumulation of proteins that eventually leads to cell death, is one of the most significant pathological features of neurodegenerative diseases. Tauopathies, represented by Alzheimer's disease (AD), and synucleinopathies, represented by Parkinson's disease (PD), show similarities in multiple aspects. AD manifests extrapyramidal symptoms while dementia is also a major sign of advanced PD. We and other researchers have sequentially shown the cross-seeding phenomenon of α-synuclein (α-syn) and tau, reinforcing pathologies between synucleinopathies and tauopathies. The highly overlapping clinical and pathological features imply shared pathogenic mechanisms between the two groups of disease. The diagnostic and therapeutic strategies seemingly appropriate for one distinct neurodegenerative disease may also apply to a broader spectrum. Therefore, a clear understanding of the overlaps and divergences between tauopathy and synucleinopathy is critical for unraveling the nature of the complicated associations among neurodegenerative diseases. In this review, we discuss the shared and diverse characteristics of tauopathies and synucleinopathies from aspects of genetic causes, clinical manifestations, pathological progression and potential common therapeutic approaches targeting the pathology, in the aim to provide a timely update for setting the scheme of disease classification and provide novel insights into the therapeutic development for neurodegenerative diseases.
Collapse
Affiliation(s)
- Wen Li
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, 110122, China
| | - Jia-Yi Li
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, 110122, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, BMC A10, 22184, Lund, Sweden.
| |
Collapse
|
7
|
Lei HY, Pi GL, He T, Xiong R, Lv JR, Liu JL, Wu DQ, Li MZ, Shi K, Li SH, Yu NN, Gao Y, Yu HL, Wei LY, Wang X, Zhou QZ, Zou PL, Zhou JY, Liu YZ, Shen NT, Yang J, Ke D, Wang Q, Liu GP, Yang XF, Wang JZ, Yang Y. Targeting vulnerable microcircuits in the ventral hippocampus of male transgenic mice to rescue Alzheimer-like social memory loss. Mil Med Res 2024; 11:16. [PMID: 38462603 PMCID: PMC10926584 DOI: 10.1186/s40779-024-00512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Episodic memory loss is a prominent clinical manifestation of Alzheimer's disease (AD), which is closely related to tau pathology and hippocampal impairment. Due to the heterogeneity of brain neurons, the specific roles of different brain neurons in terms of their sensitivity to tau accumulation and their contribution to AD-like social memory loss remain unclear. Therefore, further investigation is necessary. METHODS We investigated the effects of AD-like tau pathology by Tandem mass tag proteomic and phosphoproteomic analysis, social behavioural tests, hippocampal electrophysiology, immunofluorescence staining and in vivo optical fibre recording of GCaMP6f and iGABASnFR. Additionally, we utilized optogenetics and administered ursolic acid (UA) via oral gavage to examine the effects of these agents on social memory in mice. RESULTS The results of proteomic and phosphoproteomic analyses revealed the characteristics of ventral hippocampal CA1 (vCA1) under both physiological conditions and AD-like tau pathology. As tau progressively accumulated, vCA1, especially its excitatory and parvalbumin (PV) neurons, were fully filled with mislocated and phosphorylated tau (p-Tau). This finding was not observed for dorsal hippocampal CA1 (dCA1). The overexpression of human tau (hTau) in excitatory and PV neurons mimicked AD-like tau accumulation, significantly inhibited neuronal excitability and suppressed distinct discrimination-associated firings of these neurons within vCA1. Photoactivating excitatory and PV neurons in vCA1 at specific rhythms and time windows efficiently ameliorated tau-impaired social memory. Notably, 1 month of UA administration efficiently decreased tau accumulation via autophagy in a transcription factor EB (TFEB)-dependent manner and restored the vCA1 microcircuit to ameliorate tau-impaired social memory. CONCLUSION This study elucidated distinct protein and phosphoprotein networks between dCA1 and vCA1 and highlighted the susceptibility of the vCA1 microcircuit to AD-like tau accumulation. Notably, our novel findings regarding the efficacy of UA in reducing tau load and targeting the vCA1 microcircuit may provide a promising strategy for treating AD in the future.
Collapse
Affiliation(s)
- Hui-Yang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gui-Lin Pi
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Ting He
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Xiong
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing-Ru Lv
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Le Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong-Qin Wu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng-Zhu Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kun Shi
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shi-Hong Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Na-Na Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Gao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Ling Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin-Yu Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu-Zhi Zhou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pei-Lin Zou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Yang Zhou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying-Zhou Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Nai-Ting Shen
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gong-Ping Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi-Fei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, Jiangsu, China.
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Lantero-Rodriguez J, Salvadó G, Snellman A, Montoliu-Gaya L, Brum WS, Benedet AL, Mattsson-Carlgren N, Tideman P, Janelidze S, Palmqvist S, Stomrud E, Ashton NJ, Zetterberg H, Blennow K, Hansson O. Plasma N-terminal containing tau fragments (NTA-tau): a biomarker of tau deposition in Alzheimer's Disease. Mol Neurodegener 2024; 19:19. [PMID: 38365825 PMCID: PMC10874032 DOI: 10.1186/s13024-024-00707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Novel phosphorylated-tau (p-tau) blood biomarkers (e.g., p-tau181, p-tau217 or p-tau231), are highly specific for Alzheimer's disease (AD), and can track amyloid-β (Aβ) and tau pathology. However, because these biomarkers are strongly associated with the emergence of Aβ pathology, it is difficult to determine the contribution of insoluble tau aggregates to the plasma p-tau signal in blood. Therefore, there remains a need for a biomarker capable of specifically tracking insoluble tau accumulation in brain. METHODS NTA is a novel ultrasensitive assay targeting N-terminal containing tau fragments (NTA-tau) in cerebrospinal fluid (CSF) and plasma, which is elevated in AD. Using two well-characterized research cohorts (BioFINDER-2, n = 1,294, and BioFINDER-1, n = 932), we investigated the association between plasma NTA-tau levels and disease progression in AD, including tau accumulation, brain atrophy and cognitive decline. RESULTS We demonstrate that plasma NTA-tau increases across the AD continuum¸ especially during late stages, and displays a moderate-to-strong association with tau-PET (β = 0.54, p < 0.001) in Aβ-positive participants, while weak with Aβ-PET (β = 0.28, p < 0.001). Unlike plasma p-tau181, GFAP, NfL and t-tau, tau pathology determined with tau-PET is the most prominent contributor to NTA-tau variance (52.5% of total R2), while having very low contribution from Aβ pathology measured with CSF Aβ42/40 (4.3%). High baseline NTA-tau levels are predictive of tau-PET accumulation (R2 = 0.27), steeper atrophy (R2 ≥ 0.18) and steeper cognitive decline (R2 ≥ 0.27) in participants within the AD continuum. Plasma NTA-tau levels significantly increase over time in Aβ positive cognitively unimpaired (βstd = 0.16) and impaired (βstd = 0.18) at baseline compared to their Aβ negative counterparts. Finally, longitudinal increases in plasma NTA-tau levels were associated with steeper longitudinal decreases in cortical thickness (R2 = 0.21) and cognition (R2 = 0.20). CONCLUSION Our results indicate that plasma NTA-tau levels increase across the AD continuum, especially during mid-to-late AD stages, and it is closely associated with in vivo tau tangle deposition in AD and its downstream effects. Moreover, this novel biomarker has potential as a cost-effective and easily accessible tool for monitoring disease progression and cognitive decline in clinical settings, and as an outcome measure in clinical trials which also need to assess the downstream effects of successful Aβ removal.
Collapse
Affiliation(s)
- Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden.
| | - Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Anniina Snellman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
| | - Wagner S Brum
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Andrea L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Pontus Tideman
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, 20502, Malmö, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, 20502, Malmö, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, 20502, Malmö, Sweden.
| |
Collapse
|
9
|
Kimura T, Sato H, Kano M, Tatsumi L, Tomita T. Novel aspects of the phosphorylation and structure of pathological tau: implications for tauopathy biomarkers. FEBS Open Bio 2024; 14:181-193. [PMID: 37391389 PMCID: PMC10839341 DOI: 10.1002/2211-5463.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/02/2023] Open
Abstract
The deposition of highly phosphorylated and aggregated tau is a characteristic of tauopathies, including Alzheimer's disease. It has long been known that different isoforms of tau are aggregated in different cell types and brain regions in each tauopathy. Recent advances in analytical techniques revealed the details of the biochemical and structural biological differences of tau specific to each tauopathy. In this review, we explain recent advances in the analysis of post-translational modifications of tau, particularly phosphorylation, brought about by the development of mass-spectrometry and Phos-tag technology. We then discuss the structure of tau filaments in each tauopathy revealed by the advent of cryo-EM. Finally, we describe the progress in biofluid and imaging biomarkers for tauopathy. This review summarizes current efforts to elucidate the characteristics of pathological tau and the landscape of the use of tau as a biomarker to diagnose and determine the pathological stage of tauopathy.
Collapse
Affiliation(s)
- Taeko Kimura
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Haruaki Sato
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Maria Kano
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Lisa Tatsumi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| |
Collapse
|
10
|
Stern AM, Van Pelt KL, Liu L, Anderson AK, Ostaszewski B, Mapstone M, O’Bryant S, Petersen ME, Christian BT, Handen BL, Selkoe DJ, Schmitt F, Head E. Plasma NT1-tau and Aβ 42 correlate with age and cognitive function in two large Down syndrome cohorts. Alzheimers Dement 2023; 19:5755-5764. [PMID: 37438872 PMCID: PMC10784408 DOI: 10.1002/alz.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION People with Down syndrome (DS) often develop Alzheimer's disease (AD). Here, we asked whether ultrasensitive plasma immunoassays for a tau N-terminal fragment (NT1-tau) and Aβ isoforms predict cognitive impairment. METHODS Plasma NT1-tau, Aβ37 , Aβ40 , and Aβ42 levels were measured in a longitudinal discovery cohort (N = 85 participants, 220 samples) and a cross-sectional validation cohort (N = 239). We developed linear models and predicted values in the validation cohort. RESULTS Discovery cohort linear mixed models for NT1-tau, Aβ42 , and Aβ37:42 were significant for age; there was no main effect of time. In cross-sectional models, NT1-tau increased and Aβ42 decreased with age. NT1-tau predicted cognitive and functional scores. The discovery cohort linear model for NT1-tau predicted levels in the validation cohort. DISCUSSION NT1-tau correlates with age and worse cognition in DS. Further validation of NT1-tau and other plasma biomarkers of AD neuropathology in DS cohorts is important for clinical utility.
Collapse
Affiliation(s)
- Andrew M. Stern
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Kathryn L. Van Pelt
- Sanders-Brown Center for Aging, Department of Neurology, University of Kentucky, Lexington, KY 40508
| | - Lei Liu
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Amirah K. Anderson
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Beth Ostaszewski
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, Irvine, CA 92868
| | - Sid O’Bryant
- University of North Texas Health Science Center, Fort Worth, TX 76107
| | | | | | - Benjamin L. Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213
| | - Dennis J. Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Frederick Schmitt
- Sanders-Brown Center for Aging, Department of Neurology, University of Kentucky, Lexington, KY 40508
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697
| | | |
Collapse
|
11
|
Burnham SC, Iaccarino L, Pontecorvo MJ, Fleisher AS, Lu M, Collins EC, Devous MD. A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles. Brain Commun 2023; 6:fcad305. [PMID: 38187878 PMCID: PMC10768888 DOI: 10.1093/braincomms/fcad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease is defined by the presence of β-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an in vivo definitive diagnosis of Alzheimer's disease. 18F-flortaucipir (previously known as 18F-T807; 18F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™). It has been widely adopted and validated in a number of independent research and clinical settings. In this review, we present an overview of the published literature on flortaucipir for positron emission tomography imaging of neurofibrillary tau tangles. We considered all accessible peer-reviewed literature pertaining to flortaucipir through 30 April 2022. We found 474 relevant peer-reviewed publications, which were organized into the following categories based on their primary focus: typical Alzheimer's disease, mild cognitive impairment and pre-symptomatic populations; atypical Alzheimer's disease; non-Alzheimer's disease neurodegenerative conditions; head-to-head comparisons with other Tau positron emission tomography tracers; and technical considerations. The available flortaucipir literature provides substantial evidence for the use of this positron emission tomography tracer in assessing neurofibrillary tau tangles in Alzheimer's disease and limited support for its use in other neurodegenerative disorders. Visual interpretation and quantitation approaches, although heterogeneous, mostly converge and demonstrate the high diagnostic and prognostic value of flortaucipir in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Ming Lu
- Avid, Eli Lilly and Company, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
12
|
Self WK, Holtzman DM. Emerging diagnostics and therapeutics for Alzheimer disease. Nat Med 2023; 29:2187-2199. [PMID: 37667136 DOI: 10.1038/s41591-023-02505-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/18/2023] [Indexed: 09/06/2023]
Abstract
Alzheimer disease (AD) is the most common contributor to dementia in the world, but strategies that slow or prevent its clinical progression have largely remained elusive, until recently. This Review highlights the latest advances in biomarker technologies and therapeutic development to improve AD diagnosis and treatment. We review recent results that enable pathological staging of AD with neuroimaging and fluid-based biomarkers, with a particular emphasis on the role of amyloid, tau and neuroinflammation in disease pathogenesis. We discuss the lessons learned from randomized controlled trials, including some supporting the proposal that certain anti-amyloid antibodies slow cognitive decline during the mildly symptomatic phase of AD. In addition, we highlight evidence for newly identified therapeutic targets that may be able to modify AD pathogenesis and progression. Collectively, these recent discoveries-and the research directions that they open-have the potential to move AD clinical care toward disease-modifying treatment strategies with maximal benefits for patients.
Collapse
Affiliation(s)
- Wade K Self
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Azevedo T, Bethlehem RAI, Whiteside DJ, Swaddiwudhipong N, Rowe JB, Lió P, Rittman T. Identifying healthy individuals with Alzheimer's disease neuroimaging phenotypes in the UK Biobank. COMMUNICATIONS MEDICINE 2023; 3:100. [PMID: 37474615 PMCID: PMC10359360 DOI: 10.1038/s43856-023-00313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/05/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Identifying prediagnostic neurodegenerative disease is a critical issue in neurodegenerative disease research, and Alzheimer's disease (AD) in particular, to identify populations suitable for preventive and early disease-modifying trials. Evidence from genetic and other studies suggests the neurodegeneration of Alzheimer's disease measured by brain atrophy starts many years before diagnosis, but it is unclear whether these changes can be used to reliably detect prediagnostic sporadic disease. METHODS We trained a Bayesian machine learning neural network model to generate a neuroimaging phenotype and AD score representing the probability of AD using structural MRI data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) Cohort (cut-off 0.5, AUC 0.92, PPV 0.90, NPV 0.93). We go on to validate the model in an independent real-world dataset of the National Alzheimer's Coordinating Centre (AUC 0.74, PPV 0.65, NPV 0.80) and demonstrate the correlation of the AD-score with cognitive scores in those with an AD-score above 0.5. We then apply the model to a healthy population in the UK Biobank study to identify a cohort at risk for Alzheimer's disease. RESULTS We show that the cohort with a neuroimaging Alzheimer's phenotype has a cognitive profile in keeping with Alzheimer's disease, with strong evidence for poorer fluid intelligence, and some evidence of poorer numeric memory, reaction time, working memory, and prospective memory. We found some evidence in the AD-score positive cohort for modifiable risk factors of hypertension and smoking. CONCLUSIONS This approach demonstrates the feasibility of using AI methods to identify a potentially prediagnostic population at high risk for developing sporadic Alzheimer's disease.
Collapse
Affiliation(s)
- Tiago Azevedo
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Richard A I Bethlehem
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - David J Whiteside
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Nol Swaddiwudhipong
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Pietro Lió
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Khosroazad S, Gilbert CF, Aronis JB, Daigle KM, Esfahani M, Almaghasilah A, Ahmed FS, Elias MF, Meuser TM, Kaye LW, Singer CM, Abedi A, Hayes MJ. Sleep movements and respiratory coupling as a biobehavioral metric for early Alzheimer's disease in independently dwelling adults. BMC Geriatr 2023; 23:252. [PMID: 37106470 PMCID: PMC10141904 DOI: 10.1186/s12877-023-03983-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
INTRODUCTION Sleep disorder is often the first symptom of age-related cognitive decline associated with Alzheimer's disease (AD) observed in primary care. The relationship between sleep and early AD was examined using a patented sleep mattress designed to record respiration and high frequency movement arousals. A machine learning algorithm was developed to classify sleep features associated with early AD. METHOD Community-dwelling older adults (N = 95; 62-90 years) were recruited in a 3-h catchment area. Study participants were tested on the mattress device in the home bed for 2 days, wore a wrist actigraph for 7 days, and provided sleep diary and sleep disorder self-reports during the 1-week study period. Neurocognitive testing was completed in the home within 30-days of the sleep study. Participant performance on executive and memory tasks, health history and demographics were reviewed by a geriatric clinical team yielding Normal Cognition (n = 45) and amnestic MCI-Consensus (n = 33) groups. A diagnosed MCI group (n = 17) was recruited from a hospital memory clinic following diagnostic series of neuroimaging biomarker assessment and cognitive criteria for AD. RESULTS In cohort analyses, sleep fragmentation and wake after sleep onset duration predicted poorer executive function, particularly memory performance. Group analyses showed increased sleep fragmentation and total sleep time in the diagnosed MCI group compared to the Normal Cognition group. Machine learning algorithm showed that the time latency between movement arousals and coupled respiratory upregulation could be used as a classifier of diagnosed MCI vs. Normal Cognition cases. ROC diagnostics identified MCI with 87% sensitivity; 89% specificity; and 88% positive predictive value. DISCUSSION AD sleep phenotype was detected with a novel sleep biometric, time latency, associated with the tight gap between sleep movements and respiratory coupling, which is proposed as a corollary of sleep quality/loss that affects the autonomic regulation of respiration during sleep. Diagnosed MCI was associated with sleep fragmentation and arousal intrusion.
Collapse
Affiliation(s)
- Somayeh Khosroazad
- Electrical and Computer Engineering, University of Maine, 5708 Barrows Hall, Orono, ME, 04469, USA
- Activas Diagnostics, LLC, 20 Godfrey Dr., Orono, ME, 04473, USA
| | - Christopher F Gilbert
- Activas Diagnostics, LLC, 20 Godfrey Dr., Orono, ME, 04473, USA
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA
| | - Jessica B Aronis
- Activas Diagnostics, LLC, 20 Godfrey Dr., Orono, ME, 04473, USA
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA
| | - Katrina M Daigle
- Psychology Department, Suffolk University, 73 Tremont St., Boston, MA, 02108, USA
| | | | - Ahmed Almaghasilah
- Electrical and Computer Engineering, University of Maine, 5708 Barrows Hall, Orono, ME, 04469, USA
- Graduate School of Biomedical Science & Engineering, University of Maine, 5775 Stodder Hall, Orono, ME, 04469, USA
| | - Fayeza S Ahmed
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA
| | - Merrill F Elias
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA
| | - Thomas M Meuser
- Center for Excellence On Aging, University of New England, 11 Hills Beach Rd., Biddeford, ME, 04005, USA
| | - Leonard W Kaye
- Center On Aging, University of Maine, 327 Camden Hall, Orono, ME, 04469, USA
| | - Clifford M Singer
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA
- Mood and Memory Clinic, Northern Light Health, 269 Stillwater Ave., Bangor, ME, 04402, USA
| | - Ali Abedi
- Electrical and Computer Engineering, University of Maine, 5708 Barrows Hall, Orono, ME, 04469, USA
- Activas Diagnostics, LLC, 20 Godfrey Dr., Orono, ME, 04473, USA
| | - Marie J Hayes
- Activas Diagnostics, LLC, 20 Godfrey Dr., Orono, ME, 04473, USA.
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA.
- Graduate School of Biomedical Science & Engineering, University of Maine, 5775 Stodder Hall, Orono, ME, 04469, USA.
| |
Collapse
|
15
|
Stern AM, Van Pelt KL, Liu L, Anderson AK, Ostaszewski B, Mapstone M, O'Bryant S, Petersen ME, Christian BT, Handen BL, Selkoe DJ, Schmitt F, Head E. Plasma NT1-tau and Aβ 42 correlate with age and cognitive function in two large Down syndrome cohorts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.10.23287109. [PMID: 36945447 PMCID: PMC10029060 DOI: 10.1101/2023.03.10.23287109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Introduction People with Down syndrome (DS) often develop Alzheimer disease (AD). Here we asked whether ultrasensitive plasma immunoassays for a tau N-terminal fragment (NT1-tau) and Aβ isoforms predict cognitive impairment. Methods Plasma NT1-tau, Aβ 37 , Aβ 40 , and Aβ 42 levels were measured in a longitudinal discovery cohort (N = 85 participants, 220 samples) and a cross-sectional validation cohort (N = 239). We developed linear models and predicted values in the validation cohort. Results Linear mixed models for NT1-tau, Aβ 42, and Aβ 37:42 were significant for age, there was no main effect of time in the discovery cohort. In cross-sectional models, NT1-tau and Aβ 42 increased with age. NT1-tau predicted DLD scores. The discovery cohort linear model for NT1-tau predicted NT1-tau levels in the validation cohort. Discussion NT1-tau correlates with age and worse cognition in DS. Further validation of NT1-tau and other plasma biomarkers of AD neuropathology in DS cohorts is important for clinical utility.
Collapse
|
16
|
Kivisäkk P, Carlyle BC, Sweeney T, Trombetta BA, LaCasse K, El-Mufti L, Tuncali I, Chibnik LB, Das S, Scherzer CR, Johnson KA, Dickerson BC, Gomez-Isla T, Blacker D, Oakley DH, Frosch MP, Hyman BT, Aghvanyan A, Bathala P, Campbell C, Sigal G, Stengelin M, Arnold SE. Plasma biomarkers for diagnosis of Alzheimer's disease and prediction of cognitive decline in individuals with mild cognitive impairment. Front Neurol 2023; 14:1069411. [PMID: 36937522 PMCID: PMC10018178 DOI: 10.3389/fneur.2023.1069411] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Background The last few years have seen major advances in blood biomarkers for Alzheimer's Disease (AD) with the development of ultrasensitive immunoassays, promising to transform how we diagnose, prognose, and track progression of neurodegenerative dementias. Methods We evaluated a panel of four novel ultrasensitive electrochemiluminescence (ECL) immunoassays against presumed CNS derived proteins of interest in AD in plasma [phosphorylated-Tau181 (pTau181), total Tau (tTau), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP)]. Two sets of banked plasma samples from the Massachusetts Alzheimer's Disease Research Center's longitudinal cohort study were examined: A longitudinal prognostic sample (n = 85) consisting of individuals with mild cognitive impairment (MCI) and 4 years of follow-up and a cross-sectional sample (n = 238) consisting of individuals with AD, other neurodegenerative diseases (OND), and normal cognition (CN). Results Participants with MCI who progressed to dementia due to probable AD during follow-up had higher baseline plasma concentrations of pTau181, NfL, and GFAP compared to non-progressors. The best prognostic discrimination was observed with pTau181 (AUC = 0.83, 1.7-fold increase) and GFAP (AUC = 0.83, 1.6-fold increase). Participants with autopsy- and/or biomarker verified AD had higher plasma levels of pTau181, tTau and GFAP compared to CN and OND, while NfL was elevated in AD and further increased in OND. The best diagnostic discrimination was observed with pTau181 (AD vs CN: AUC = 0.90, 2-fold increase; AD vs. OND: AUC = 0.84, 1.5-fold increase) but tTau, NfL, and GFAP also showed good discrimination between AD and CN (AUC = 0.81-0.85; 1.5-2.2 fold increase). Conclusions These new ultrasensitive ECL plasma assays for pTau181, tTau, NfL, and GFAP demonstrated diagnostic utility for detection of AD. Moreover, the absolute baseline plasma levels of pTau181 and GFAP reflect cognitive decline over the next 4 years, providing prognostic information that may have utility in both clinical practice and clinical trial populations.
Collapse
Affiliation(s)
- Pia Kivisäkk
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Becky C. Carlyle
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Thadryan Sweeney
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Bianca A. Trombetta
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kathryn LaCasse
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Leena El-Mufti
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Idil Tuncali
- Precision Neurology Program and Center for Advanced Parkinson Research, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Lori B. Chibnik
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Clemens R. Scherzer
- Precision Neurology Program and Center for Advanced Parkinson Research, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Keith A. Johnson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Bradford C. Dickerson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Teresa Gomez-Isla
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Deborah Blacker
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Derek H. Oakley
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Matthew P. Frosch
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Bradley T. Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | | | | | - George Sigal
- Meso Scale Diagnostics, LLC., Rockville, MD, United States
| | | | - Steven E. Arnold
- Alzheimer's Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Abstract
Alzheimer's disease (AD) was described in 1906 as a dementing disease marked by the presence of two types of fibrillar aggregates in the brain: neurofibrillary tangles and senile plaques. The process of aggregation and formation of the aggregates has been a major focus of investigation ever since the discoveries that the tau protein is the predominant protein in tangles and amyloid β is the predominant protein in plaques. The idea that smaller, oligomeric species of amyloid may also be bioactive has now been clearly established. This review examines the possibility that soluble, nonfibrillar, bioactive forms of tau-the "tau we cannot see"-comprise a dominant driver of neurodegeneration in AD.
Collapse
Affiliation(s)
- Bradley Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, USA;
| |
Collapse
|
18
|
Murray ME, Moloney CM, Kouri N, Syrjanen JA, Matchett BJ, Rothberg DM, Tranovich JF, Sirmans TNH, Wiste HJ, Boon BDC, Nguyen AT, Reichard RR, Dickson DW, Lowe VJ, Dage JL, Petersen RC, Jack CR, Knopman DS, Vemuri P, Graff-Radford J, Mielke MM. Global neuropathologic severity of Alzheimer's disease and locus coeruleus vulnerability influences plasma phosphorylated tau levels. Mol Neurodegener 2022; 17:85. [PMID: 36575455 PMCID: PMC9795667 DOI: 10.1186/s13024-022-00578-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/26/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Advances in ultrasensitive detection of phosphorylated tau (p-tau) in plasma has enabled the use of blood tests to measure Alzheimer's disease (AD) biomarker changes. Examination of postmortem brains of participants with antemortem plasma p-tau levels remains critical to understanding comorbid and AD-specific contribution to these biomarker changes. METHODS We analyzed 35 population-based Mayo Clinic Study of Aging participants with plasma p-tau at threonine 181 and threonine 217 (p-tau181, p-tau217) available within 3 years of death. Autopsied participants included cognitively unimpaired, mild cognitive impairment, AD dementia, and non-AD neurodegenerative disorders. Global neuropathologic scales of tau, amyloid-β, TDP-43, and cerebrovascular disease were examined. Regional digital pathology measures of tau (phosphorylated threonine 181 and 217 [pT181, pT217]) and amyloid-β (6F/3D) were quantified in hippocampus and parietal cortex. Neurotransmitter hubs reported to influence development of tangles (nucleus basalis of Meynert) and amyloid-β plaques (locus coeruleus) were evaluated. RESULTS The strongest regional associations were with parietal cortex for tau burden (p-tau181 R = 0.55, p = 0.003; p-tau217 R = 0.66, p < 0.001) and amyloid-β burden (p-tau181 R = 0.59, p < 0.001; p-tau217 R = 0.71, p < 0.001). Linear regression analysis of global neuropathologic scales explained 31% of variability in plasma p-tau181 (Adj. R2 = 0.31) and 59% in plasma p-tau217 (Adj. R2 = 0.59). Neither TDP-43 nor cerebrovascular disease global scales independently contributed to variability. Global scales of tau pathology (β-coefficient = 0.060, p = 0.016) and amyloid-β pathology (β-coefficient = 0.080, p < 0.001) independently predicted plasma p-tau217 when modeled together with co-pathologies, but only amyloid-β (β-coefficient = 0.33, p = 0.021) significantly predicted plasma p-tau181. While nucleus basalis of Meynert neuron count/mm2 was not associated with plasma p-tau levels, a lower locus coeruleus neuron count/mm2 was associated with higher plasma p-tau181 (R = -0.50, p = 0.007) and higher plasma p-tau217 (R = -0.55, p = 0.002). Cognitive scores (Adj. R2 = 0.25-0.32) were predicted by the global tau scale, but not by the global amyloid-β scale or plasma p-tau when modeled simultaneously. CONCLUSIONS Higher soluble plasma p-tau levels may be the result of an intersection between insoluble deposits of amyloid-β and tau accumulation in brain, and may be associated with locus coeruleus degeneration.
Collapse
Affiliation(s)
- Melissa E. Murray
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Christina M. Moloney
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Naomi Kouri
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Jeremy A. Syrjanen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN USA
| | - Billie J. Matchett
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Darren M. Rothberg
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Jessica F. Tranovich
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Tiffany N. Hicks Sirmans
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Heather J. Wiste
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN USA
| | - Baayla D. C. Boon
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Aivi T. Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - R. Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Val J. Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN USA
| | - Jeffrey L. Dage
- Department of Neurology, Indiana University, Indianapolis, IN USA
| | | | | | | | | | | | - Michelle M. Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN USA
- Wake Forest University School of Medicine, Winston-Salem, NC USA
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, 525 Vine, 5th floor, Winston-Salem, NC 27157 USA
| |
Collapse
|
19
|
Swaddiwudhipong N, Whiteside DJ, Hezemans FH, Street D, Rowe JB, Rittman T. Pre-diagnostic cognitive and functional impairment in multiple sporadic neurodegenerative diseases. Alzheimers Dement 2022; 19:1752-1763. [PMID: 36223793 DOI: 10.1002/alz.12802] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
INTRODUCTION The pathophysiological processes of neurodegenerative diseases begin years before diagnosis. However, pre-diagnostic changes in cognition and physical function are poorly understood, especially in sporadic neurodegenerative disease. METHODS UK Biobank data were extracted. Cognitive and functional measures in individuals who subsequently developed Alzheimer's disease (AD), Parkinson disease, frontotemporal dementia, progressive supranuclear palsy, dementia with Lewy bodies, or multiple system atrophy were compared against individuals without neurodegenerative diagnoses. The same measures were regressed against time to diagnosis, after adjusting for the effects of age. RESULTS There was evidence for pre-diagnostic cognitive impairment and decline with time, particularly in AD. Pre-diagnostic functional impairment and decline were observed in multiple diseases. DISCUSSION The scale and longitudinal follow-up of UK Biobank participants provides evidence for cognitive and functional decline years before symptoms become obvious in multiple neurodegenerative diseases. Identifying pre-diagnostic functional and cognitive changes could improve selection for preventive and early disease-modifying treatment trials.
Collapse
Affiliation(s)
- Nol Swaddiwudhipong
- Department of Clinical Neurosciences, Cambridge, UK.,Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - David J Whiteside
- Department of Clinical Neurosciences, Cambridge, UK.,Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Frank H Hezemans
- Department of Clinical Neurosciences, Cambridge, UK.,MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | - James B Rowe
- Department of Clinical Neurosciences, Cambridge, UK.,Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK.,MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, Cambridge, UK.,Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Xie J, Zhang Y, Li S, Wei H, Yu H, Zhou Q, Wei L, Ke D, Wang Q, Yang Y, Wang J. P301S-hTau acetylates KEAP1 to trigger synaptic toxicity via inhibiting NRF2/ARE pathway: A novel mechanism underlying hTau-induced synaptic toxicities. Clin Transl Med 2022; 12:e1003. [PMID: 35917404 PMCID: PMC9345400 DOI: 10.1002/ctm2.1003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Human Tau (hTau) accumulation and synapse loss are two pathological hallmarks of tauopathies. However, whether and how hTau exerts toxic effects on synapses remain elusive. METHODS Mutated hTau (P301S) was overexpressed in the N2a cell line, primary hippocampal neurons and hippocampal CA3. Western blotting and quantitative polymerase chain reaction were applied to examine the protein and mRNA levels of synaptic proteins. The protein interaction was tested by co-immunoprecipitation and proximity ligation assays. Memory and emotion status were evaluated by a series of behavioural tests. The transcriptional activity of nuclear factor-erythroid 2-related factor 2 (NRF2) was detected by dual luciferase reporter assay. Electrophoresis mobility shift assay and chromosome immunoprecipitation were conducted to examine the combination of NRF2 to specific anti-oxidative response element (ARE) sequences. Neuronal morphology was analysed after Golgi staining. RESULTS Overexpressing P301S decreased the protein levels of post-synaptic density protein 93 (PSD93), PSD95 and synapsin 1 (SYN1). Simultaneously, NRF2 was decreased, whereas Kelch-like ECH-associated protein 1 (KEAP1) was elevated. Further, we found that NRF2 could bind to the specific AREs of DLG2, DLG4 and SYN1 genes, which encode PSD93, PSD95 and SYN1, respectively, to promote their expression. Overexpressing NRF2 ameliorated P301S-reduced synaptic proteins and synapse. By means of acetylation at K312, P301S increased the protein level of KEAP1 via inhibiting KEAP1 degradation from ubiquitin-proteasome pathway, thereby decreasing NRF2 and reducing synapse. Blocking the P301S-KEAP1 interaction at K312 rescued the P301S-suppressed expression of synaptic proteins and memory deficits with anxiety efficiently. CONCLUSIONS P301S-hTau could acetylate KEAP1 to trigger synaptic toxicity via inhibiting the NRF2/ARE pathway. These findings provide a novel and potential target for the therapeutic intervention of tauopathies.
Collapse
Affiliation(s)
- Jia‐Zhao Xie
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yao Zhang
- Endocrine Department of Liyuan HospitalKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shi‐Hong Li
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hui Wei
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hui‐Ling Yu
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qiu‐Zhi Zhou
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lin‐Yu Wei
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan Ke
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qun Wang
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ying Yang
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jian‐Zhi Wang
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| |
Collapse
|
21
|
Botella Lucena P, Vanherle S, Lodder C, Gutiérrez de Ravé M, Stancu IC, Lambrichts I, Vangheluwe R, Bruffaerts R, Dewachter I. Blood-based Aβ42 increases in the earliest pre-pathological stage before decreasing with progressive amyloid pathology in preclinical models and human subjects: opening new avenues for prevention. Acta Neuropathol 2022; 144:489-508. [PMID: 35796870 PMCID: PMC9381631 DOI: 10.1007/s00401-022-02458-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022]
Abstract
Blood-based (BB) biomarkers for Aβ and tau can indicate pathological processes in the brain, in the early pathological, even pre-symptomatic stages in Alzheimer’s disease. However, the relation between BB biomarkers and AD-related processes in the brain in the earliest pre-pathology stage before amyloid pathology develops, and their relation with total brain concentrations of Aβ and tau, is poorly understood. This stage presents a critical window for the earliest prevention of AD. Preclinical models with well-defined temporal progression to robust amyloid and tau pathology provide a unique opportunity to study this relation and were used here to study the link between BB biomarkers with AD-related processes in pre- and pathological stages. We performed a cross-sectional study at different ages assessing the link between BB concentrations and AD-related processes in the brain. This was complemented with a longitudinal analysis and with analysis of age-related changes in a small cohort of human subjects. We found that BB-tau concentrations increased in serum, correlating with progressive development of tau pathology and with increasing tau aggregates and p-tau concentrations in brain in TauP301S mice (PS19) developing tauopathy. BB-Aβ42 concentrations in serum decreased between 4.5 and 9 months of age, correlating with the progressive development of robust amyloid pathology in APP/PS1 (5xFAD) mice, in line with previous findings. Most importantly, BB-Aβ42 concentrations significantly increased between 1.5 and 4.5 months, i.e., in the earliest pre-pathological stage, before robust amyloid pathology develops in the brain, indicating biphasic BB-Aβ42 dynamics. Furthermore, increasing BB-Aβ42 in the pre-pathological phase, strongly correlated with increasing Aβ42 concentrations in brain. Our subsequent longitudinal analysis of BB-Aβ42 in 5xFAD mice, confirmed biphasic BB-Aβ42, with an initial increase, before decreasing with progressive robust pathology. Furthermore, in human samples, BB-Aβ42 concentrations were significantly higher in old (> 60 years) compared to young (< 50 years) subjects, as well as to age-matched AD patients, further supporting age-dependent increase of Aβ42 concentrations in the earliest pre-pathological phase, before amyloid pathology. Also BB-Aβ40 concentrations were found to increase in the earliest pre-pathological phase both in preclinical models and human subjects, while subsequent significantly decreasing concentrations in the pathological phase were characteristic for BB-Aβ42. Together our data indicate that BB biomarkers reflect pathological processes in brain of preclinical models with amyloid and tau pathology, both in the pathological and pre-pathological phase. Our data indicate a biphasic pattern of BB-Aβ42 in preclinical models and a human cohort. And most importantly, we here show that BB-Aβ increased and correlated with increasing concentrations of Aβ in the brain, in the earliest pre-pathological stage in a preclinical model. Our data thereby identify a novel critical window for prevention, using BB-Aβ as marker for accumulating Aβ in the brain, in the earliest pre-pathological stage, opening new avenues for personalized early preventive strategies against AD, even before amyloid pathology develops.
Collapse
Affiliation(s)
- Pablo Botella Lucena
- Biomedical Research Institute, BIOMED, Hasselt University, 3590, Diepenbeek, Belgium
| | - Sarah Vanherle
- Biomedical Research Institute, BIOMED, Hasselt University, 3590, Diepenbeek, Belgium
| | - Chritica Lodder
- Biomedical Research Institute, BIOMED, Hasselt University, 3590, Diepenbeek, Belgium
| | | | - Ilie-Cosmin Stancu
- Biomedical Research Institute, BIOMED, Hasselt University, 3590, Diepenbeek, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute, BIOMED, Hasselt University, 3590, Diepenbeek, Belgium
| | - Riet Vangheluwe
- Neurology Department, ZOL Genk General Hospital, Genk, Belgium
| | - Rose Bruffaerts
- Biomedical Research Institute, BIOMED, Hasselt University, 3590, Diepenbeek, Belgium.,Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU, 3000, Leuven, Belgium.,Department of Neurology, University Hospitals, 3000, Leuven, Belgium.,Computational Neurology, Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ilse Dewachter
- Biomedical Research Institute, BIOMED, Hasselt University, 3590, Diepenbeek, Belgium.
| |
Collapse
|
22
|
Haass C, Selkoe D. If amyloid drives Alzheimer disease, why have anti-amyloid therapies not yet slowed cognitive decline? PLoS Biol 2022; 20:e3001694. [PMID: 35862308 PMCID: PMC9302755 DOI: 10.1371/journal.pbio.3001694] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Strong genetic evidence supports an imbalance between production and clearance of amyloid β-protein (Aβ) in people with Alzheimer disease (AD). Microglia that are potentially involved in alternative mechanisms are actually integral to the amyloid cascade. Fluid biomarkers and brain imaging place accumulation of Aβ at the beginning of molecular and clinical changes in the disease. So why have clinical trials of anti-amyloid therapies not provided clear-cut benefits to patients with AD? Can anti-amyloid therapies robustly decrease Aβ in the human brain, and if so, could this lowering be too little, too late? These central questions in research on AD are being urgently addressed. Evidence suggests that an imbalance between production and clearance of amyloid-beta is an early, invariant feature of Alzheimer disease that drives its neuronal and glial pathology and precedes cognitive symptoms. So why are we still unable to slow cognitive decline with anti-amyloid therapies?
Collapse
Affiliation(s)
- Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- * E-mail: (CH); (DS)
| | - Dennis Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (CH); (DS)
| |
Collapse
|
23
|
McDade EM. Alzheimer Disease. Continuum (Minneap Minn) 2022; 28:648-675. [PMID: 35678397 DOI: 10.1212/con.0000000000001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW Alzheimer disease (AD) is the most common cause of dementia in adults (mid to late life), highlighting the importance of understanding the risk factors, clinical manifestations, and recent developments in diagnostic testing and therapeutics. RECENT FINDINGS Advances in fluid (CSF and blood-based) and imaging biomarkers are allowing for a more precise and earlier diagnosis of AD (relative to non-AD dementias) across the disease spectrum and in patients with atypical clinical features. Specifically, tau- and amyloid-related AD pathologic changes can now be measured by CSF, plasma, and positron emission tomography (PET) with good precision. Additionally, a better understanding of risk factors for AD has highlighted the need for clinicians to address comorbidities to maximize prevention of cognitive decline in those at risk or to slow decline in patients who are symptomatic. Recent clinical trials of amyloid-lowering drugs have provided not only some optimism that amyloid reduction or prevention may be beneficial but also a recognition that addressing additional targets will be necessary for significant disease modification. SUMMARY Recent developments in fluid and imaging biomarkers have led to the improved understanding of AD as a chronic condition with a protracted presymptomatic phase followed by the clinical stage traditionally recognized by neurologists. As clinical trials of potential disease-modifying therapies continue, important developments in the understanding of the disease will improve clinical care now and lead to more effective therapies in the near future.
Collapse
|
24
|
Hawksworth J, Fernández E, Gevaert K. A new generation of AD biomarkers: 2019 to 2021. Ageing Res Rev 2022; 79:101654. [PMID: 35636691 DOI: 10.1016/j.arr.2022.101654] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and cases are rising worldwide. The effort to fight this disease is hampered by a lack of disease-modifying treatments and the absence of an early, accurate diagnostic tool. Neuropathology begins years or decades before symptoms occur and, upon onset of symptoms, diagnosis can take a year or more. Such delays postpone treatment and make research into the early stages of the disease difficult. Ideally, clinicians require a minimally invasive test that can detect AD in its early stages, before cognitive symptoms occur. Advances in proteomic technologies have facilitated the study of promising biomarkers of AD. Over the last two years (2019-2021) studies have identified and validated many species which can be measured in cerebrospinal fluid (CSF), plasma, or in both fluids, and which have a high predictive value for AD. We herein discuss proteins which have been highlighted as promising biomarkers of AD in the last two years, and consider implications for future research within the research framework of the amyloid (A), tau (T), neurodegeneration (N) scoring system. We review recently identified species of amyloid and tau which may improve diagnosis when used in combination with current measures such as amyloid-beta-42 (Aβ42), total tau (t-tau) and phosphorylated tau (p-tau). In addition, several proteins have been identified as likely proxies for neurodegeneration, including neurofilament light (NfL), synaptosomal-associated protein 25 (SNAP-25) and neurogranin (NRGN). Finally, proteins originating from diverse processes such as neuroinflammation, lipid transport and mitochondrial dysfunction could aid in both AD diagnosis and patient stratification.
Collapse
|
25
|
Blood phospho-tau in Alzheimer disease: analysis, interpretation, and clinical utility. Nat Rev Neurol 2022; 18:400-418. [PMID: 35585226 DOI: 10.1038/s41582-022-00665-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 12/11/2022]
Abstract
Well-authenticated biomarkers can provide critical insights into the biological basis of Alzheimer disease (AD) to enable timely and accurate diagnosis, estimate future burden and support therapeutic trials. Current cerebrospinal fluid and molecular neuroimaging biomarkers fulfil these criteria but lack the scalability and simplicity necessary for widespread application. Blood biomarkers of adequate effectiveness have the potential to act as first-line diagnostic and prognostic tools, and offer the possibility of extensive population screening and use that is not limited to specialized centres. Accelerated progress in our understanding of the biochemistry of brain-derived tau protein and advances in ultrasensitive technologies have enabled the development of AD-specific phosphorylated tau (p-tau) biomarkers in blood. In this Review we discuss how new information on the molecular processing of brain p-tau and secretion of specific fragments into biofluids is informing blood biomarker development, enabling the evaluation of preanalytical factors that affect quantification, and informing harmonized protocols for blood handling. We also review the performance of blood p-tau biomarkers in the context of AD and discuss their potential contexts of use for clinical and research purposes. Finally, we highlight outstanding ethical, clinical and analytical challenges, and outline the steps that need to be taken to standardize inter-laboratory and inter-assay measurements.
Collapse
|
26
|
Theofilas P, Piergies AMH, Oh I, Lee YB, Li SH, Pereira FL, Petersen C, Ehrenberg AJ, Eser RA, Ambrose AJ, Chin B, Yang T, Khan S, Ng R, Spina S, Seeley WW, Miller BL, Arkin MR, Grinberg LT. Caspase-6-cleaved tau is relevant in Alzheimer's disease and marginal in four-repeat tauopathies: diagnostic and therapeutic implications. Neuropathol Appl Neurobiol 2022; 48:e12819. [PMID: 35508761 PMCID: PMC9472770 DOI: 10.1111/nan.12819] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 11/27/2022]
Abstract
AIM Tau truncation (tr-tau) by active caspase-6 (aCasp-6) generates tau fragments that may be toxic. Yet, the relationship between aCasp-6, different forms of tr-tau, and hyperphosphorylated tau (p-tau) accumulation in human brains with Alzheimer's disease (AD) and other tauopathies remains unclear. METHODS We generated two neoepitope monoclonal antibodies against tr-tau sites (D402 and D13) targeted by aCasp-6. Then, we used 5-plex immunofluorescence to quantify the neuronal and astroglial burden of aCasp-6, tr-tau, p-tau, and their co-occurrence in healthy controls, AD, and primary tauopathies. RESULTS Casp-6 activation was strongest in AD and Pick's disease (PiD), but almost absent in 4-repeat (4R) tauopathies. In neurons, the tr-tau burden was much more abundant in AD and PiD than in 4R tauopathies and disproportionally higher when normalizing by p-tau pathology. Tr-tau astrogliopathy was detected in low numbers in 4R tauopathies. Unexpectedly, about half of tr-tau positive neurons in AD and PiD lacked p-tau aggregates, a finding we confirmed using several p-tau antibodies. CONCLUSIONS Early modulation of aCasp-6 to reduce tr-tau pathology is a promising therapeutic strategy for AD and PiD, but is unlikely to benefit 4R tauopathies. The large percentage of tr-tau-positive neurons lacking p-tau suggests that many vulnerable neurons to tau pathology go undetected when using conventional p-tau antibodies. Therapeutic strategies against tr-tau pathology could be necessary to modulate the extent of tau abnormalities in AD. The disproportionally higher burden of tr-tau in AD and PiD supports the development of biofluid biomarkers against tr-tau to detect AD and PiD and differentiate them from 4R tauopathies at a patient level.
Collapse
Affiliation(s)
- Panos Theofilas
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Antonia M H Piergies
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Ian Oh
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Yoo Bin Lee
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Song Hua Li
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Felipe L Pereira
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Cathrine Petersen
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Alexander J Ehrenberg
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Rana A Eser
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Andrew J Ambrose
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, UCSF, San Francisco, CA, USA
| | | | | | - Shireen Khan
- ChemPartner San Francisco, South San Francisco, CA, USA
| | - Raymond Ng
- ChemPartner San Francisco, South San Francisco, CA, USA
| | - Salvatore Spina
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Willian W Seeley
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.,Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.,Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, UCSF, San Francisco, CA, USA
| | - Lea T Grinberg
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.,Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.,Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA.,Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
27
|
Liu L, Cai Y, Lauro BM, Meunier AL, Chhatwal J, Selkoe DJ. Generation and application of semi-synthetic p-Tau181 calibrator for immunoassay calibration. Biochem Biophys Res Commun 2022; 611:85-90. [PMID: 35483223 DOI: 10.1016/j.bbrc.2022.04.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 12/28/2022]
Abstract
Evidence suggests that plasma levels of tau protein phosphorylated at specific residues such as p-T181, p-T217, and p-T231 can be used as biomarkers for Alzheimer's disease (AD) diagnosis and prognosis. Accurate tools to calibrate immunoassays (calibrators) to precisely detect phosphorylated residues on tau protein will provide important gains in reliability and specificity. This study sought to establish a method to generate those accurate calibrators. We generated a semi-synthetic (chimeric) p-Tau181 calibrator by coupling a recombinant tau fragment (residues 1-174) with a synthetic peptide containing a single phosphorylated residue (p-T181) via thioester bond formation. The generation of a semi-synthetic protein containing both the N-terminal region of tau and the pT181 epitope was demonstrated by mobility shift assays using CBB staining and immunoblotting with N-terminal and pT181-specific antibodies. p-Tau 181 assays performed with the novel calibrator on multiple platforms revealed LLoQs as low as 0.14 pg/ml. Our facile and inexpensive method generates a semi-synthetic tau pT181 calibrator suitable for different immunoassay platforms. The same method can easily be adapted to other AD-relevant phospho-epitopes such as pT217 and pT231.
Collapse
Affiliation(s)
- Lei Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Yuqi Cai
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Bianca M Lauro
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Angela L Meunier
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jasmeer Chhatwal
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
28
|
Snellman A, Lantero-Rodriguez J, Emeršič A, Vrillon A, Karikari TK, Ashton NJ, Gregorič Kramberger M, Čučnik S, Paquet C, Rot U, Zetterberg H, Blennow K. N-terminal and mid-region tau fragments as fluid biomarkers in neurological diseases. Brain 2022; 145:2834-2848. [PMID: 35311972 PMCID: PMC9420020 DOI: 10.1093/brain/awab481] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 12/03/2022] Open
Abstract
Brain-derived tau secreted into CSF and blood consists of different N-terminal and mid-domain fragments, which may have a differential temporal course and thus, biomarker potential across the Alzheimer’s disease continuum or in other neurological diseases. While current clinically validated total tau assays target mid-domain epitopes, comparison of these assays with new biomarkers targeting N-terminal epitopes using the same analytical platform may be important to increase the understanding of tau pathophysiology. We developed three total tau immunoassays targeting specific N-terminal (NTA and NTB total tau) or mid-region (MR total tau) epitopes, using single molecule array technology. After analytical validation, the diagnostic performance of these biomarkers was evaluated in CSF and compared with the Innotest total tau (and as proof of concept, with N-p-tau181 and N-p-tau217) in three clinical cohorts (n = 342 total). The cohorts included participants across the Alzheimer’s disease continuum (n = 276), other dementias (n = 22), Creutzfeldt–Jakob disease (n = 24), acute neurological disorders (n = 18) and progressive supranuclear palsy (n = 22). Furthermore, we evaluated all three new total tau biomarkers in plasma (n = 44) and replicated promising findings with NTA total tau in another clinical cohort (n = 50). In CSF, all total tau biomarkers were increased in Alzheimer’s disease compared with controls (P < 0.0001) and correlated with each other (rs = 0.53−0.95). NTA and NTB total tau, but not other total tau assays, distinguished amyloid-positive and amyloid-negative mild cognitive impairment with high accuracies (AUCs 84% and 82%, P < 0.001) matching N-p-tau217 (AUC 83%; DeLong test P = 0.93 and 0.88). All total tau assays were excellent in differentiating Alzheimer’s disease from other dementias (P < 0.001, AUCs 89–100%). In Creutzfeldt–Jakob disease and acute neurological disorders, N-terminal total tau biomarkers had significantly higher fold changes versus controls in CSF (45–133-fold increase) than Innotest or MR total tau (11–42-fold increase, P < 0.0001 for all). In progressive supranuclear palsy, CSF concentrations of all total tau biomarkers were similar to those in controls. Plasma NTA total tau concentrations were increased in Alzheimer’s disease compared with controls in two independent cohorts (P = 0.0056 and 0.0033), while Quanterix total tau performed poorly (P = 0.55 and 0.44). Taken together, N-terminal-directed CSF total tau biomarkers increase ahead of standard total tau alternatives in the Alzheimer’s disease continuum, increase to higher degrees in Creutzfeldt–Jakob disease and acute neurological diseases and show better potential than Quanterix total tau as Alzheimer’s disease blood biomarkers. For progressive supranuclear palsy, other tau biomarkers should continue to be investigated.
Collapse
Affiliation(s)
- Anniina Snellman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Turku PET Centre, University of Turku, Turku, Finland
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Andreja Emeršič
- Department of Neurology, University Medical Centre Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Slovenia
| | - Agathe Vrillon
- Université de Paris, Cognitive Neurology Center, GHU Nord APHP Hospital Lariboisière Fernand Widal, Paris, France.,Université de Paris, Inserm UMR S11-44 Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Milica Gregorič Kramberger
- Department of Neurology, University Medical Centre Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Slovenia
| | - Saša Čučnik
- Department of Neurology, University Medical Centre Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Slovenia.,Department of Rheumatology, University Medical Centre Ljubljana, Slovenia
| | - Claire Paquet
- Université de Paris, Cognitive Neurology Center, GHU Nord APHP Hospital Lariboisière Fernand Widal, Paris, France.,Université de Paris, Inserm UMR S11-44 Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Uroš Rot
- Department of Neurology, University Medical Centre Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Slovenia
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
29
|
Yang M, Sun D, Wang Y, Yan M, Zheng J, Ren J. Cognitive Impairment in Heart Failure: Landscape, Challenges, and Future Directions. Front Cardiovasc Med 2022; 8:831734. [PMID: 35198608 PMCID: PMC8858826 DOI: 10.3389/fcvm.2021.831734] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022] Open
Abstract
Heart failure (HF) is a major global healthcare problem accounting for substantial deterioration of prognosis. As a complex clinical syndrome, HF often coexists with multi-comorbidities of which cognitive impairment (CI) is particularly important. CI is increasing in prevalence among patients with HF and is present in around 40%, even up to 60%, of elderly patients with HF. As a potent and independent prognostic factor, CI significantly increases the hospitalization and mortality and decreases quality of life in patients with HF. There has been a growing awareness of the complex bidirectional interaction between HF and CI as it shares a number of common pathophysiological pathways including reduced cerebral blood flow, inflammation, and neurohumoral activations. Research that focus on the precise mechanism for CI in HF is still ever insufficient. As the tremendous adverse consequences of CI in HF, effective early diagnosis of CI in HF and interventions for these patients may halt disease progression and improve prognosis. The current clinical guidelines in HF have begun to emphasize the importance of CI. However, nearly half of CI in HF is underdiagnosed, and few recommendations are available to guide clinicians about how to approach CI in patients with HF. This review aims to synthesize knowledge about the link between HF and cognitive dysfunction, issues pertaining to screening, diagnosis and management of CI in patients with HF, and emerging therapies for prevention. Based on data from current studies, critical gaps in knowledge of CI in HF are identified, and future research directions to guide the field forward are proposed.
Collapse
Affiliation(s)
- Mengxi Yang
- Heart Failure Center, China-Japan Friendship Hospital, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Di Sun
- Heart Failure Center, China-Japan Friendship Hospital, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Yu Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Mengwen Yan
- Heart Failure Center, China-Japan Friendship Hospital, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Jingang Zheng
- Heart Failure Center, China-Japan Friendship Hospital, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Jingyi Ren
- Heart Failure Center, China-Japan Friendship Hospital, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
- Vascular Health Research Center of Peking University Health Science Center, Beijing, China
- *Correspondence: Jingyi Ren
| |
Collapse
|
30
|
Feng L, Li J, Zhang R. Current research status of blood biomarkers in Alzheimer's disease: Diagnosis and prognosis. Ageing Res Rev 2021; 72:101492. [PMID: 34673262 DOI: 10.1016/j.arr.2021.101492] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD), which mainly occurs in the elderly, is a neurodegenerative disease with a hidden onset, which leads to progressive cognitive and behavioral changes. The annually increasing prevalence rate and number of patients with AD exert great pressure on the society. No effective disease-modifying drug treatments are available; thus, there is no cure yet. The disease progression can only be delayed through early detection and drug assistance. Therefore, the importance of exploring associated biomarkers for the early diagnosis and prediction of the disease progress is highlighted. The National Institute on Aging- Alzheimer's Association (NIA-AA) proposed A/T/N diagnostic criteria in 2018, including Aβ42, p-tau, t-tau in cerebrospinal fluid (CSF), and positron emission tomography (PET). However, the invasiveness of lumbar puncture for CSF assessment and non-popularity of PET have prompted researchers to look for minimally invasive, easy to collect, and cost-effective biomarkers. Therefore, studies have largely focused on some novel molecules in the peripheral blood. This is an emerging research field, facing many obstacles and challenges while achieving some promising results.
Collapse
|
31
|
Teunissen CE, Verberk IMW, Thijssen EH, Vermunt L, Hansson O, Zetterberg H, van der Flier WM, Mielke MM, Del Campo M. Blood-based biomarkers for Alzheimer's disease: towards clinical implementation. Lancet Neurol 2021; 21:66-77. [PMID: 34838239 DOI: 10.1016/s1474-4422(21)00361-6] [Citation(s) in RCA: 392] [Impact Index Per Article: 130.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
For many years, blood-based biomarkers for Alzheimer's disease seemed unattainable, but recent results have shown that they could become a reality. Convincing data generated with new high-sensitivity assays have emerged with remarkable consistency across different cohorts, but also independent of the precise analytical method used. Concentrations in blood of amyloid and phosphorylated tau proteins associate with the corresponding concentrations in CSF and with amyloid-PET or tau-PET scans. Moreover, other blood-based biomarkers of neurodegeneration, such as neurofilament light chain and glial fibrillary acidic protein, appear to provide information on disease progression and potential for monitoring treatment effects. Now the question emerges of when and how we can bring these biomarkers to clinical practice. This step would pave the way for blood-based biomarkers to support the diagnosis of, and development of treatments for, Alzheimer's disease and other dementias.
Collapse
Affiliation(s)
- Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands.
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Elisabeth H Thijssen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Sölvegatan, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Special Administrative Region, China
| | - Wiesje M van der Flier
- Alzheimer Center, Department of Neurology, and Department of Epidemiology and Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Michelle M Mielke
- Department of Quantitative Health Sciences, and Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Marta Del Campo
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
32
|
Ranson JM, Rittman T, Hayat S, Brayne C, Jessen F, Blennow K, van Duijn C, Barkhof F, Tang E, Mummery CJ, Stephan BCM, Altomare D, Frisoni GB, Ribaldi F, Molinuevo JL, Scheltens P, Llewellyn DJ. Modifiable risk factors for dementia and dementia risk profiling. A user manual for Brain Health Services-part 2 of 6. Alzheimers Res Ther 2021; 13:169. [PMID: 34635138 PMCID: PMC8507172 DOI: 10.1186/s13195-021-00895-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
We envisage the development of new Brain Health Services to achieve primary and secondary dementia prevention. These services will complement existing memory clinics by targeting cognitively unimpaired individuals, where the focus is on risk profiling and personalized risk reduction interventions rather than diagnosing and treating late-stage disease. In this article, we review key potentially modifiable risk factors and genetic risk factors and discuss assessment of risk factors as well as additional fluid and imaging biomarkers that may enhance risk profiling. We then outline multidomain measures and risk profiling and provide practical guidelines for Brain Health Services, with consideration of outstanding uncertainties and challenges. Users of Brain Health Services should undergo risk profiling tailored to their age, level of risk, and availability of local resources. Initial risk assessment should incorporate a multidomain risk profiling measure. For users aged 39-64, we recommend the Cardiovascular Risk Factors, Aging, and Incidence of Dementia (CAIDE) Dementia Risk Score, whereas for users aged 65 and older, we recommend the Brief Dementia Screening Indicator (BDSI) and the Australian National University Alzheimer's Disease Risk Index (ANU-ADRI). The initial assessment should also include potentially modifiable risk factors including sociodemographic, lifestyle, and health factors. If resources allow, apolipoprotein E ɛ4 status testing and structural magnetic resonance imaging should be conducted. If this initial assessment indicates a low dementia risk, then low intensity interventions can be implemented. If the user has a high dementia risk, additional investigations should be considered if local resources allow. Common variant polygenic risk of late-onset AD can be tested in middle-aged or older adults. Rare variants should only be investigated in users with a family history of early-onset dementia in a first degree relative. Advanced imaging with 18-fluorodeoxyglucose positron emission tomography (FDG-PET) or amyloid PET may be informative in high risk users to clarify the nature and burden of their underlying pathologies. Cerebrospinal fluid biomarkers are not recommended for this setting, and blood-based biomarkers need further validation before clinical use. As new technologies become available, advances in artificial intelligence are likely to improve our ability to combine diverse data to further enhance risk profiling. Ultimately, Brain Health Services have the potential to reduce the future burden of dementia through risk profiling, risk communication, personalized risk reduction, and cognitive enhancement interventions.
Collapse
Affiliation(s)
- Janice M Ranson
- College of Medicine and Health, University of Exeter, Exeter, UK
- Deep Dementia Phenotyping (DEMON) Network, Exeter, UK
| | - Timothy Rittman
- Deep Dementia Phenotyping (DEMON) Network, Exeter, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Shabina Hayat
- Department of Public Health and Primary Care, Cambridge Public Health, University of Cambridge, Cambridge, UK
| | - Carol Brayne
- Department of Public Health and Primary Care, Cambridge Public Health, University of Cambridge, Cambridge, UK
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Cornelia van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Frederik Barkhof
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Eugene Tang
- Deep Dementia Phenotyping (DEMON) Network, Exeter, UK
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Catherine J Mummery
- Deep Dementia Phenotyping (DEMON) Network, Exeter, UK
- Dementia Research Centre, Institute of Neurology, University College London, and National Hospital for Neurology and Neurosurgery, University College London Hospital, London, UK
| | - Blossom C M Stephan
- Institute of Mental Health, Division of Psychiatry and Applied Psychology, School of Medicine, Nottingham University, Nottingham, UK
| | - Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), Saint John of God Clinical Research Centre, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Life Science Partners, Amsterdam, The Netherlands
| | - David J Llewellyn
- College of Medicine and Health, University of Exeter, Exeter, UK.
- Deep Dementia Phenotyping (DEMON) Network, Exeter, UK.
- Alan Turing Institute, London, UK.
- 2.04 College House, St Luke's Campus, University of Exeter Medical School, Exeter, EX1 2 LU, UK.
| |
Collapse
|
33
|
Liu L, Kwak H, Lawton TL, Jin SX, Meunier AL, Dang Y, Ostaszewski B, Pietras AC, Stern AM, Selkoe DJ. An ultra-sensitive immunoassay detects and quantifies soluble Aβ oligomers in human plasma. Alzheimers Dement 2021; 18:1186-1202. [PMID: 34550630 DOI: 10.1002/alz.12457] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/02/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Evidence strongly suggests that soluble oligomers of amyloid beta protein (oAβ) help initiate the pathogenic cascade of Alzheimer's disease (AD). To date, there have been no validated assays specific for detecting and quantifying oAβ in human blood. METHODS We developed an ultrasensitive oAβ immunoassay using a novel capture antibody (71A1) with N-terminal antibody 3D6 for detection that specifically quantifies soluble oAβ in the human brain, cerebrospinal fluid (CSF), and plasma. RESULTS Two new antibodies (71A1; 1G5) are oAβ-selective, label Aβ plaques in non-fixed AD brain sections, and potently neutralize the synaptotoxicity of AD brain-derived oAβ. The 71A1/3D6 assay showed excellent dilution linearity in CSF and plasma without matrix effects, good spike recovery, and specific immunodepletion. DISCUSSION We have created a sensitive, high throughput, and inexpensive method to quantify synaptotoxic oAβ in human plasma for analyzing large cohorts of aged and AD subjects to assess the dynamics of this key pathogenic species and response to therapy.
Collapse
Affiliation(s)
- Lei Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Hyunchang Kwak
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Trebor L Lawton
- Abyssinia Biologics, LLC, 23 Cedar Point Rd, Durham, New Hampshire, 03824, USA
| | - Shan-Xue Jin
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Angela L Meunier
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Yifan Dang
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Beth Ostaszewski
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Alison C Pietras
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Andrew M Stern
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| |
Collapse
|
34
|
Alawode DOT, Heslegrave AJ, Ashton NJ, Karikari TK, Simrén J, Montoliu‐Gaya L, Pannee J, O´Connor A, Weston PSJ, Lantero‐Rodriguez J, Keshavan A, Snellman A, Gobom J, Paterson RW, Schott JM, Blennow K, Fox NC, Zetterberg H. Transitioning from cerebrospinal fluid to blood tests to facilitate diagnosis and disease monitoring in Alzheimer's disease. J Intern Med 2021; 290:583-601. [PMID: 34021943 PMCID: PMC8416781 DOI: 10.1111/joim.13332] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is increasingly prevalent worldwide, and disease-modifying treatments may soon be at hand; hence, now, more than ever, there is a need to develop techniques that allow earlier and more secure diagnosis. Current biomarker-based guidelines for AD diagnosis, which have replaced the historical symptom-based guidelines, rely heavily on neuroimaging and cerebrospinal fluid (CSF) sampling. While these have greatly improved the diagnostic accuracy of AD pathophysiology, they are less practical for application in primary care, population-based and epidemiological settings, or where resources are limited. In contrast, blood is a more accessible and cost-effective source of biomarkers in AD. In this review paper, using the recently proposed amyloid, tau and neurodegeneration [AT(N)] criteria as a framework towards a biological definition of AD, we discuss recent advances in biofluid-based biomarkers, with a particular emphasis on those with potential to be translated into blood-based biomarkers. We provide an overview of the research conducted both in CSF and in blood to draw conclusions on biomarkers that show promise. Given the evidence collated in this review, plasma neurofilament light chain (N) and phosphorylated tau (p-tau; T) show particular potential for translation into clinical practice. However, p-tau requires more comparisons to be conducted between its various epitopes before conclusions can be made as to which one most robustly differentiates AD from non-AD dementias. Plasma amyloid beta (A) would prove invaluable as an early screening modality, but it requires very precise tests and robust pre-analytical protocols.
Collapse
Affiliation(s)
- D. O. T. Alawode
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - A. J. Heslegrave
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - N. J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Department of Old Age PsychiatryInstitute of Psychiatry, Psychology & NeuroscienceKing’s College LondonLondonUK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS FoundationLondonUK
| | - T. K. Karikari
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - J. Simrén
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - L. Montoliu‐Gaya
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - J. Pannee
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - A. O´Connor
- UK Dementia Research Institute at UCLLondonUK
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - P. S. J. Weston
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - J. Lantero‐Rodriguez
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - A. Keshavan
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - A. Snellman
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Turku PET CentreUniversity of TurkuTurkuFinland
| | - J. Gobom
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - R. W. Paterson
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - J. M. Schott
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - K. Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - N. C. Fox
- UK Dementia Research Institute at UCLLondonUK
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - H. Zetterberg
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| |
Collapse
|
35
|
Scarth M, Rissanen I, Scholten RJPM, Geerlings MI. Biomarkers of Alzheimer's Disease and Cerebrovascular Lesions and Clinical Progression in Patients with Subjective Cognitive Decline: A Systematic Review. J Alzheimers Dis 2021; 83:1089-1111. [PMID: 34397412 DOI: 10.3233/jad-210218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Early identification of Alzheimer's disease (AD) may be extremely beneficial for delaying disease progression. Subjective cognitive decline (SCD) may be an early indicator of AD pathology. Not all individuals with SCD will eventually develop AD, making it critical to identify biomarkers during the SCD stage which indicate likely clinical progression. OBJECTIVE The present review aims to summarize available data on structural MRI and cerebrospinal fluid (CSF) biomarkers and their association with clinical progression to mild cognitive impairment (MCI) or AD in people with SCD. METHODS Database searches were conducted using Embase and PubMed until June 2020. Longitudinal studies assessing biomarkers in individuals with SCD and assessing clinical progression to MCI/AD were included. Two assessors performed data extraction and assessed the risk of bias in the included studies. Data were synthesized narratively. RESULTS An initial search identified 1,065 papers; after screening and review 14 studies were included. Sample size of the included studies ranged from 28-674, mean age was 60.0-68.6 years, and 10.2%-52%of participants converted to MCI/AD. Lower levels of CSF Aβ 42 were consistently associated with clinical progression. Combination measures identifying an AD-like profile of Aβ 42 and tau levels were strongly associated with clinical progression. Biomarkers identified with structural MRI were less conclusive, as some studies found significant associations while others did not. CONCLUSION Biomarkers may be able to predict clinical progression in those with cognitive complaints. Aβ 42, or combinations of Aβ 42 and tau may be useful biomarkers in identifying individuals with SCD who will progress to MCI/AD.
Collapse
Affiliation(s)
- Morgan Scarth
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Ina Rissanen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Rob J P M Scholten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Mirjam I Geerlings
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
36
|
Affiliation(s)
- Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Cullen NC, Leuzy A, Janelidze S, Palmqvist S, Svenningsson AL, Stomrud E, Dage JL, Mattsson-Carlgren N, Hansson O. Plasma biomarkers of Alzheimer's disease improve prediction of cognitive decline in cognitively unimpaired elderly populations. Nat Commun 2021; 12:3555. [PMID: 34117234 PMCID: PMC8196018 DOI: 10.1038/s41467-021-23746-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma biomarkers of amyloid, tau, and neurodegeneration (ATN) need to be characterized in cognitively unimpaired (CU) elderly individuals. We therefore tested if plasma measurements of amyloid-β (Aβ)42/40, phospho-tau217 (P-tau217), and neurofilament light (NfL) together predict clinical deterioration in 435 CU individuals followed for an average of 4.8 ± 1.7 years in the BioFINDER study. A combination of all three plasma biomarkers and basic demographics best predicted change in cognition (Pre-Alzheimer's Clinical Composite; R2 = 0.14, 95% CI [0.12-0.17]; P < 0.0001) and subsequent AD dementia (AUC = 0.82, 95% CI [0.77-0.91], P < 0.0001). In a simulated clinical trial, a screening algorithm combining all three plasma biomarkers would reduce the required sample size by 70% (95% CI [54-81]; P < 0.001) with cognition as trial endpoint, and by 63% (95% CI [53-70], P < 0.001) with subsequent AD dementia as trial endpoint. Plasma ATN biomarkers show usefulness in cognitively unimpaired populations and could make large clinical trials more feasible and cost-effective.
Collapse
Affiliation(s)
| | - Antoine Leuzy
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | | | - Sebastian Palmqvist
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Anna L Svenningsson
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | | | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Lund University, Lund, Sweden.
- Department of Neurology, Skåne University Hospital, Lund, Sweden.
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
38
|
Solje E, Benussi A, Buratti E, Remes AM, Haapasalo A, Borroni B. State-of-the-Art Methods and Emerging Fluid Biomarkers in the Diagnostics of Dementia-A Short Review and Diagnostic Algorithm. Diagnostics (Basel) 2021; 11:diagnostics11050788. [PMID: 33925655 PMCID: PMC8145467 DOI: 10.3390/diagnostics11050788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
The most common neurodegenerative dementias include Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). The correct etiology-based diagnosis is pivotal for clinical management of these diseases as well as for the suitable timing and choosing the accurate disease-modifying therapies when these become available. Enzyme-linked immunosorbent assay (ELISA)-based methods, detecting altered levels of cerebrospinal fluid (CSF) Tau, phosphorylated Tau, and Aβ-42 in AD, allowed the wide use of this set of biomarkers in clinical practice. These analyses demonstrate a high diagnostic accuracy in AD but suffer from a relatively restricted usefulness due to invasiveness and lack of prognostic value. In recent years, the development of novel advanced techniques has offered new state-of-the-art opportunities in biomarker discovery. These include single molecule array technology (SIMOA), a tool for non-invasive analysis of ultra-low levels of central nervous system-derived molecules from biofluids, such as CSF or blood, and real-time quaking (RT-QuIC), developed to analyze misfolded proteins. In the present review, we describe the history of methods used in the fluid biomarker analyses of dementia, discuss specific emerging biomarkers with translational potential for clinical use, and suggest an algorithm for the use of new non-invasive blood biomarkers in clinical practice.
Collapse
Affiliation(s)
- Eino Solje
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, 70211 Kuopio, Finland;
- Neuro Center, Neurology, Kuopio University Hospital, 70029 Kuopio, Finland
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy;
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy;
| | - Anne M. Remes
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, 90230 Oulu, Finland;
- Medical Research Center (MRC), Oulu University Hospital, 90220 Oulu, Finland
| | - Annakaisa Haapasalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy;
- Correspondence:
| |
Collapse
|
39
|
Schwarz AJ. The Use, Standardization, and Interpretation of Brain Imaging Data in Clinical Trials of Neurodegenerative Disorders. Neurotherapeutics 2021; 18:686-708. [PMID: 33846962 PMCID: PMC8423963 DOI: 10.1007/s13311-021-01027-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Imaging biomarkers play a wide-ranging role in clinical trials for neurological disorders. This includes selecting the appropriate trial participants, establishing target engagement and mechanism-related pharmacodynamic effect, monitoring safety, and providing evidence of disease modification. In the early stages of clinical drug development, evidence of target engagement and/or downstream pharmacodynamic effect-especially with a clear relationship to dose-can provide confidence that the therapeutic candidate should be advanced to larger and more expensive trials, and can inform the selection of the dose(s) to be further tested, i.e., to "de-risk" the drug development program. In these later-phase trials, evidence that the therapeutic candidate is altering disease-related biomarkers can provide important evidence that the clinical benefit of the compound (if observed) is grounded in meaningful biological changes. The interpretation of disease-related imaging markers, and comparability across different trials and imaging tools, is greatly improved when standardized outcome measures are defined. This standardization should not impinge on scientific advances in the imaging tools per se but provides a common language in which the results generated by these tools are expressed. PET markers of pathological protein aggregates and structural imaging of brain atrophy are common disease-related elements across many neurological disorders. However, PET tracers for pathologies beyond amyloid β and tau are needed, and the interpretability of structural imaging can be enhanced by some simple considerations to guard against the possible confound of pseudo-atrophy. Learnings from much-studied conditions such as Alzheimer's disease and multiple sclerosis will be beneficial as the field embraces rarer diseases.
Collapse
Affiliation(s)
- Adam J Schwarz
- Takeda Pharmaceuticals Ltd., 40 Landsdowne Street, Cambridge, MA, 02139, USA.
| |
Collapse
|