1
|
Purohit R, Couch T, Rook ML, MacLean DM. Proline substitutions in the ASIC1 β11-12 linker slow desensitization. Biophys J 2024; 123:3507-3518. [PMID: 39182166 PMCID: PMC11494525 DOI: 10.1016/j.bpj.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/27/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Desensitization is a prominent feature of nearly all ligand-gated ion channels. Acid-sensing ion channels (ASICs) undergo desensitization within hundreds of milliseconds to seconds upon continual extracellular acidification. The ASIC mechanism of desensitization is primarily due to the isomerization or "flipping" of a short linker joining the 11th and 12th β sheets in the extracellular domain. In the resting and active states this β11-12 linker adopts an "upward" conformation while in the desensitized conformation the linker assumes a "downward" state. It is unclear if a single linker adopting the downward state is sufficient to desensitize the entire channel, or if all three are needed or some more complex scheme. To accommodate this downward state, specific peptide bonds within the linker adopt either trans-like or cis-like conformations. Since proline-containing peptide bonds undergo cis-trans isomerization very slowly, we hypothesized that introducing proline residues in the linker may slow or even abolish ASIC desensitization, potentially providing a valuable research tool. Proline substitutions in the chicken ASIC1 β11-12 linker (L414P and Y416P) slowed desensitization decays approximately 100- to 1000-fold as measured in excised patches. Both L414P and Y416P shifted the steady-state desensitization curves to more acidic pH values while activation curves and ion selectivity were largely unaffected (except for a left-shifted activation pH50 of L414P). To investigate the functional stoichiometry of desensitization in the trimeric ASIC, we created families of L414P and Y416P concatemers with zero, one, two, or three proline substitutions in all possible configurations. Introducing one or two L414P or Y416P substitutions only slightly attenuated desensitization, suggesting that conformational changes in the single remaining faster wild-type subunits were sufficient to desensitize the channel. These data highlight the unusual cis-trans isomerization mechanism of ASIC desensitization and support a model where ASIC desensitization requires only a single subunit.
Collapse
Affiliation(s)
- Rutambhara Purohit
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Tyler Couch
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Matthew L Rook
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
2
|
Patil H, Yi H, Cho KI, Ferreira PA. Proteostatic Remodeling of Small Heat Shock Chaperones─Crystallins by Ran-Binding Protein 2─and the Peptidyl-Prolyl cis-trans Isomerase and Chaperone Activities of Its Cyclophilin Domain. ACS Chem Neurosci 2024; 15:1967-1989. [PMID: 38657106 DOI: 10.1021/acschemneuro.3c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Disturbances in protein phase transitions promote protein aggregation─a neurodegeneration hallmark. The modular Ran-binding protein 2 (Ranbp2) is a cytosolic molecular hub for rate-limiting steps of phase transitions of Ran-GTP-bound protein ensembles exiting nuclear pores. Chaperones also regulate phase transitions and proteostasis by suppressing protein aggregation. Ranbp2 haploinsufficiency promotes the age-dependent neuroprotection of the chorioretina against phototoxicity by proteostatic regulations of neuroprotective substrates of Ranbp2 and by suppressing the buildup of polyubiquitylated substrates. Losses of peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone activities of the cyclophilin domain (CY) of Ranbp2 recapitulate molecular effects of Ranbp2 haploinsufficiency. These CY impairments also stimulate deubiquitylation activities and phase transitions of 19S cap subunits of the 26S proteasome that associates with Ranbp2. However, links between CY moonlighting activity, substrate ubiquitylation, and proteostasis remain incomplete. Here, we reveal the Ranbp2 regulation of small heat shock chaperones─crystallins in the chorioretina by proteomics of mice with total or selective modular deficits of Ranbp2. Specifically, loss of CY PPIase of Ranbp2 upregulates αA-Crystallin, which is repressed in adult nonlenticular tissues. Conversely, impairment of CY's chaperone activity opposite to the PPIase pocket downregulates a subset of αA-Crystallin's substrates, γ-crystallins. These CY-dependent effects cause age-dependent and chorioretinal-selective declines of ubiquitylated substrates without affecting the chorioretinal morphology. A model emerges whereby inhibition of Ranbp2's CY PPIase remodels crystallins' expressions, subdues molecular aging, and preordains the chorioretina to neuroprotection by augmenting the chaperone capacity and the degradation of polyubiquitylated substrates against proteostatic impairments. Further, the druggable Ranbp2 CY holds pan-therapeutic potential against proteotoxicity and neurodegeneration.
Collapse
Affiliation(s)
- Hemangi Patil
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Haiqing Yi
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Kyoung-In Cho
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Paulo A Ferreira
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Pathology Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
3
|
Patil H, Cho KI, Ferreira PA. Proteostatic remodeling of small heat shock chaperones - crystallins by Ran-binding protein 2 and the peptidyl-prolyl cis-trans isomerase and chaperone activities of its cyclophilin domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577462. [PMID: 38352504 PMCID: PMC10862737 DOI: 10.1101/2024.01.26.577462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Disturbances in phase transitions and intracellular partitions of nucleocytoplasmic shuttling substrates promote protein aggregation - a hallmark of neurodegenerative diseases. The modular Ran-binding protein 2 (Ranbp2) is a cytosolic molecular hub for rate-limiting steps of disassembly and phase transitions of Ran-GTP-bound protein ensembles exiting nuclear pores. Chaperones also play central roles in phase transitions and proteostasis by suppressing protein aggregation. Ranbp2 haploinsufficiency promotes the age-dependent neuroprotection of the chorioretina against photo-oxidative stress by proteostatic regulations of Ranbp2 substrates and by countering the build-up of poly-ubiquitylated substrates. Further, the peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone activities of the cyclophilin domain (CY) of Ranbp2 modulate the proteostasis of selective neuroprotective substrates, such as hnRNPA2B1, STAT3, HDAC4 or L/M-opsin, while promoting a decline of ubiquitylated substrates. However, links between CY PPIase activity on client substrates and its effect(s) on ubiquitylated substrates are unclear. Here, proteomics of genetically modified mice with deficits of Ranbp2 uncovered the regulation of the small heat shock chaperones - crystallins by Ranbp2 in the chorioretina. Loss of CY PPIase of Ranbp2 up-regulates αA-crystallin proteostasis, which is repressed in non-lenticular tissues. Conversely, the αA-crystallin's substrates, γ-crystallins, are down-regulated by impairment of CY's C-terminal chaperone activity. These CY-dependent effects cause the age-dependent decline of ubiquitylated substrates without overt chorioretinal morphological changes. A model emerges whereby the Ranbp2 CY-dependent remodeling of crystallins' proteostasis subdues molecular aging and preordains chorioretinal neuroprotection by augmenting the chaperone buffering capacity and the decline of ubiquitylated substrates against proteostatic impairments. Further, CY's moonlighting activity holds pan -therapeutic potential against neurodegeneration.
Collapse
|
4
|
Kienlein M, Zacharias M, Reif MM. Efficient and accurate calculation of proline cis/trans isomerization free energies from Hamiltonian replica exchange molecular dynamics simulations. Structure 2023; 31:1473-1484.e6. [PMID: 37657438 DOI: 10.1016/j.str.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/17/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
Proline cis/trans isomerization plays an important role in many biological processes but occurs on time scales not accessible to brute-force molecular dynamics (MD) simulations. We have designed a new Hamiltonian replica exchange scheme, ω-bias potential replica exchange molecular dynamics (ωBP-REMD), to efficiently and accurately calculate proline cis/trans isomerization free energies. ωBP-REMD is applied to various proline-containing tripeptides and a biologically important proline residue in the N2-domain of the gene-3-protein of phage fd in the wildtype and mutant variants of the protein. Excellent cis/trans transition rates are obtained. Reweighting of the sampled probability distribution along the peptide bond dihedral angle allows construction of the corresponding free-energy profile and calculation of the cis/trans isomerization free energy with high statistical precision. Very good agreement with experimental data is obtained. ωBP-REMD outperforms standard umbrella sampling in terms of convergence and agreement with experiment and strongly reduces perturbation of the local structure near the proline residue.
Collapse
Affiliation(s)
- Maximilian Kienlein
- Center for Functional Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38), Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Martin Zacharias
- Center for Functional Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38), Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Maria M Reif
- Center for Functional Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38), Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany.
| |
Collapse
|
5
|
Pan Y, Pohjolainen E, Schmidpeter PAM, Vaiana AC, Nimigean CM, Grubmüller H, Scheuring S. Discrimination between cyclic nucleotides in a cyclic nucleotide-gated ion channel. Nat Struct Mol Biol 2023; 30:512-520. [PMID: 36973509 DOI: 10.1038/s41594-023-00955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023]
Abstract
Cyclic nucleotide-gated ion channels are crucial in many physiological processes such as vision and pacemaking in the heart. SthK is a prokaryotic homolog with high sequence and structure similarities to hyperpolarization-activated and cyclic nucleotide-modulated and cyclic nucleotide-gated channels, especially at the level of the cyclic nucleotide binding domains (CNBDs). Functional measurements showed that cyclic adenosine monophosphate (cAMP) is a channel activator while cyclic guanosine monophosphate (cGMP) barely leads to pore opening. Here, using atomic force microscopy single-molecule force spectroscopy and force probe molecular dynamics simulations, we unravel quantitatively and at the atomic level how CNBDs discriminate between cyclic nucleotides. We find that cAMP binds to the SthK CNBD slightly stronger than cGMP and accesses a deep-bound state that a cGMP-bound CNBD cannot reach. We propose that the deep binding of cAMP is the discriminatory state that is essential for cAMP-dependent channel activation.
Collapse
Affiliation(s)
- Yangang Pan
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Emmi Pohjolainen
- Max Planck Institute for Multidisciplinary Sciences, Theoretical and Computational Biophysics Department, Goettingen, Germany
| | | | - Andrea C Vaiana
- Max Planck Institute for Multidisciplinary Sciences, Theoretical and Computational Biophysics Department, Goettingen, Germany
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Helmut Grubmüller
- Max Planck Institute for Multidisciplinary Sciences, Theoretical and Computational Biophysics Department, Goettingen, Germany
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Schmidpeter PAM, Wu D, Rheinberger J, Riegelhaupt PM, Tang H, Robinson CV, Nimigean CM. Anionic lipids unlock the gates of select ion channels in the pacemaker family. Nat Struct Mol Biol 2022; 29:1092-1100. [PMID: 36352139 PMCID: PMC10022520 DOI: 10.1038/s41594-022-00851-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/25/2022] [Indexed: 11/11/2022]
Abstract
Lipids play important roles in regulating membrane protein function, but the molecular mechanisms used are elusive. Here we investigated how anionic lipids modulate SthK, a bacterial pacemaker channel homolog, and HCN2, whose activity contributes to pacemaking in the heart and brain. Using SthK allowed the reconstitution of purified channels in controlled lipid compositions for functional and structural assays that are not available for the eukaryotic channels. We identified anionic lipids bound tightly to SthK and their exact binding locations and determined that they potentiate channel activity. Cryo-EM structures in the most potentiating lipids revealed an open state and identified a nonannular lipid bound with its headgroup near an intersubunit salt bridge that clamps the intracellular channel gate shut. Breaking this conserved salt bridge abolished lipid modulation in SthK and eukaryotic HCN2 channels, indicating that anionic membrane lipids facilitate channel opening by destabilizing these interactions. Our findings underline the importance of state-dependent protein-lipid interactions.
Collapse
Affiliation(s)
| | - Di Wu
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jan Rheinberger
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
- Department of Structural Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | | | - Haiping Tang
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Cheng WWL, Arcario MJ, Petroff JT. Druggable Lipid Binding Sites in Pentameric Ligand-Gated Ion Channels and Transient Receptor Potential Channels. Front Physiol 2022; 12:798102. [PMID: 35069257 PMCID: PMC8777383 DOI: 10.3389/fphys.2021.798102] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Lipids modulate the function of many ion channels, possibly through direct lipid-protein interactions. The recent outpouring of ion channel structures by cryo-EM has revealed many lipid binding sites. Whether these sites mediate lipid modulation of ion channel function is not firmly established in most cases. However, it is intriguing that many of these lipid binding sites are also known sites for other allosteric modulators or drugs, supporting the notion that lipids act as endogenous allosteric modulators through these sites. Here, we review such lipid-drug binding sites, focusing on pentameric ligand-gated ion channels and transient receptor potential channels. Notable examples include sites for phospholipids and sterols that are shared by anesthetics and vanilloids. We discuss some implications of lipid binding at these sites including the possibility that lipids can alter drug potency or that understanding protein-lipid interactions can guide drug design. Structures are only the first step toward understanding the mechanism of lipid modulation at these sites. Looking forward, we identify knowledge gaps in the field and approaches to address them. These include defining the effects of lipids on channel function in reconstituted systems using asymmetric membranes and measuring lipid binding affinities at specific sites using native mass spectrometry, fluorescence binding assays, and computational approaches.
Collapse
Affiliation(s)
- Wayland W L Cheng
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Mark J Arcario
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - John T Petroff
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
8
|
Nin-Hill A, Mueller NPF, Molteni C, Rovira C, Alfonso-Prieto M. Photopharmacology of Ion Channels through the Light of the Computational Microscope. Int J Mol Sci 2021; 22:12072. [PMID: 34769504 PMCID: PMC8584574 DOI: 10.3390/ijms222112072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
The optical control and investigation of neuronal activity can be achieved and carried out with photoswitchable ligands. Such compounds are designed in a modular fashion, combining a known ligand of the target protein and a photochromic group, as well as an additional electrophilic group for tethered ligands. Such a design strategy can be optimized by including structural data. In addition to experimental structures, computational methods (such as homology modeling, molecular docking, molecular dynamics and enhanced sampling techniques) can provide structural insights to guide photoswitch design and to understand the observed light-regulated effects. This review discusses the application of such structure-based computational methods to photoswitchable ligands targeting voltage- and ligand-gated ion channels. Structural mapping may help identify residues near the ligand binding pocket amenable for mutagenesis and covalent attachment. Modeling of the target protein in a complex with the photoswitchable ligand can shed light on the different activities of the two photoswitch isomers and the effect of site-directed mutations on photoswitch binding, as well as ion channel subtype selectivity. The examples presented here show how the integration of computational modeling with experimental data can greatly facilitate photoswitchable ligand design and optimization. Recent advances in structural biology, both experimental and computational, are expected to further strengthen this rational photopharmacology approach.
Collapse
Affiliation(s)
- Alba Nin-Hill
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain; (A.N.-H.); (C.R.)
| | - Nicolas Pierre Friedrich Mueller
- Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany;
- Faculty of Mathematics and Natural Sciences, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Carla Molteni
- Physics Department, King’s College London, London WC2R 2LS, UK;
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain; (A.N.-H.); (C.R.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08020 Barcelona, Spain
| | - Mercedes Alfonso-Prieto
- Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany;
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Regulation of sinoatrial funny channels by cyclic nucleotides: From adrenaline and I K2 to direct binding of ligands to protein subunits. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:12-21. [PMID: 34237319 DOI: 10.1016/j.pbiomolbio.2021.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022]
Abstract
The funny current, and the HCN channels that form it, are affected by the direct binding of cyclic nucleotides. Binding of these second messengers causes a depolarizing shift of the activation curve, which leads to greater availability of current at physiological membrane voltages. This review outlines a brief history on this regulation and provides some evidence that other cyclic nucleotides, especially cGMP, may be important for the regulation of the funny channel in the heart. Current understanding of the molecular mechanism of cyclic nucleotide regulation is also presented, which includes the notions that full and partial agonism occur as a consequence of negatively cooperative binding. Knowledge gaps, including a potential role of cyclic nucleotide-regulation of the funny current under pathophysiological conditions, are included. The work highlighted here is in dedication to Dario DiFrancesco on his retirement.
Collapse
|
10
|
Electromechanical coupling mechanism for activation and inactivation of an HCN channel. Nat Commun 2021; 12:2802. [PMID: 33990563 PMCID: PMC8121817 DOI: 10.1038/s41467-021-23062-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/01/2021] [Indexed: 11/08/2022] Open
Abstract
Pacemaker hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels exhibit a reversed voltage-dependent gating, activating by membrane hyperpolarization instead of depolarization. Sea urchin HCN (spHCN) channels also undergo inactivation with hyperpolarization which occurs only in the absence of cyclic nucleotide. Here we applied transition metal ion FRET, patch-clamp fluorometry and Rosetta modeling to measure differences in the structural rearrangements between activation and inactivation of spHCN channels. We found that removing cAMP produced a largely rigid-body rotation of the C-linker relative to the transmembrane domain, bringing the A’ helix of the C-linker in close proximity to the voltage-sensing S4 helix. In addition, rotation of the C-linker was elicited by hyperpolarization in the absence but not the presence of cAMP. These results suggest that — in contrast to electromechanical coupling for channel activation — the A’ helix serves to couple the S4-helix movement for channel inactivation, which is likely a conserved mechanism for CNBD-family channels. Sea urchin hyperpolarization-activated cyclic nucleotide-gated (spHCN) ion channels channels are activated by membrane hyperpolarization instead of depolarization and undergo inactivation with hyperpolarization. Here authors apply transition metal ion FRET, patch-clamp fluorometry and Rosetta modeling to measure differences in the structural rearrangements between activation and inactivation of spHCN channels.
Collapse
|
11
|
Schmidpeter PAM, Nimigean CM. Correlating ion channel structure and function. Methods Enzymol 2021; 652:3-30. [PMID: 34059287 DOI: 10.1016/bs.mie.2021.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recent developments in cryogenic electron microscopy (cryo-EM) led to an exponential increase in high-resolution structures of membrane proteins, and in particular ion channels. However, structures alone can only provide limited information about the workings of these proteins. In order to understand ion channel function and regulation in molecular detail, the obtained structural data need to be correlated to functional states of the same protein. Here, we describe several techniques that can be employed to study ion channel structure and function in vitro and under defined, similar conditions. Lipid nanodiscs provide a native-like environment for membrane proteins and have become a valuable tool in membrane protein structural biology and biophysics. Combined with liposome-based flux assays for the kinetic analysis of ion channel activity as well as electrophysiological recordings, researchers now have access to an array of experimental techniques allowing for detailed structure-function correlations using purified components. Two examples are presented where we put emphasis on the lipid environment and time-resolved techniques together with mutations and protein engineering to interpret structural data obtained from single particle cryo-EM on cyclic nucleotide-gated or Ca2+-gated K+ channels. Furthermore, we provide short protocols for all the assays used in our work so that others can adapt these techniques to their experimental needs. Comprehensive structure-function correlations are essential in order to pharmacologically target channelopathies.
Collapse
Affiliation(s)
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|