1
|
Zai AT, Stepien AE, Giret N, Hahnloser RHR. Goal-directed vocal planning in a songbird. eLife 2024; 12:RP90445. [PMID: 38959057 PMCID: PMC11221833 DOI: 10.7554/elife.90445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Songbirds' vocal mastery is impressive, but to what extent is it a result of practice? Can they, based on experienced mismatch with a known target, plan the necessary changes to recover the target in a practice-free manner without intermittently singing? In adult zebra finches, we drive the pitch of a song syllable away from its stable (baseline) variant acquired from a tutor, then we withdraw reinforcement and subsequently deprive them of singing experience by muting or deafening. In this deprived state, birds do not recover their baseline song. However, they revert their songs toward the target by about 1 standard deviation of their recent practice, provided the sensory feedback during the latter signaled a pitch mismatch with the target. Thus, targeted vocal plasticity does not require immediate sensory experience, showing that zebra finches are capable of goal-directed vocal planning.
Collapse
Affiliation(s)
- Anja T Zai
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH ZurichZurichSwitzerland
- Institute of Neuroinformatics, University of Zurich and ETH ZurichZurichSwitzerland
| | - Anna E Stepien
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH ZurichZurichSwitzerland
- Institute of Neuroinformatics, University of Zurich and ETH ZurichZurichSwitzerland
| | - Nicolas Giret
- Institut des Neurosciences Paris-Saclay, UMR 9197 CNRS, Université Paris-SaclaySaclayFrance
| | - Richard HR Hahnloser
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH ZurichZurichSwitzerland
- Institute of Neuroinformatics, University of Zurich and ETH ZurichZurichSwitzerland
| |
Collapse
|
2
|
Costalunga G, Vallentin D, Benichov JI. A neuroethological view of the multifaceted sensory influences on birdsong. Curr Opin Neurobiol 2024; 86:102867. [PMID: 38520789 DOI: 10.1016/j.conb.2024.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
Learning and execution of complex motor skills are often modulated by sensory feedback and contextual cues arriving across multiple sensory modalities. Vocal motor behaviors, in particular, are primarily influenced by auditory inputs, both during learning and mature vocal production. The importance of auditory input in shaping vocal output has been investigated in several songbird species that acquire their adult song based on auditory exposure to a tutor during development. Recent studies have highlighted the influences of stimuli arriving through other sensory channels in juvenile song learning and in adult song production. Here, we review changes induced by diverse sensory stimuli during the song learning process and the production of adult song, considering the neuroethological significance of sensory channels in different species of songbirds. Additionally, we highlight advances, open questions, and possible future approaches for understanding the neural circuits that enable the multimodal shaping of singing behavior.
Collapse
Affiliation(s)
- Giacomo Costalunga
- Max Planck Institute for Biological Intelligence, 82319, Seewiesen, Germany
| | - Daniela Vallentin
- Max Planck Institute for Biological Intelligence, 82319, Seewiesen, Germany.
| | | |
Collapse
|
3
|
Kawaji T, Fujibayashi M, Abe K. Goal-directed and flexible modulation of syllable sequence within birdsong. Nat Commun 2024; 15:3419. [PMID: 38658545 PMCID: PMC11043396 DOI: 10.1038/s41467-024-47824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Songs constitute a complex system of vocal signals for inter-individual communication in songbirds. Here, we elucidate the flexibility which songbirds exhibit in the organizing and sequencing of syllables within their songs. Utilizing a newly devised song decoder for quasi-real-time annotation, we execute an operant conditioning paradigm, with rewards contingent upon specific syllable syntax. Our analysis reveals that birds possess the capacity to modify the contents of their songs, adjust the repetition length of particular syllables and employing specific motifs. Notably, birds altered their syllable sequence in a goal-directed manner to obtain rewards. We demonstrate that such modulation occurs within a distinct song segment, with adjustments made within 10 minutes after cue presentation. Additionally, we identify the involvement of the parietal-basal ganglia pathway in orchestrating these flexible modulations of syllable sequences. Our findings unveil an unappreciated aspect of songbird communication, drawing parallels with human speech.
Collapse
Affiliation(s)
- Takuto Kawaji
- Lab of Brain Development, Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Sendai, Miyagi, 980-8577, Japan
| | - Mizuki Fujibayashi
- Lab of Brain Development, Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Sendai, Miyagi, 980-8577, Japan
| | - Kentaro Abe
- Lab of Brain Development, Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Sendai, Miyagi, 980-8577, Japan.
- Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
| |
Collapse
|
4
|
Venditti JA, Murrugarra E, McLean CR, Goldstein MH. Curiosity constructs communicative competence through social feedback loops. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2023; 65:99-134. [PMID: 37481302 DOI: 10.1016/bs.acdb.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
One of the most important challenges for a developing infant is learning how best to allocate their attention and forage for information in the midst of a great deal of novel stimulation. We propose that infants of altricial species solve this challenge by learning selectively from events that are contingent on their immature behavior, such as babbling. Such a contingency filter would focus attention and learning on the behavior of social partners, because social behavior reliably fits infants' sensitivity to contingency. In this way a contingent response by a caregiver to an immature behavior becomes a source of learnable information - feedback - to the infant. Social interactions with responsive caregivers afford infants opportunities to explore the impacts of their immature behavior on their environment, which facilitates the development of socially guided learning. Furthermore, contingent interactions are opportunities to make and test predictions about the efficacy of their social behaviors and those of others. In this chapter, we will use prelinguistic vocal learning to exemplify how infants use their developing vocal abilities to elicit learnable information about language from their social partners. Specifically, we review how caregivers' contingent responses to babbling create information that facilitates infant vocal learning and drives the development of communication. Infants play an active role in this process, as their developing predictions about the consequences of their actions serve to further refine their allocation of attention and drive increases in the maturity of their vocal behavior.
Collapse
Affiliation(s)
- Julia A Venditti
- Department of Psychology, Cornell University, 270 Uris Hall, Ithaca, NY, United States
| | - Emma Murrugarra
- Department of Psychology, Cornell University, 270 Uris Hall, Ithaca, NY, United States
| | - Celia R McLean
- Department of Psychology, Cornell University, 270 Uris Hall, Ithaca, NY, United States
| | - Michael H Goldstein
- Department of Psychology, Cornell University, 270 Uris Hall, Ithaca, NY, United States.
| |
Collapse
|
5
|
Giret N, Rolland M, Del Negro C. Multisensory processes in birds: from single neurons to the influence of social interactions and sensory loss. Neurosci Biobehav Rev 2022; 143:104942. [DOI: 10.1016/j.neubiorev.2022.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
|
6
|
McGregor JN, Grassler AL, Jaffe PI, Jacob AL, Brainard MS, Sober SJ. Shared mechanisms of auditory and non-auditory vocal learning in the songbird brain. eLife 2022; 11:75691. [PMID: 36107757 PMCID: PMC9522248 DOI: 10.7554/elife.75691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 09/14/2022] [Indexed: 01/18/2023] Open
Abstract
Songbirds and humans share the ability to adaptively modify their vocalizations based on sensory feedback. Prior studies have focused primarily on the role that auditory feedback plays in shaping vocal output throughout life. In contrast, it is unclear how non-auditory information drives vocal plasticity. Here, we first used a reinforcement learning paradigm to establish that somatosensory feedback (cutaneous electrical stimulation) can drive vocal learning in adult songbirds. We then assessed the role of a songbird basal ganglia thalamocortical pathway critical to auditory vocal learning in this novel form of vocal plasticity. We found that both this circuit and its dopaminergic inputs are necessary for non-auditory vocal learning, demonstrating that this pathway is critical for guiding adaptive vocal changes based on both auditory and somatosensory signals. The ability of this circuit to use both auditory and somatosensory information to guide vocal learning may reflect a general principle for the neural systems that support vocal plasticity across species.
Collapse
Affiliation(s)
- James N McGregor
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, United States
| | | | - Paul I Jaffe
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States
| | | | - Michael S Brainard
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Samuel J Sober
- Department of Biology, Emory University, Atlanta, United States
| |
Collapse
|