1
|
Lai J, Liu X, Zhan J, Yu T, Liu P, Chen XQ, Sun Y. Switchable Quantized Signal between Longitudinal Conductance and Hall Conductance in Dual Quantum Spin Hall Insulator TaIrTe 4. RESEARCH (WASHINGTON, D.C.) 2024; 7:0439. [PMID: 39175652 PMCID: PMC11339146 DOI: 10.34133/research.0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Topological insulating states in 2-dimensional (2D) materials are ideal systems to study different types of quantized response signals due to their in gap metallic states. Very recently, the quantum spin Hall effect was discovered in monolayer TaIrTe4 via the observation of quantized longitudinal conductance that rarely exists in other 2D topological insulators. The nontrivial Z 2 topological charges can exist at both charge neutrality point and the van Hove singularity point with correlation-effect-induced bandgap. On the basis of this model 2D material, we studied the switch of quantized signals between longitudinal conductance and transversal Hall conductance via tuning external magnetic field. In Z 2 topological phase of monolayer TaIrTe4, the zero Chern number can be understood as 1 - 1 = 0 from the double band inversion from spin-up and spin-down channels. After applying a magnetic field perpendicular to the plane, the Zeeman split changes the band order for one branch of the band inversion from spin-up and spin-down channels, along with a sign charge of the Berry phase. Then, the net Chern number of 1 - 1 = 0 is tuned to 1 + 1 = 2 or -1 - 1 = -2 depending on the orientation of the magnetic field. The quantized signal not only provides another effective method for the verification of topological state in monolayer TaIrTe4 but also offers a strategy for the utilization of the new quantum topological states based on switchable quantized responses.
Collapse
Affiliation(s)
- Junwen Lai
- Shenyang National Laboratory for Materials Science, Institute of Metal Research,
Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering,
University of Science and Technology of China, Shenyang 110016, China
| | - Xiangyang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research,
Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering,
University of Science and Technology of China, Shenyang 110016, China
| | - Jie Zhan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research,
Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering,
University of Science and Technology of China, Shenyang 110016, China
| | - Tianye Yu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research,
Chinese Academy of Sciences, Shenyang 110016, China
| | - Peitao Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research,
Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering,
University of Science and Technology of China, Shenyang 110016, China
| | - Xing-Qiu Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research,
Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering,
University of Science and Technology of China, Shenyang 110016, China
| | - Yan Sun
- Shenyang National Laboratory for Materials Science, Institute of Metal Research,
Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering,
University of Science and Technology of China, Shenyang 110016, China
| |
Collapse
|
2
|
Singh M, Dong Q, Chen GF, Holleitner AW, Kastl C. Probing the Spatial Homogeneity of Exfoliated HfTe 5 Films. ACS NANO 2024; 18:18327-18333. [PMID: 38958041 PMCID: PMC11256895 DOI: 10.1021/acsnano.4c02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
In van der Waals materials, external strain is an effective tool to manipulate and control electronic responses by changing the electronic bands upon lattice deformation. In particular, the band gap of the layered transition metal pentatelluride HfTe5 is sufficiently small to be inverted by subtle changes of the lattice parameters resulting in a strain-tunable topological phase transition. In that case, knowledge about the spatial homogeneity of electronic properties becomes crucial, especially for the microfabricated thin film circuits used in typical transport measurements. Here, we reveal the homogeneity of exfoliated HfTe5 thin films by spatially resolved Raman microscopy. Comparing the Raman spectra under applied external strain to unstrained bulk references, we pinpoint local variations of Raman signatures to inhomogeneous strain profiles in the sample. Importantly, our results demonstrate that microfabricated contacts can act as sources of significant inhomogeneities. To mitigate the impact of unintentional strain and its corresponding modifications of the electronic structure, careful Raman microscopy constitutes a valuable tool for quantifying the homogeneity of HfTe5 films and circuits fabricated thereof.
Collapse
Affiliation(s)
- Maanwinder
P. Singh
- Walter
Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4a, 85748 Garching, Germany
- Munich
Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 Munich, Germany
| | - Qingxin Dong
- Institute
of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, 100049 Beijing, China
| | - Gen-Fu Chen
- Institute
of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, 100049 Beijing, China
- Songshan
Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Alexander W. Holleitner
- Walter
Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4a, 85748 Garching, Germany
- Munich
Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 Munich, Germany
| | - Christoph Kastl
- Walter
Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4a, 85748 Garching, Germany
- Munich
Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 Munich, Germany
| |
Collapse
|
3
|
Dogan KC, Cetin Z, Yagmurcukardes M. Anisotropic structural, vibrational, electronic, optical, and elastic properties of single-layer hafnium pentatelluride: an ab initio study. NANOSCALE 2024; 16:11262-11273. [PMID: 38787650 DOI: 10.1039/d4nr00478g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Motivated by the highly anisotropic nature of bulk hafnium pentatelluride (HfTe5), the structural, vibrational, electronic, optical, and elastic properties of single-layer two-dimensional (2D) HfTe5 were investigated by performing density functional theory (DFT)-based first-principles calculations. Total energy and geometry optimizations reveal that the 2D single-layer form of HfTe5 exhibits in-plane anisotropy. The phonon band structure shows dynamic stability of the free-standing layer and the predicted Raman spectrum displays seven characteristic Raman-active phonon peaks. In addition to its dynamic stability, HfTe5 is shown to exhibit thermal stability at room temperature, as confirmed by quantum molecular dynamics simulations. Moreover, the obtained elastic stiffness tensor elements indicate the mechanical stability of HfTe5 with its orientation-dependent soft nature. The electronic band structure calculations show the indirect-gap semiconducting behavior of HfTe5 with a narrow electronic band gap energy. The optical properties of HfTe5, in terms of its imaginary dielectric function, absorption coefficient, reflectance, and transmittance, are shown to exhibit strong in-plane anisotropy. Furthermore, structural analysis of several point defects and their oxidized structures was performed by means of simulated STM images. Among the considered vacancy defects, namely , , VTeout, VTein, , and VHf, the formation of VTeout is revealed to be the most favorable defect. While and VHf defects lead to local magnetism, only the oxygen-substituted VHf structure possesses magnetism among the oxidized defects. Moreover, it is found that all the bare and oxidized vacant sites can be distinguished from each other through the STM images. Overall, our study indicates not only the fundamental anisotropic features of single-layer HfTe5, but also shows the signatures of feasible point defects and their oxidized structures, which may be useful for future experiments on 2D HfTe5.
Collapse
Affiliation(s)
- Kadir Can Dogan
- Department of Physics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Zebih Cetin
- Department of Photonics, Izmir Institute of Technology, 35430, Izmir, Turkey.
| | | |
Collapse
|
4
|
Liu J, Zhou Y, Yepez Rodriguez S, Delmont MA, Welser RA, Ho T, Sirica N, McClure K, Vilmercati P, Ziller JW, Mannella N, Sanchez-Yamagishi JD, Pettes MT, Wu R, Jauregui LA. Controllable strain-driven topological phase transition and dominant surface-state transport in HfTe 5. Nat Commun 2024; 15:332. [PMID: 38184667 PMCID: PMC10771548 DOI: 10.1038/s41467-023-44547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024] Open
Abstract
The fine-tuning of topologically protected states in quantum materials holds great promise for novel electronic devices. However, there are limited methods that allow for the controlled and efficient modulation of the crystal lattice while simultaneously monitoring the changes in the electronic structure within a single sample. Here, we apply significant and controllable strain to high-quality HfTe5 samples and perform electrical transport measurements to reveal the topological phase transition from a weak topological insulator phase to a strong topological insulator phase. After applying high strain to HfTe5 and converting it into a strong topological insulator, we found that the resistivity of the sample increased by 190,500% and that the electronic transport was dominated by the topological surface states at cryogenic temperatures. Our results demonstrate the suitability of HfTe5 as a material for engineering topological properties, with the potential to generalize this approach to study topological phase transitions in van der Waals materials and heterostructures.
Collapse
Affiliation(s)
- Jinyu Liu
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Yinong Zhou
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | | | - Matthew A Delmont
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, 92697, USA
| | - Robert A Welser
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Triet Ho
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, 92697, USA
| | - Nicholas Sirica
- Center for Integrated Nanotechnologies (CINT), Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Kaleb McClure
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Paolo Vilmercati
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Norman Mannella
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Michael T Pettes
- Center for Integrated Nanotechnologies (CINT), Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Luis A Jauregui
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
5
|
Gooth J, Galeski S, Meng T. Quantum-Hall physics and three dimensions. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:044501. [PMID: 36735956 DOI: 10.1088/1361-6633/acb8c9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The discovery of the quantum Hall effect (QHE) in 1980 marked a turning point in condensed matter physics: given appropriate experimental conditions, the Hall conductivityσxyof a two-dimensional electron system is exactly quantized. But what happens to the QHE in three dimensions (3D)? Experiments over the past 40 years showed that some of the remarkable physics of the QHE, in particular plateau-like Hall conductivitiesσxyaccompanied by minima in the longitudinal resistivityρxx, can also be found in 3D materials. However, since typicallyρxxremains finite and a quantitative relation betweenσxyand the conductance quantume2/hcould not be established, the role of quantum Hall physics in 3D remains unsettled. Following a recent series of exciting experiments, the QHE in 3D has now returned to the center stage. Here, we summarize the leap in understanding of 3D matter in magnetic fields emerging from these experiments.
Collapse
Affiliation(s)
- Johannes Gooth
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
- Physikalisches Institut, Rheinische Friedrich-Wilhelms-Universität, Nußalle 12, 53115 Bonn, Germany
| | - Stanislaw Galeski
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
- Physikalisches Institut, Rheinische Friedrich-Wilhelms-Universität, Nußalle 12, 53115 Bonn, Germany
| | - Tobias Meng
- Institute of Theoretical Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, Dresden 01062, Germany
| |
Collapse
|
6
|
Wu W, Shi Z, Du Y, Wang Y, Qin F, Meng X, Liu B, Ma Y, Yan Z, Ozerov M, Zhang C, Lu HZ, Chu J, Yuan X. Topological Lifshitz transition and one-dimensional Weyl mode in HfTe 5. NATURE MATERIALS 2023; 22:84-91. [PMID: 36175521 DOI: 10.1038/s41563-022-01364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Landau band crossings typically stem from the intra-band evolution of electronic states in magnetic fields and enhance the interaction effect in their vicinity. Here in the extreme quantum limit of topological insulator HfTe5, we report the observation of a topological Lifshitz transition from inter-band Landau level crossings using magneto-infrared spectroscopy. By tracking the Landau level transitions, we demonstrate that band inversion drives the zeroth Landau bands to cross with each other after 4.5 T and forms a one-dimensional Weyl mode with the fundamental gap persistently closed. The unusual reduction of the zeroth Landau level transition activity suggests a topological Lifshitz transition at 21 T, which shifts the Weyl mode close to the Fermi level. As a result, a broad and asymmetric absorption feature emerges due to the Pauli blocking effect in one dimension, along with a distinctive negative magneto-resistivity. Our results provide a strategy for realizing one-dimensional Weyl quasiparticles in bulk crystals.
Collapse
Affiliation(s)
- Wenbin Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Zeping Shi
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Yuhan Du
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Yuxiang Wang
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, China
| | - Fang Qin
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Xianghao Meng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Binglin Liu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Yuanji Ma
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Zhongbo Yan
- School of Physics, Sun Yat-Sen University, Guangzhou, China
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Cheng Zhang
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
| | - Hai-Zhou Lu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, China
- Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen, China
| | - Junhao Chu
- School of Physics and Electronic Science, East China Normal University, Shanghai, China
- Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai, China
- Institute of Optoelectronics, Fudan University, Shanghai, China
| | - Xiang Yuan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China.
- School of Physics and Electronic Science, East China Normal University, Shanghai, China.
| |
Collapse
|
7
|
Shao Z, Li S, Liu Y, Li Z, Wang H, Bian Q, Yan J, Mandrus D, Liu H, Zhang P, Xie XC, Wang J, Pan M. Discrete scale invariance of the quasi-bound states at atomic vacancies in a topological material. Proc Natl Acad Sci U S A 2022; 119:e2204804119. [PMID: 36215510 PMCID: PMC9586292 DOI: 10.1073/pnas.2204804119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Recently, log-periodic quantum oscillations have been detected in the topological materials zirconium pentatelluride (ZrTe5) and hafnium pentatelluride (HfTe5), displaying an intriguing discrete scale invariance (DSI) characteristic. In condensed materials, the DSI is considered to be related to the quasi-bound states formed by massless Dirac fermions with strong Coulomb attraction, offering a feasible platform to study the long-pursued atomic-collapse phenomenon. Here, we demonstrate that a variety of atomic vacancies in the topological material HfTe5 can host the geometric quasi-bound states with a DSI feature, resembling an artificial supercritical atom collapse. The density of states of these quasi-bound states is enhanced, and the quasi-bound states are spatially distributed in the "orbitals" surrounding the vacancy sites, which are detected and visualized by low-temperature scanning tunneling microscope/spectroscopy. By applying the perpendicular magnetic fields, the quasi-bound states at lower energies become wider and eventually invisible; meanwhile, the energies of quasi-bound states move gradually toward the Fermi energy (EF). These features are consistent with the theoretical prediction of a magnetic field-induced transition from supercritical to subcritical states. The direct observation of geometric quasi-bound states sheds light on the deep understanding of the DSI in quantum materials.
Collapse
Affiliation(s)
- Zhibin Shao
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| | - Shaojian Li
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanzhao Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Zi Li
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Huichao Wang
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Qi Bian
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqiang Yan
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - David Mandrus
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996
| | - Haiwen Liu
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Ping Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - X. C. Xie
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Jian Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Minghu Pan
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Zhang C, Yang J, Yan Z, Yuan X, Liu Y, Zhao M, Suslov A, Zhang J, Pi L, Wang Z, Xiu F. Magnetic field-induced non-linear transport in HfTe 5. Natl Sci Rev 2022; 9:nwab208. [PMID: 36380858 PMCID: PMC9645650 DOI: 10.1093/nsr/nwab208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 09/07/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022] Open
Abstract
The interplay of electron correlations and topological phases gives rise to various exotic phenomena including fractionalization, excitonic instability and axionic excitation. Recently discovered transition-metal pentatellurides can reach the ultra-quantum limit in low magnetic fields and serve as good candidates for achieving such a combination. Here, we report evidence of density wave and metal-insulator transition in HfTe5 induced by intense magnetic fields. Using the non-linear transport technique, we detect a distinct non-linear conduction behavior in the longitudinal resistivity within the a-c plane, corresponding to the formation of a density wave induced by magnetic fields. In high fields, the onset of non-linear conduction in the Hall resistivity indicates an impurity-pinned magnetic freeze-out as the possible origin of the insulating behavior. These frozen electrons can be gradually reactivated into mobile states above a threshold of electric field. This experimental evidence calls for further investigation into the underlying mechanism of the bulk quantum Hall effect and field-induced phase transitions in pentatellurides.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
| | - Jinshan Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zhongbo Yan
- School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiang Yuan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Yanwen Liu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Minhao Zhao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Alexey Suslov
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Jinglei Zhang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei 230031, China
| | - Li Pi
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei 230031, China
| | - Zhong Wang
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Faxian Xiu
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
- ShanghaiQi Zhi Institute, Shanghai 200232, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
9
|
Singh S, Kumar N, Roychowdhury S, Shekhar C, Felser C. Anisotropic large diamagnetism in Dirac semimetals ZrTe 5and HfTe 5. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:225802. [PMID: 35276677 DOI: 10.1088/1361-648x/ac5d19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Dirac semimetals, e.g., ZrTe5and HfTe5, have been widely investigated and have exhibited various exotic physical properties. Nevertheless, several properties of these compounds, including diamagnetism, are still unclear. In this study, we measured the temperature- and field-dependent diamagnetism of ZrTe5and HfTe5along all three crystallographic axes (a-,b-, andc-axis). The temperature-dependent magnetization shows an anomaly, which is a characteristic of Dirac crossing. Diamagnetic signal reaches the highest value of 17.3 × 10-4emu mol-1Oe-1along the van der Waals layers, i.e., theb-axis. However, the diamagnetism remains temperature-independent along the other two axes. The field-dependent diamagnetic signal grows linearly without any sign of saturation and maintains a large value along theb-axis. Interestingly, the observed diamagnetism is anisotropic like other physical properties of these compounds and is strongly related to the effective mass, indicating the dominating contribution of orbital diamagnetism in Dirac semimetals induced by interband effects. ZrTe5and HfTe5show one of the largest diamagnetic value among previously reported state-of-the-art topological semimetals. Our present study adds another important experimental aspect to characterize nodal crossing and search for other topological materials with large magnetic susceptibility.
Collapse
Affiliation(s)
- Sukriti Singh
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - Nitesh Kumar
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | | | - Chandra Shekhar
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - Claudia Felser
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| |
Collapse
|
10
|
Wawrzyńczak R, Galeski S, Noky J, Sun Y, Felser C, Gooth J. Quasi-quantized Hall response in bulk InAs. Sci Rep 2022; 12:2153. [PMID: 35140258 PMCID: PMC8828743 DOI: 10.1038/s41598-022-05916-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/20/2022] [Indexed: 11/30/2022] Open
Abstract
The quasi-quantized Hall effect (QQHE) is the three-dimensional (3D) counterpart of the integer quantum Hall effect (QHE), exhibited only by two-dimensional (2D) electron systems. It has recently been observed in layered materials, consisting of stacks of weakly coupled 2D platelets that are yet characterized by a 3D anisotropic Fermi surface. However, it is predicted that the quasi-quantized 3D version of the 2D QHE should occur in a much broader class of bulk materials, regardless of the underlying crystal structure. Here, we compare the observation of quasi-quantized plateau-like features in the Hall conductivity of the n-type bulk semiconductor InAs with the predictions for the 3D QQHE in presence of parabolic electron bands. InAs takes form of a cubic crystal without any low-dimensional substructure. The onset of the plateau-like feature in the Hall conductivity scales with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sqrt{2/3}k_{\text {F}}^{z}/\pi$$\end{document}2/3kFz/π in units of the conductance quantum and is accompanied by a Shubnikov–de Haas minimum in the longitudinal resistivity, consistent wit the results of calculations. This confirms the suggestion that the 3D QQHE may be a generic effect directly observable in materials with small Fermi surfaces, placed in sufficiently strong magnetic fields.
Collapse
Affiliation(s)
- R Wawrzyńczak
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany.
| | - S Galeski
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - J Noky
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Y Sun
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - C Felser
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - J Gooth
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany. .,Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01062, Dresden, Germany.
| |
Collapse
|
11
|
Galeski S, Ehmcke T, Wawrzyńczak R, Lozano PM, Cho K, Sharma A, Das S, Küster F, Sessi P, Brando M, Küchler R, Markou A, König M, Swekis P, Felser C, Sassa Y, Li Q, Gu G, Zimmermann MV, Ivashko O, Gorbunov DI, Zherlitsyn S, Förster T, Parkin SSP, Wosnitza J, Meng T, Gooth J. Origin of the quasi-quantized Hall effect in ZrTe 5. Nat Commun 2021; 12:3197. [PMID: 34045452 PMCID: PMC8159947 DOI: 10.1038/s41467-021-23435-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/27/2021] [Indexed: 02/04/2023] Open
Abstract
The quantum Hall effect (QHE) is traditionally considered to be a purely two-dimensional (2D) phenomenon. Recently, however, a three-dimensional (3D) version of the QHE was reported in the Dirac semimetal ZrTe5. It was proposed to arise from a magnetic-field-driven Fermi surface instability, transforming the original 3D electron system into a stack of 2D sheets. Here, we report thermodynamic, spectroscopic, thermoelectric and charge transport measurements on such ZrTe5 samples. The measured properties: magnetization, ultrasound propagation, scanning tunneling spectroscopy, and Raman spectroscopy, show no signatures of a Fermi surface instability, consistent with in-field single crystal X-ray diffraction. Instead, a direct comparison of the experimental data with linear response calculations based on an effective 3D Dirac Hamiltonian suggests that the quasi-quantization of the observed Hall response emerges from the interplay of the intrinsic properties of the ZrTe5 electronic structure and its Dirac-type semi-metallic character.
Collapse
Affiliation(s)
- S Galeski
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
| | - T Ehmcke
- Institute for Theoretical Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, Dresden, Germany
| | - R Wawrzyńczak
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - P M Lozano
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - K Cho
- Max Planck Institute of Microstructure Physics, Halle, Saale, Germany
| | - A Sharma
- Max Planck Institute of Microstructure Physics, Halle, Saale, Germany
| | - S Das
- Max Planck Institute of Microstructure Physics, Halle, Saale, Germany
| | - F Küster
- Max Planck Institute of Microstructure Physics, Halle, Saale, Germany
| | - P Sessi
- Max Planck Institute of Microstructure Physics, Halle, Saale, Germany
| | - M Brando
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - R Küchler
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - A Markou
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - M König
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - P Swekis
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - C Felser
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - Y Sassa
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Q Li
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - G Gu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | | | - O Ivashko
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - D I Gorbunov
- Hochfeld-Magnetlabor Dresden (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat,, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - S Zherlitsyn
- Hochfeld-Magnetlabor Dresden (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat,, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - T Förster
- Hochfeld-Magnetlabor Dresden (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat,, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - S S P Parkin
- Max Planck Institute of Microstructure Physics, Halle, Saale, Germany
| | - J Wosnitza
- Hochfeld-Magnetlabor Dresden (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat,, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Institut für Festkörper- und Materialphysik, Technische Universität Dresden, Dresden, Germany
| | - T Meng
- Institute for Theoretical Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, Dresden, Germany
| | - J Gooth
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
- Institut für Festkörper- und Materialphysik, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|