1
|
Ma L, Guo H, Zhao Y, Liu Z, Wang C, Bu J, Sun T, Wei J. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct Target Ther 2024; 9:336. [PMID: 39617822 PMCID: PMC11609310 DOI: 10.1038/s41392-024-02021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 12/06/2024] Open
Abstract
Cancer has a high mortality rate across the globe, and tissue biopsy remains the gold standard for tumor diagnosis due to its high level of laboratory standardization, good consistency of results, relatively stable samples, and high accuracy of results. However, there are still many limitations and drawbacks in the application of tissue biopsy in tumor. The emergence of liquid biopsy provides new ideas for early diagnosis and prognosis of tumor. Compared with tissue biopsy, liquid biopsy has many advantages in the diagnosis and treatment of various types of cancer, including non-invasive, quickly and so on. Currently, the application of liquid biopsy in tumor detection has received widely attention. It is now undergoing rapid progress, and it holds significant potential for future applications. Around now, liquid biopsies encompass several components such as circulating tumor cells, circulating tumor DNA, exosomes, microRNA, circulating RNA, tumor platelets, and tumor endothelial cells. In addition, advances in the identification of liquid biopsy indicators have significantly enhanced the possibility of utilizing liquid biopsies in clinical settings. In this review, we will discuss the application, advantages and challenges of liquid biopsy in some common tumors from the perspective of diverse systems of tumors, and look forward to its future development prospects in the field of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Yunxiang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhibo Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Chenran Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Jiahao Bu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Sawabata N, Hamaji M, Yoshikawa D, Miyata R, Kawaguchi T. Clustered Circulating Tumor Cells as a Predictor of Adjuvant-chemotherapy Efficacy in Lung Cancer. Ann Thorac Surg 2024; 118:1136-1143. [PMID: 38789007 DOI: 10.1016/j.athoracsur.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Surrogate markers of minimal residual disease primarily include cell-free tumor DNA and circulating tumor cells. Cell-free tumor DNA might aid precise decision-making regarding who should receive adjuvant chemotherapy. However, there are no relevant reports on circulating tumor cells. Therefore, we aimed to verify whether perioperative clustered circulating tumour cells identification is a predictor of therapeutic efficacy in non-small cell lung cancer adjuvant chemotherapy. METHODS Circulating tumor cells were diagnosed under light microscopy using a size selection method in 128 patients with clinical stage I/II non-small cell lung cancer around surgery. The main endpoint was recurrence-free survival, and the effect of adjuvant chemotherapy was verified in both groups based on perioperative clustered circulating tumor cell identification. RESULTS In total, 49 and 79 patients were included in the clustered circulating tumor cell-positive and clustered circulating tumor cell-negative patient groups, respectively. In the clustered circulating tumor cell-positive patient group, adjuvant chemotherapy was performed in 18 patients (2-year recurrence-free survival rate, 71.8%). However, the 2-year recurrence-free survival rate was 36.3% in 31 patients who did not receive adjuvant chemotherapy (P < .01). In the clustered circulating tumor cell-negative patient group, adjuvant chemotherapy was provided in 11 patients (2-year recurrence-free survival rate, 90.9%). However, 68 patients did not receive adjuvant chemotherapy (2-year recurrence-free survival rate, 94.9%) (not significant). CONCLUSIONS In surgical cases of clinical stage I/II non-small cell lung cancer, patients with perioperative clustered circulating tumor cells had a poor prognosis, but adjuvant chemotherapy improved their prognosis.
Collapse
Affiliation(s)
- Noiyoshi Sawabata
- Department of General Thoracic Surgery, Nara Medical University Hospital, Kashihara City, Japan; Department of General Thoracic Surgery, JCHO Hoshigaoka Medical Center, Hirakata, Japan; Department of General Thoracic Surgery, Kawanishi City Medical Center, Kawanishi City, Japan.
| | - Masatsugu Hamaji
- Department of General Thoracic Surgery, Nara Medical University Hospital, Kashihara City, Japan
| | - Daiki Yoshikawa
- Department of General Thoracic Surgery, Nara Medical University Hospital, Kashihara City, Japan
| | - Ryo Miyata
- Department of General Thoracic Surgery, Nara Medical University Hospital, Kashihara City, Japan
| | - Takeshi Kawaguchi
- Department of General Thoracic Surgery, Nara Medical University Hospital, Kashihara City, Japan
| |
Collapse
|
3
|
Jaime-Casas S, Tripathi A, Pal SK, Yip W. Clinical Implications of the Molecular and Genomic Landscape of Upper Tract Urothelial Carcinoma. Curr Urol Rep 2024; 26:11. [PMID: 39379745 PMCID: PMC11461588 DOI: 10.1007/s11934-024-01245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE OF REVIEW Upper tract urothelial carcinoma (UTUC) is an aggressive entity with treatment strategies mirroring bladder cancer. Genomic and molecular profiling allows for a better characterization of this disease and allows for patient-tailored approaches. We aim to describe the genomic and molecular implications of this disease. RECENT FINDINGS Technological advances have the potential for early diagnosis and precise molecular analysis in patients with UTUC. Genomic profile clustering, specific mRNA signatures, and pathway-specific protein abundance tools have oncologic and clinical implications. We describe their utility in the context of this disease. In the era of precision medicine, designing clinical trials that explore the diagnostic and prognostic implications of biomolecular signatures in the context of UTUC is of utmost importance. Promising advances in this arena provide tools for physicians to avoid overtreatment in this patient population.
Collapse
Affiliation(s)
- Salvador Jaime-Casas
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Abhishek Tripathi
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Sumanta K Pal
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Wesley Yip
- Division of Urology and Urologic Oncology, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
4
|
Drouaud A, Xu V, Velasquez A, Antar R, Boyarsky B, Weiss J, Gonzalez D, Silverman R, Whalen MJ. Metastatic Tropism in Urothelial Carcinoma With Variant Histology: A Comprehensive NCDB Analysis. Clin Genitourin Cancer 2024; 22:102179. [PMID: 39153901 DOI: 10.1016/j.clgc.2024.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
INTRODUCTION Bladder cancer (BCa) with variant histology (VH) is notably aggressive and not as well studied as pure urothelial carcinoma (UC). The characteristics of variant BCa in the setting of metastatic disease may contribute to treatment response/resistance and subsequent disease progression. In this study, we sought to assess VH's impact on metastasis sites at presentation in metastatic BCa. METHODS The National Cancer Database was queried from 2004 to 2019 to analyze cT1-4 cN0-3 cM1 patients with UC and VH BCa. The primary endpoint was the presence of metastasis to different organs. Binomial multivariable logistic regression was performed to determine the impact of VH on metastatic sites while controlling for multiple variables. RESULTS Total 6005 eligible patients diagnosed with either UC or VH were included. Patients with small cell histology, the second most common VH, were more likely to have liver metastasis (OR: 4.335) while less likely to have lung metastases (OR: 0.521). Squamous cell carcinoma decreased the odds of bone metastasis (OR: 0.449). Adenocarcinoma increased the odds of lung metastases (OR: 1.690). Micropapillary VH is less likely to metastasize to the lungs (OR: 0.182) but more likely to spread to nonregional lymph nodes (OR: 2.623). Sarcomatoid subtype did not exhibit a statistically significant variation in the odds ratio for any of the metastatic sites. CONCLUSION This study comprehensively analyzes the limited research regarding metastatic BCa and VH. Our analysis underscores each subtype exhibiting heterogeneous metastatic tropism. Importantly, these findings illustrate the role of routine somatic gene expression profiling to guide adequate staging and treatment intensification and to offer a foundation for future studies of VH BCa care.
Collapse
Affiliation(s)
- Arthur Drouaud
- Department of Urology, The George Washington University School of Medicine and Health Sciences, Washington, DC.
| | - Vincent Xu
- Department of Urology, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Alejandro Velasquez
- Department of Urology, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Ryan Antar
- Department of Urology, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Brandon Boyarsky
- Department of Urology, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Jacob Weiss
- Department of Urology, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Diego Gonzalez
- Department of Urology, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Rachel Silverman
- Department of Urology, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Michael J Whalen
- Department of Urology, The George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
5
|
Nordentoft I, Lindskrog SV, Birkenkamp-Demtröder K, Gonzalez S, Kuzman M, Levatic J, Glavas D, Ptashkin R, Smadbeck J, Afterman D, Lauterman T, Cohen Y, Donenhirsh Z, Tavassoly I, Alon U, Frydendahl A, Rasmussen MH, Andersen CL, Lamy P, Knudsen M, Polak P, Zviran A, Oklander B, Agerbæk M, Jensen JB, Dyrskjøt L. Whole-genome Mutational Analysis for Tumor-informed Detection of Circulating Tumor DNA in Patients with Urothelial Carcinoma. Eur Urol 2024; 86:301-311. [PMID: 38811314 DOI: 10.1016/j.eururo.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/25/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND AND OBJECTIVE Circulating tumor DNA (ctDNA) can be used for sensitive detection of minimal residual disease (MRD). However, the probability of detecting ctDNA in settings of low tumor burden is limited by the number of mutations analyzed and the plasma volume available. We used a whole-genome sequencing (WGS) approach for ctDNA detection in patients with urothelial carcinoma. METHODS We used a tumor-informed WGS approach for ctDNA-based detection of MRD and evaluation of treatment responses. We analyzed 916 longitudinally collected plasma samples from 112 patients with localized muscle-invasive bladder cancer who received neoadjuvant chemotherapy (NAC) before radical cystectomy. Recurrence-free survival (primary endpoint), overall survival, and ctDNA dynamics during NAC were assessed. KEY FINDINGS AND LIMITATIONS We found that WGS-based ctDNA detection is prognostic for patient outcomes with a median lead time of 131 d over radiographic imaging. WGS-based ctDNA assessment after radical cystectomy identified recurrence with sensitivity of 91% and specificity of 92%. In addition, genomic characterization of post-treatment plasma samples with a high ctDNA level revealed acquisition of platinum therapy-associated mutational signatures and copy number variations not present in the primary tumors. The sequencing depth is a limitation for studying tumor evolution. CONCLUSIONS AND CLINICAL IMPLICATIONS Our results support the use of WGS for ultrasensitive ctDNA detection and highlight the possibility of plasma-based tracking of tumor evolution. WGS-based ctDNA detection represents a promising option for clinical use owing to the low volume of plasma needed and the ease of performing WGS, eliminating the need for personalized assay design.
Collapse
Affiliation(s)
- Iver Nordentoft
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Sia Viborg Lindskrog
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karin Birkenkamp-Demtröder
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | - Amanda Frydendahl
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mads Heilskov Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Claus Lindbjerg Andersen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Philippe Lamy
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Knudsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | - Mads Agerbæk
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Bjerggaard Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
6
|
Choi Y, Dharia NV, Jun T, Chang J, Royer-Joo S, Yau KK, Assaf ZJ, Aimi J, Sivakumar S, Montesion M, Sacher A, LoRusso P, Desai J, Schutzman JL, Shi Z. Circulating Tumor DNA Dynamics Reveal KRAS G12C Mutation Heterogeneity and Response to Treatment with the KRAS G12C Inhibitor Divarasib in Solid Tumors. Clin Cancer Res 2024; 30:3788-3797. [PMID: 38995268 PMCID: PMC11369623 DOI: 10.1158/1078-0432.ccr-24-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/26/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE To inform prognosis, treatment response, disease biology, and KRAS G12C mutation heterogeneity, we conducted exploratory circulating tumor DNA (ctDNA) profiling on 134 patients with solid tumors harboring a KRAS G12C mutation treated with single-agent divarasib (GDC-6036) in a phase 1 study. EXPERIMENTAL DESIGN Plasma samples were collected for serial ctDNA profiling at baseline (cycle 1 day 1 prior to treatment) and multiple on-treatment time points (cycle 1 day 15 and cycle 3 day 1). RESULTS KRAS G12C ctDNA was detectable from plasma samples in 72.9% (43/59) and 92.6% (50/54) of patients with non-small cell lung cancer and colorectal cancer, respectively, the majority of whom were eligible for study participation based on a local test detecting the KRAS G12C mutation in tumor tissue. Baseline ctDNA tumor fraction was associated with tumor type, disease burden, and metastatic sites. A decline in ctDNA level was observed as early as cycle 1 day 15. Serial assessment showed a decline in ctDNA tumor fraction associated with response and progression-free survival. Except for a few cases of KRAS G12C sub-clonality, on-treatment changes in KRAS G12C variant allele frequency mirrored changes in the overall ctDNA tumor fraction. CONCLUSIONS Across tumor types, the KRAS G12C mutation likely represents a truncal mutation in the majority of patients. Rapid and deep decline in ctDNA tumor fraction was observed in patients responding to divarasib treatment. Early on-treatment dynamics of ctDNA were associated with patient outcomes and tumor response to divarasib treatment.
Collapse
Affiliation(s)
- Yoonha Choi
- Genentech, Inc., South San Francisco, California.
| | | | - Tomi Jun
- Genentech, Inc., South San Francisco, California.
| | - Julie Chang
- Genentech, Inc., South San Francisco, California.
| | | | | | - Zoe J. Assaf
- Genentech, Inc., South San Francisco, California.
| | - Junko Aimi
- Genentech, Inc., South San Francisco, California.
| | | | | | - Adrian Sacher
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
- Department of Medicine, University of Toronto, Toronto, Canada.
- Department of Immunology, University of Toronto, Toronto, Canada.
| | | | - Jayesh Desai
- Peter MacCallum Cancer Centre, Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.
| | | | - Zhen Shi
- Genentech, Inc., South San Francisco, California.
| | | |
Collapse
|
7
|
Tang X, Berger MF, Solit DB. Precision oncology: current and future platforms for treatment selection. Trends Cancer 2024; 10:781-791. [PMID: 39030146 DOI: 10.1016/j.trecan.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024]
Abstract
Genomic profiling of hundreds of cancer-associated genes is now a component of routine cancer care. DNA sequencing can identify mutations, mutational signatures, and structural alterations predictive of therapy response and assess for heritable cancer risk, but it has been less useful for identifying predictive biomarkers of sensitivity to cytotoxic chemotherapies, antibody drug conjugates, and immunotherapies. The clinical adoption of molecular profiling platforms such as RNA sequencing better suited to identifying those patients most likely to respond to immunotherapies and drug combinations will be critical to expanding the benefits of precision oncology. This review discusses the potential advantages of innovative molecular and functional profiling platforms designed to replace or complement targeted DNA sequencing and the major hurdles to their clinical adoption.
Collapse
Affiliation(s)
- Xinran Tang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Michael F Berger
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
8
|
Alsaab HO, Alzahrani MS, Bahauddin AA, Almutairy B. Circulating tumor DNA (ctDNA) application in investigation of cancer: Bench to bedside. Arch Biochem Biophys 2024; 758:110066. [PMID: 38906310 DOI: 10.1016/j.abb.2024.110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Now, genomics forms the core of the precision medicine concept. Comprehensive investigations of tumor genomes have made it possible to characterize tumors at the molecular level and, specifically, to identify the fundamental processes that cause condition. A variety of kinds of tumors have seen better outcomes for patients as a result of the development of novel medicines to tackle these genetic-driving processes. Since therapy may exert selective pressure on cancers, non-invasive methods such as liquid biopsies can provide the opportunity for rich reservoirs of crucial and real-time genetic data. Liquid biopsies depend on the identification of circulating cells from tumors, circulating tumor DNA (ctDNA), RNA, proteins, lipids, and metabolites found in patient biofluids, as well as cell-free DNA (cfDNA), which exists in those with cancer. Although it is theoretically possible to examine biological fluids other than plasma, such as pleural fluid, urine, saliva, stool, cerebrospinal fluid, and ascites, we will limit our discussion to blood and solely cfDNA here for the sake of conciseness. Yet, the pace of wider clinical acceptance has been gradual, partly due to the increased difficulty of choosing the best analysis for the given clinical issue, interpreting the findings, and delaying proof of value from clinical trials. Our goal in this review is to discuss the current clinical value of ctDNA in cancers and how clinical oncology systems might incorporate procedures for ctDNA testing.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, 21944, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Ammar A Bahauddin
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina Al-Munawarah, Saudi Arabia.
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| |
Collapse
|
9
|
James N, Pirrie S, Liu W, Catto J, Jefferson K, Patel P, Hughes A, Pope A, Nanton V, Mintz HP, Knight A, Gallagher J, Bryan RT. Image directed redesign of bladder cancer treatment pathways: the BladderPath RCT. Health Technol Assess 2024; 28:1-65. [PMID: 39246267 PMCID: PMC11403381 DOI: 10.3310/deht5407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Background Transurethral resection of bladder tumour has been the mainstay of bladder cancer staging for > 60 years. Staging inaccuracies are commonplace, leading to delayed treatment of muscle-invasive bladder cancer. Multiparametric magnetic resonance imaging offers rapid, accurate and non-invasive staging of muscle-invasive bladder cancer, potentially reducing delays to radical treatment. Objectives To assess the feasibility and efficacy of the introducing multiparametric magnetic resonance imaging ahead of transurethral resection of bladder tumour in the staging of suspected muscle-invasive bladder cancer. Design Open-label, multistage randomised controlled study in three parts: feasibility, intermediate and final clinical stages. The COVID pandemic prevented completion of the final stage. Setting Fifteen UK hospitals. Participants Newly diagnosed bladder cancer patients of age ≥ 18 years. Interventions Participants were randomised to Pathway 1 or 2 following visual assessment of the suspicion of non-muscle-invasive bladder cancer or muscle-invasive bladder cancer at the time of outpatient cystoscopy, based upon a 5-point Likert scale: Likert 1-2 tumours considered probable non-muscle-invasive bladder cancer; Likert 3-5 possible muscle-invasive bladder cancer. In Pathway 1, all participants underwent transurethral resection of bladder tumour. In Pathway 2, probable non-muscle-invasive bladder cancer participants underwent transurethral resection of bladder tumour, and possible muscle-invasive bladder cancer participants underwent initial multiparametric magnetic resonance imaging. Subsequent therapy was determined by the treating team and could include transurethral resection of bladder tumour. Main outcome measures Feasibility stage: proportion with possible muscle-invasive bladder cancer randomised to Pathway 2 which correctly followed the protocol. Intermediate stage: time to correct treatment for muscle-invasive bladder cancer. Results Between 31 May 2018 and 31 December 2021, of 638 patients approached, 143 participants were randomised; 52.1% were deemed as possible muscle-invasive bladder cancer and 47.9% probable non-muscle-invasive bladder cancer. Feasibility stage: 36/39 [92% (95% confidence interval 79 to 98%)] muscle-invasive bladder cancer participants followed the correct treatment by pathway. Intermediate stage: median time to correct treatment was 98 (95% confidence interval 72 to 125) days for Pathway 1 versus 53 (95% confidence interval 20 to 89) days for Pathway 2 [hazard ratio 2.9 (95% confidence interval 1.0 to 8.1)], p = 0.040. Median time to correct treatment for all participants was 37 days for Pathway 1 and 25 days for Pathway 2 [hazard ratio 1.4 (95% confidence interval 0.9 to 2.0)]. Limitations For participants who underwent chemotherapy, radiotherapy or palliation for multiparametric magnetic resonance imaging-diagnosed stage T2 or higher disease, it was impossible to conclusively know whether these were correct treatments due to the absence of histopathologically confirmed muscle invasion, this being confirmed radiologically in these cases. All patients had histological confirmation of their cancers. Due to the COVID-19 pandemic, we were unable to realise the final stage. Conclusion The multiparametric magnetic resonance imaging-directed pathway led to a substantial 45-day reduction in time to correct treatment for muscle-invasive bladder cancer, without detriment to non-muscle-invasive bladder cancer participants. Consideration should be given to the incorporation of multiparametric magnetic resonance imaging ahead of transurethral resection of bladder tumour into the standard pathway for all patients with suspected muscle-invasive bladder cancer. The improved decision-making accelerated time to treatment, even though many patients subsequently needed transurethral resection of bladder tumour. A proportion of patients can avoid transurethral resection of bladder tumour completely, reducing costs and morbidity, given the much lower cost of magnetic resonance imaging and biopsy compared to transurethral resection of bladder tumour. Future work Further work to cross-correlate with the recently developed Vesical Imaging-Reporting and Data System will improve accuracy and aid dissemination. Longer follow-up to examine the effect of the pathway on outcomes is also required. Incorporation of liquid deoxyribonucleic acid-based biomarkers may further improve the quality of decision-making and should also be investigated further. Study registration This study is registered as ISRCTN 35296862. Funding This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme (NIHR award ref: NIHR135775) and is published in full in Health Technology Assessment; Vol. 28, No. 42. See the NIHR Funding and Awards website for further award information.
Collapse
Affiliation(s)
| | - Sarah Pirrie
- Cancer Research Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Wenyu Liu
- Cancer Research Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - James Catto
- Department of Urology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Kieran Jefferson
- Department of Urology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Prashant Patel
- Institute of Cancer and Genomic Sciences, University of Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Ana Hughes
- Cancer Research Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Ann Pope
- Cancer Research Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Harriet P Mintz
- Cancer Research Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Medical School, University of Birmingham, Birmingham, UK
| | - Allen Knight
- Patient and Public Involvement Representatives, Gallagher, Bradford Knight, Basingstoke, UK
| | - Jean Gallagher
- Patient and Public Involvement Representatives, Gallagher, Bradford Knight, Basingstoke, UK
| | - Richard T Bryan
- Bladder Cancer Research Centre, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Nagasaka H, Yamamoto S, Suzuki A, Usui K, Terao H, Nakaigawa N, Kishida T. C-reactive Protein Is a Prognostic Factor for Survival in Metastatic Upper Tract Urothelial Carcinoma Patients Receiving Pembrolizumab. In Vivo 2024; 38:1823-1828. [PMID: 38936923 PMCID: PMC11215620 DOI: 10.21873/invivo.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM The number of available treatment options for urothelial carcinoma has increased recently. Upper tract urothelial carcinoma (UTUC) is relatively rare compared with bladder cancer. There are few reports on the efficacy of immune checkpoint inhibitors (ICIs) for metastatic UTUC, and ICIs may occasionally show less efficacy and cause severe side effects. Therefore, it is important to predict the treatment response and change the treatment strategy as appropriate. We investigated the prognostic factors for treatment response in patients with metastatic UTUC treated with pembrolizumab at our hospital. PATIENTS AND METHODS Patients who received pembrolizumab for UTUC between January 2018 and June 2023 were analyzed. Patients who presented with bladder cancer complications at initial diagnosis were excluded. The primary endpoints assessed were overall survival (OS) and progression-free survival (PFS). Statistical analyses were conducted using laboratory values obtained before and after pembrolizumab administration. The relationship between cancer and inflammation is important. Therefore, we analyzed this relationship using prognostic factors for urothelial carcinoma as previously reported. Specifically, pretreatment C-reactive protein (CRP) level, neutrophil-to-lymphocyte ratio (NLR), and NLR/albumin values were examined. RESULTS Forty-seven patients were analyzed. The median PFS was 66 days (24-107 days), and the median OS was 164 days (13-314 days). A CRP level <1 before the first cycle was a useful factor in the multivariate analysis for both OS and PFS [OS: p=0.004, hazard ratio (HR)=3.244, 95% confidence interval (CI)=1.464-7.104; PFS: p=0.003, HR=2.998, 95%CI=1.444-6.225]. CONCLUSION CRP level is a prognostic factor for pembrolizumab treatment response in patients with UTUC.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Female
- Male
- C-Reactive Protein/metabolism
- Aged
- Prognosis
- Middle Aged
- Aged, 80 and over
- Biomarkers, Tumor
- Urologic Neoplasms/drug therapy
- Urologic Neoplasms/mortality
- Urologic Neoplasms/pathology
- Carcinoma, Transitional Cell/drug therapy
- Carcinoma, Transitional Cell/mortality
- Carcinoma, Transitional Cell/secondary
- Carcinoma, Transitional Cell/pathology
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Agents, Immunological/adverse effects
- Neoplasm Metastasis
Collapse
Affiliation(s)
| | | | - Atsuto Suzuki
- Department of Urology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Kimitsugu Usui
- Department of Urology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Hideyuki Terao
- Department of Urology, Kanagawa Cancer Center, Kanagawa, Japan
| | | | - Takeshi Kishida
- Department of Urology, Kanagawa Cancer Center, Kanagawa, Japan
| |
Collapse
|
11
|
Fu Q, Zheng H, Wang X, Tang F, Yu H, Wang H, Wan Z, Zheng Z, Yang Z, Liu T, Peng J. GINS1 promotes the initiation and progression of bladder cancer by activating the AKT/mTOR/c-Myc signaling pathway. Exp Cell Res 2024; 440:114125. [PMID: 38880324 DOI: 10.1016/j.yexcr.2024.114125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Bladder cancer(BC) is one of the most prevalent cancers in the urinary tract, with high recurrence and fatality rates. Research indicates that go-ichi-ni-san complex subunit 1 (GINS1) crucially influences cancer progression by regulating DNA replication through cell cycle modulation. Thus, suppressing the active proliferation of cells in tumor tissues may require silencing GINS1. However, the consequences of GINS1 in bladder cancer aren't to be determined. In this paper, we examine the role and mechanism of GINS1 in the development of bladder cancer. GINS1 expression levels and prognostic relevance in bladder cancer were validated using Western blotting, immunohistochemistry, and Kaplan-Meier survival analysis. The influence of GINS1 on bladder cancer was investigated using a variety of approaches, including cell transfection, cell counts, transwell migrations, colony formation, and flow cytometry. Immunohistochemistry studies demonstrate that GINS1 expression is increased in bladder cancer tissues. GINS1 silencing resulted in an arrest of the cell cycle at the phase of G0/G1, which inhibited BC cell growth both in vitro and in vivo. GINS1 knockdown also hindered the AKT/mTOR pathway. Furthermore, increased GINS1 expression affects the cell cycle and stimulates the AKT/mTOR pathway, allowing BC to develop more quickly. Consequently, GINS1 occurs as a latent therapeutic target, particularly for individuals with BC.
Collapse
Affiliation(s)
- Qiqi Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Hang Zheng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xia Wang
- Department of Public Health, Wuhan University Hospital, Wuhan University, Wuhan, China.
| | - Feng Tang
- Department of Urology, Jingzhou Central Hospital, Jingzhou, China.
| | - Hua Yu
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Hao Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Ziyu Wan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhangjie Zheng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhonghua Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Tao Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Jianping Peng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Papadimitriou MA, Pilala KM, Panoutsopoulou K, Levis P, Kotronopoulos G, Kanaki Z, Loules G, Zamanakou M, Linardoutsos D, Sideris DC, Stravodimos K, Klinakis A, Scorilas A, Avgeris M. CDKN2A copy number alteration in bladder cancer: Integrative analysis in patient-derived xenografts and cancer patients. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200818. [PMID: 38966038 PMCID: PMC11223115 DOI: 10.1016/j.omton.2024.200818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/20/2024] [Accepted: 05/22/2024] [Indexed: 07/06/2024]
Abstract
Bladder cancer (BlCa) is an extensively heterogeneous disease that leads to great variability in tumor evolution scenarios and lifelong patient surveillance, emphasizing the need for modern, minimally invasive precision medicine. Here, we explored the clinical significance of copy number alterations (CNAs) in BlCa. CNA profiling was performed in 15 patient-derived xenografts (PDXs) and validated in The Cancer Genome Atlas BlCa (TCGA-BLCA; n = 408) and Lindgren et al. (n = 143) cohorts. CDKN2A copy number loss was identified as the most frequent CNA in bladder tumors, associated with reduced CDKN2A expression, tumors of a papillary phenotype, and prolonged PDX survival. The study's screening cohort consisted of 243 BlCa patients, and CDKN2A copy number was assessed in genomic DNA and cell-free DNA (cfDNA) from 217 tumors and 189 pre-treatment serum samples, respectively. CDKN2A copy number loss was correlated with superior disease-free and progression-free survival of non-muscle-invasive BlCa (NMIBC) patients. Moreover, a higher CDKN2A index (CDKN2A/LEP ratio) in pre-treatment cfDNA was associated with advanced tumor stage and grade and short-term NMIBC progression to invasive disease, while multivariate models fitted for CDKN2A index in pre-treatment cfDNA offered superior risk stratification of T1/high-grade and EORTC high-risk patients, enhancing prediction of treatment outcome. CDKN2A copy number status could serve as a minimally invasive tool to improve risk stratification and support personalized prognosis in BlCa.
Collapse
Affiliation(s)
- Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Levis
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Georgios Kotronopoulos
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Zoi Kanaki
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | | | | | - Dimitrios Linardoutsos
- First Department of Propaedeutic Surgery, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Diamantis C. Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stravodimos
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | | | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Clinical Biochemistry – Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, Athens, Greece
| |
Collapse
|
13
|
Gerke MB, Jansen CS, Bilen MA. Circulating Tumor DNA in Genitourinary Cancers: Detection, Prognostics, and Therapeutic Implications. Cancers (Basel) 2024; 16:2280. [PMID: 38927984 PMCID: PMC11201475 DOI: 10.3390/cancers16122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
CtDNA is emerging as a non-invasive clinical detection method for several cancers, including genitourinary (GU) cancers such as prostate cancer, bladder cancer, and renal cell carcinoma (RCC). CtDNA assays have shown promise in early detection of GU cancers, providing prognostic information, assessing real-time treatment response, and detecting residual disease and relapse. The ease of obtaining a "liquid biopsy" from blood or urine in GU cancers enhances its potential to be used as a biomarker. Interrogating these "liquid biopsies" for ctDNA can then be used to detect common cancer mutations, novel genomic alterations, or epigenetic modifications. CtDNA has undergone investigation in numerous clinical trials, which could address clinical needs in GU cancers, for instance, earlier detection in RCC, therapeutic response prediction in castration-resistant prostate cancer, and monitoring for recurrence in bladder cancers. The utilization of liquid biopsy for ctDNA analysis provides a promising method of advancing precision medicine within the field of GU cancers.
Collapse
Affiliation(s)
- Margo B. Gerke
- Emory University School of Medicine, Atlanta, GA 30322, USA; (M.B.G.); (C.S.J.)
| | - Caroline S. Jansen
- Emory University School of Medicine, Atlanta, GA 30322, USA; (M.B.G.); (C.S.J.)
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Mehmet A. Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Seok J, Kwak Y, Kim S, Kim EM, Kim A. Advances in Liquid Biopsy for Diagnosis of Bladder Cancer. Int Neurourol J 2024; 28:83-95. [PMID: 38956768 PMCID: PMC11222820 DOI: 10.5213/inj.2448198.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 07/04/2024] Open
Abstract
Bladder cancer (BCa) is the most common malignancy of the urinary system. It has a high recurrence rate and requires longterm follow-up. Significant advances in BCa research have been made in recent years; however, the initial diagnosis and follow-up of BCa relies on cystoscopy, which is an invasive and expensive procedure. Over the past decade, liquid biopsies (e.g., blood and urine) have proven to be highly efficient methods for the discovery of BCa biomarkers. This noninvasive sampling method is used to analyze unique tumor components released into body fluids and enables serial sampling and longitudinal monitoring of tumor progression. Several liquid biopsy biomarkers have been studied extensively and have shown promising results in the clinical applications of BCa, including early detection, microscopic residual disease detection, recurrence prediction, and treatment response. Therefore, this review aims to provide an update on various new liquid biopsy markers and the advantages and current limitations of liquid biopsy in the diagnosis of BCa.
Collapse
Affiliation(s)
- Jaekwon Seok
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Yeonjoo Kwak
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center (MCRC), and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Korea
| | - Sewhan Kim
- Department of Biomedical Engineering, School of Medicine, Dankook University, Cheonan, Korea
| | - Eun-Mee Kim
- Department of Paramedicine, Korea Nazarene University, Cheonan, Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
- University of California Irvine, Beckman Laser Institute and Medical Clinic, Irvine, CA, USA
| |
Collapse
|
15
|
Hemenway G, Anker JF, Riviere P, Rose BS, Galsky MD, Ghatalia P. Advancements in Urothelial Cancer Care: Optimizing Treatment for Your Patient. Am Soc Clin Oncol Educ Book 2024; 44:e432054. [PMID: 38771987 DOI: 10.1200/edbk_432054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The standard treatment paradigm for muscle invasive bladder cancer has been neoadjuvant cisplatin-based chemotherapy followed by radical cystectomy. However, efforts are ongoing to personalize treatment by incorporating biomarkers to better guide treatment selection. In addition, bladder preservation strategies are aimed at avoiding cystectomy in well-selected patients. Similarly, in the metastatic urothelial cancer space, the standard frontline treatment option of platinum-based chemotherapy has changed with the availability of data from EV-302 trial, making the combination of enfortumab vedotin (EV) and pembrolizumab the preferred first-line treatment option. Here, we examine the optimization of treatment intensity and sequencing, focusing on the challenges and opportunities associated with EV/pembrolizumab therapy, including managing toxicities and exploring alternative dosing approaches. Together, these articles provide a comprehensive overview of contemporary strategies in bladder cancer management, highlighting the importance of individualized treatment approaches, ongoing research, and multidisciplinary collaboration to improve patient outcomes in this complex disease landscape.
Collapse
Affiliation(s)
| | - Jonathan F Anker
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Paul Riviere
- UCSD Radiation Medicine and Applied Sciences, San Diego, CA
| | - Brent S Rose
- UCSD Radiation Medicine and Applied Sciences, San Diego, CA
| | - Matthew D Galsky
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
16
|
Francis JH, Barker CA, Canestraro J, Abramson DH, Shoushtari AN. Clearance of plasma cell free DNA in metastatic uveal melanoma with radiographic response to immune checkpoint inhibitors. Am J Ophthalmol Case Rep 2024; 34:102021. [PMID: 38444640 PMCID: PMC10912039 DOI: 10.1016/j.ajoc.2024.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Purpose To report a case of metastatic uveal melanoma treated with immune checkpoint inhibition in which serial circulating tumor DNA (ctDNA) was assessed throughout treatment. Observations A 33-year-old man was diagnosed with metastatic uveal melanoma and initially had progression of disease following hepatic embolization and nivolumab/ipilimumab. At the time, plasma ctDNA GNA11 and SF3B1 were measurable and repeat ctDNA showed increased variant allele frequency following further progression of disease on vorinostat. Following additional nivolumab/ipilimumab, radiographic response was noted and repeat ctDNA became undetectable and remained so at 27 months follow up. Conclusions and importance Clearance of cell free DNA in metastatic uveal melanoma may be associated with radiographic response to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Jasmine H. Francis
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Christopher A. Barker
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Julia Canestraro
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David H. Abramson
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Alexander N. Shoushtari
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
17
|
Liu H, Chen J, Huang Y, Zhang Y, Ni Y, Xu N, Zhao F, Tang Y, Liu H, Sun G, Shen P, Liu Z, Huang J, Liao B, Zeng H. Prognostic significance of circulating tumor DNA in urothelial carcinoma: a systematic review and meta-analysis. Int J Surg 2024; 110:3923-3936. [PMID: 38573063 PMCID: PMC11175790 DOI: 10.1097/js9.0000000000001372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) has emerged as a noninvasive technique that provides valuable insights into molecular profiles and tumor disease management. This study aimed to evaluate the prognostic significance of circulating tumor DNA (ctDNA) in urothelial carcinoma (UC) through a systematic review and meta-analysis. METHODS A comprehensive search was conducted in MEDLINE, EMBASE, and the Cochrane Library from the inception to December 2023. Studies investigating the prognostic value of ctDNA in UC were included. Hazard ratios (HRs) of disease-free survival (DFS) and overall survival (OS) were extracted. Overall meta-analysis and subgroup exploration stratified by metastatic status, ctDNA sampling time, treatment type, and detection method was performed using the R software (version 4.2.2). RESULTS A total of 16 studies with 1725 patients were included. Fourteen studies assessed the association between baseline ctDNA status and patient outcomes. Patients with elevated ctDNA levels exhibited significantly worse DFS (HR=6.26; 95% CI: 3.71-10.58, P <0.001) and OS (HR=4.23; 95% CI: 2.72-6.57, P <0.001) regardless of metastatic status, ctDNA sampling time, treatment type, and detection methods. Six studies evaluated the prognostic value of ctDNA dynamics in UC. Patients who showed a decrease or clearance in ctDNA levels during treatment or observation demonstrated more favorable DFS (HR=0.26, 95% CI: 0.17-0.41, P <0.001) and OS (HR=0.21, 95% CI: 0.11-0.38, P <0.001) compared to those who did not. The association remained consistent across the subgroup analysis based on metastatic status and detection methods. In the immune checkpoint inhibitor-treated setting, both lower baseline ctDNA level and ctDNA decrease during the treatment were significantly associated with more favorable oncologic outcomes. Furthermore, specific gene mutations such as FGFR3 identified in ctDNA also demonstrated predictive value in UC patients. CONCLUSION This meta-analysis demonstrates a strong association of ctDNA status and its dynamic change with survival outcomes in UC, suggesting substantial clinical utility of ctDNA testing in prognosis prediction and decision making in this setting.
Collapse
Affiliation(s)
- Haoyang Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University
| | - Yuchen Huang
- Department of Cardiothoracic Surgery, West China Hospital, Sichuan University
| | - Yaowen Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University
| | - Yuchao Ni
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University
| | - Nanwei Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University
| | - Fengnian Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University
| | - Yanfeng Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University
| | - Haolin Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University
| | - Guangxi Sun
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University
| | - Pengfei Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University
| | - Zhenhua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University
| | - Jin Huang
- Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Banghua Liao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University
| |
Collapse
|
18
|
Balli S, Bolek H, Ürün Y. Emerging Strategies in Adjuvant Immunotherapy: A Comparative Review of Bladder Cancer and Renal Cell Carcinoma Treatments. Clin Med Insights Oncol 2024; 18:11795549241257238. [PMID: 38827522 PMCID: PMC11143815 DOI: 10.1177/11795549241257238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/04/2024] [Indexed: 06/04/2024] Open
Abstract
Recent progress in adjuvant immunotherapy offers hope for improving disease-free survival in high-risk bladder cancer (BC) and renal cell carcinoma (RCC). This review focuses on key trials such as CheckMate 274 and KEYNOTE-564, which show promising results with nivolumab in BC and pembrolizumab in RCC, including a 30% reduction in progression risk. Pembrolizumab also demonstrated overall survival (OS) benefit in RCC. The review also explores the potential of circulating tumor DNA (ctDNA) as a biomarker for better therapy selection and patient stratification. It emphasizes the need for ongoing research to establish survival benefits and suggests integrating biomarkers and risk stratification to optimize adjuvant immunotherapy in BC and RCC.
Collapse
Affiliation(s)
- Sevinc Balli
- Department of Medical Oncology, Ankara University School of Medicine, Ankara, Turkey
- Ankara University Cancer Research Institute, Ankara, Turkey
| | - Hatice Bolek
- Department of Medical Oncology, Ankara University School of Medicine, Ankara, Turkey
- Ankara University Cancer Research Institute, Ankara, Turkey
| | - Yüksel Ürün
- Department of Medical Oncology, Ankara University School of Medicine, Ankara, Turkey
- Ankara University Cancer Research Institute, Ankara, Turkey
| |
Collapse
|
19
|
Rakshit I, Mandal S, Pal S, Bhattacharjee P. Advancements in bladder cancer detection: a comprehensive review on liquid biopsy and cell-free DNA analysis. THE NUCLEUS 2024. [DOI: 10.1007/s13237-024-00494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/04/2024] [Indexed: 01/06/2025] Open
|
20
|
Mokbel S, Baciarello G, Lavaud P, Omlin A, Calabrò F, Cathomas R, Aeppli S, Parent P, Giannatempo P, Koster KL, Appel N, Gonnet P, Angius G, Tsantoulis P, Arkenau HT, Cattrini C, Messina C, Zeghondy J, Morelli C, Loriot Y, Formica V, Patrikidou A. Development and Validation of an Inflammatory Prognostic Index to Predict Outcomes in Advanced/Metastatic Urothelial Cancer Patients Receiving Immune Checkpoint Inhibitors. Cancers (Basel) 2024; 16:1465. [PMID: 38672547 PMCID: PMC11048042 DOI: 10.3390/cancers16081465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) improve overall survival (OS) in advanced/metastatic urothelial cancer (a/mUC) patients. Preliminary evidence suggests a prognostic role of inflammatory biomarkers in this setting. We aimed to develop a disease-specific prognostic inflammatory index for a/mUC patients on ICIs. METHODS Fifteen variables were retrospectively correlated with OS and progression-free survival (PFS) in a development (D, n = 264) and a validation (V, n = 132) cohort of platinum-pretreated a/mUC pts receiving ICIs at L2 or further line. A nomogram and inflammatory prognostic index (U-IPI) were developed. The index was also tested in a control cohort of patients treated with chemotherapy only (C, n = 114). RESULTS The strongest predictors of OS were baseline platelet/lymphocyte (PLR) and neutrophil/lymphocyte (NLR) ratios, and lactate dehydrogenase (LDH), NLR, and albumin changes at 4 weeks. These were used to build the U-IPI, which can distinctly classify patients into good or poor response groups. The nomogram scoring is significant for PFS and OS (p < 0.001 in the D, V, and combined cohorts) for the immunotherapy (IO) cohort, but not for the control cohort. CONCLUSIONS The lack of a baseline systemic inflammatory profile and the absence of early serum inflammatory biomarker changes are associated with significantly better outcomes on ICIs in a/mUC pts. The U-IPI is an easily applicable dynamic prognostic tool for PFS and OS, allowing for the early identification of a sub-group with dismal outcomes that would not benefit from ICIs, while distinguishing another that draws an important benefit.
Collapse
Affiliation(s)
- Sara Mokbel
- Faculty of Medicine, UCL—University College London, London WC1H 0AP, UK;
| | - Giuilia Baciarello
- Medical Oncology Department, Azienda Ospedaliera San Camillo Forlanini, 00152 Roma, Italy; (G.B.); (G.A.)
| | - Pernelle Lavaud
- Medical Oncology Department, Gustave Roussy Cancer Campus, 94805 Villejuif, France; (P.L.); (J.Z.); (Y.L.)
| | - Aurelius Omlin
- Medical Oncology and Haematology Department, OnkoZentrum Zürich, 8038 Zurich, Switzerland;
| | - Fabio Calabrò
- Medical Oncology 1, IRCCS National Cancer Institute Regina Elena, 00144 Rome, Italy; (F.C.)
| | - Richard Cathomas
- Medical Oncology 1, IRCCS National Cancer Institute Regina Elena, 00144 Rome, Italy; (F.C.)
| | - Stefanie Aeppli
- Department of Medical Oncology and Haematology, Cantonal Hospital St.Gallen, 9000 St. Gallen, Switzerland; (S.A.); (K.-L.K.)
| | - Pauline Parent
- Medical Oncology Departement, CHU Lille—Centre Hospitalier Régional Universitaire de Lille, 59000 Lille, France;
| | - Patrizia Giannatempo
- Medical Oncology Department, Fondazione IRCCS—Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Kira-Lee Koster
- Department of Medical Oncology and Haematology, Cantonal Hospital St.Gallen, 9000 St. Gallen, Switzerland; (S.A.); (K.-L.K.)
| | - Naara Appel
- Medical Oncology Departement, HUG—Hopitaux Universitaires Geneve, 1205 Geneva, Switzerland; (N.A.); (P.G.)
| | - Philippe Gonnet
- Medical Oncology Departement, HUG—Hopitaux Universitaires Geneve, 1205 Geneva, Switzerland; (N.A.); (P.G.)
| | - Gesuino Angius
- Medical Oncology Department, Azienda Ospedaliera San Camillo Forlanini, 00152 Roma, Italy; (G.B.); (G.A.)
| | - Petros Tsantoulis
- Medical Oncology Departement, HUG—Hopitaux Universitaires Geneve, 1205 Geneva, Switzerland; (N.A.); (P.G.)
| | | | - Carlo Cattrini
- Maggiore della Carità University Hospital, 28100 Novara, Italy;
| | | | - Jean Zeghondy
- Medical Oncology Department, Gustave Roussy Cancer Campus, 94805 Villejuif, France; (P.L.); (J.Z.); (Y.L.)
| | - Cristina Morelli
- Medical Oncology Unit, Policlinico Tor Vergata, 00133 Rome, Italy; (C.M.); (V.F.)
| | - Yohann Loriot
- Medical Oncology Department, Gustave Roussy Cancer Campus, 94805 Villejuif, France; (P.L.); (J.Z.); (Y.L.)
| | - Vincenzo Formica
- Medical Oncology Unit, Policlinico Tor Vergata, 00133 Rome, Italy; (C.M.); (V.F.)
| | - Anna Patrikidou
- Medical Oncology Department, Gustave Roussy Cancer Campus, 94805 Villejuif, France; (P.L.); (J.Z.); (Y.L.)
| |
Collapse
|
21
|
Tolmeijer SH, van Wilpe S, Geerlings MJ, von Rhein D, Smilde TJ, Kloots ISH, Westdorp H, Coskuntürk M, Oving IM, van Ipenburg JA, van der Heijden AG, Hofste T, Weiss MM, Schalken JA, Gerritsen WR, Ligtenberg MJL, Mehra N. Early On-treatment Circulating Tumor DNA Measurements and Response to Immune Checkpoint Inhibitors in Advanced Urothelial Cancer. Eur Urol Oncol 2024; 7:282-291. [PMID: 37673768 DOI: 10.1016/j.euo.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) can induce durable disease control in metastatic urothelial cancer (mUC), but only 20-25% of patients respond. Early identification of a nondurable response will improve management strategies. OBJECTIVE To investigate whether on-treatment circulating tumor DNA (ctDNA) measurements can predict ICI responsiveness in mUC patients. DESIGN, SETTING, AND PARTICIPANTS This study consists of a discovery cohort of 40 mUC patients and a prospective multicenter validation cohort of 16 mUC patients. Plasma cell-free DNA was collected at baseline and after 3 and 6 wk on ICIs. The ctDNA levels were calculated from targeted sequencing. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Outcome measurements were progression-free survival (PFS), overall survival (OS), and nondurable response (PFS ≤6 mo). Relationships with ctDNA were assessed using Cox regression. Changes in ctDNA level at 3 and 6 wk were categorized by an increase or decrease relative to baseline. RESULTS AND LIMITATIONS In the discovery cohort, ctDNA was detected in 37/40 (93%) of patients at baseline. A ctDNA increase was observed in 12/15 (80%) and ten of 12 (83%) patients with a nondurable response at 3 and 6 wk, respectively. Of patients with a durable response (PFS >6 mo), 94% showed a decrease. A ctDNA increase at 3 wk was associated with shorter PFS (hazard ratio [HR] 7.8, 95% confidence interval [CI] 3.1-19.5) and OS (HR 8.0, 95% CI 3.0-21.0), independent of clinical prognostic variables. Similar results were observed at 6 wk. The 3-wk association with PFS was validated in a prospective cohort (HR 7.5, 95% CI 1.3-42.6). Limitations include the limited number of patients. CONCLUSIONS Early changes in ctDNA levels are strongly linked to the duration of ICI benefit in mUC and may contribute to timely therapy modifications. PATIENT SUMMARY Benefit from immunotherapy can be predicted after only 3 wk of treatment by investigating cancer DNA in blood. This could help in timely therapy changes for urothelial cancer patients with limited benefit from immunotherapy.
Collapse
Affiliation(s)
- Sofie H Tolmeijer
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sandra van Wilpe
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maartje J Geerlings
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daniel von Rhein
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tineke J Smilde
- Department of Medical Oncology, Jeroen Bosch Ziekenhuis, 's-Hertogenbosch, The Netherlands
| | - Iris S H Kloots
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Harm Westdorp
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mustafa Coskuntürk
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Irma M Oving
- Department of Medical Oncology, Ziekenhuisgroep Twente, Almelo, The Netherlands
| | - Jolique A van Ipenburg
- Department of Pathology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Antoine G van der Heijden
- Department of Urology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom Hofste
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan M Weiss
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack A Schalken
- Department of Urology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Winald R Gerritsen
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pathology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
22
|
Taguchi S, Kawai T, Nakagawa T, Kume H. Latest evidence on clinical outcomes and prognostic factors of advanced urothelial carcinoma in the era of immune checkpoint inhibitors: a narrative review. Jpn J Clin Oncol 2024; 54:254-264. [PMID: 38109484 DOI: 10.1093/jjco/hyad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/25/2023] [Indexed: 12/20/2023] Open
Abstract
The management of advanced (locally advanced or metastatic) urothelial carcinoma has been revolutionized since pembrolizumab was introduced in 2017. Several prognostic factors for advanced urothelial carcinoma treated with pembrolizumab have been reported, including conventional parameters such as performance status and visceral (especially liver) metastasis, laboratory markers such as the neutrophil-to-lymphocyte ratio, sarcopenia, histological/genomic markers such as programmed cell death ligand 1 immunohistochemistry and tumor mutational burden, variant histology, immune-related adverse events, concomitant medications in relation to the gut microbiome, primary tumor site (bladder cancer versus upper tract urothelial carcinoma) and history/combination of radiotherapy. The survival time of advanced urothelial carcinoma has been significantly prolonged (or 'doubled' from 1 to 2 years) after the advent of pembrolizumab, which will be further improved with novel agents such as avelumab and enfortumab vedotin. This review summarizes the latest evidence on clinical outcomes and prognostic factors of advanced urothelial carcinoma in the contemporary era of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Satoru Taguchi
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Taketo Kawai
- Department of Urology, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Tohru Nakagawa
- Department of Urology, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
23
|
Huelster HL, Gould B, Schiftan EA, Camperlengo L, Davaro F, Rose KM, Soupir AC, Jia S, Zheng T, Sexton WJ, Pow-Sang J, Spiess PE, Daniel Grass G, Wang L, Wang X, Vosoughi A, Necchi A, Meeks JJ, Faltas BM, Du P, Li R. Novel Use of Circulating Tumor DNA to Identify Muscle-invasive and Non-organ-confined Upper Tract Urothelial Carcinoma. Eur Urol 2024; 85:283-292. [PMID: 37802683 DOI: 10.1016/j.eururo.2023.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/28/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Optimal patient selection for neoadjuvant chemotherapy prior to surgical extirpation is limited by the inaccuracy of contemporary clinical staging methods in high-risk upper tract urothelial carcinoma (UTUC). OBJECTIVE To investigate whether the detection of plasma circulating tumor DNA (ctDNA) can predict muscle-invasive (MI) and non-organ-confined (NOC) UTUC. DESIGN, SETTING, AND PARTICIPANTS Plasma cell-free DNA was prospectively collected from chemotherapy-naïve, high-risk UTUC patients undergoing surgical extirpation and sequenced using a 152-gene panel and low-pass whole-genome sequencing. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS To test for concordance, whole-exome sequencing was performed on matching tumor samples. The performance of ctDNA for predicting MI/NOC UTUC was summarized using the area under a receiver-operating curve, and a variant count threshold for predicting MI/NOC disease was determined by maximizing Youden's J statistic. Kaplan-Meier methods estimated survival, and Mantel-Cox log-rank testing assessed the association between preoperative ctDNA positivity and clinical outcomes. RESULTS AND LIMITATIONS Of 30 patients enrolled prospectively, 14 were found to have MI/NOC UTUC. At least one ctDNA variant was detected from 21/30 (70%) patients, with 52% concordance with matching tumor samples. Detection of at least two panel-based molecular alterations yielded 71% sensitivity at 94% specificity to predict MI/NOC UTUC. Imposing this threshold in combination with a plasma copy number burden score of >6.5 increased sensitivity to 79% at 94% specificity. Furthermore, the presence of ctDNA was strongly prognostic for progression-free survival (PFS; 1-yr PFS 69% vs 100%, p < 0.001) and cancer-specific survival (CSS; 1-yr CSS 56% vs 100%, p = 0.016). CONCLUSIONS The detection of plasma ctDNA prior to extirpative surgery was highly predictive of MI/NOC UTUC and strongly prognostic of PFS and CSS. Preoperative ctDNA demonstrates promise as a biomarker for selecting patients to undergo neoadjuvant chemotherapy prior to nephroureterectomy. PATIENT SUMMARY Here, we show that DNA from upper tract urothelial tumors can be detected in the blood prior to surgical removal of the kidney or ureter. This circulating tumor DNA can be used to predict that upper tract urothelial carcinoma is invasive into the muscular lining of the urinary tract and may help identify those patients who could benefit from chemotherapy prior to surgery.
Collapse
Affiliation(s)
- Heather L Huelster
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Elizabeth A Schiftan
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Lucia Camperlengo
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Facundo Davaro
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kyle M Rose
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alex C Soupir
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | - Wade J Sexton
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Julio Pow-Sang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - G Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Aram Vosoughi
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrea Necchi
- Department of GU Medical Oncology, IRCCS San Raffaele Hospital and Scientific Institute, Milan, Italy
| | - Joshua J Meeks
- Departments of Urology and Biochemistry, Northwestern University, Chicago, IL, USA
| | - Bishoy M Faltas
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Pan Du
- Predicine Inc., Hayward, CA, USA
| | - Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
24
|
Fonseca NM, Maurice-Dror C, Herberts C, Tu W, Fan W, Murtha AJ, Kollmannsberger C, Kwan EM, Parekh K, Schönlau E, Bernales CQ, Donnellan G, Ng SWS, Sumiyoshi T, Vergidis J, Noonan K, Finch DL, Zulfiqar M, Miller S, Parimi S, Lavoie JM, Hardy E, Soleimani M, Nappi L, Eigl BJ, Kollmannsberger C, Taavitsainen S, Nykter M, Tolmeijer SH, Boerrigter E, Mehra N, van Erp NP, De Laere B, Lindberg J, Grönberg H, Khalaf DJ, Annala M, Chi KN, Wyatt AW. Prediction of plasma ctDNA fraction and prognostic implications of liquid biopsy in advanced prostate cancer. Nat Commun 2024; 15:1828. [PMID: 38418825 PMCID: PMC10902374 DOI: 10.1038/s41467-024-45475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
No consensus strategies exist for prognosticating metastatic castration-resistant prostate cancer (mCRPC). Circulating tumor DNA fraction (ctDNA%) is increasingly reported by commercial and laboratory tests but its utility for risk stratification is unclear. Here, we intersect ctDNA%, treatment outcomes, and clinical characteristics across 738 plasma samples from 491 male mCRPC patients from two randomized multicentre phase II trials and a prospective province-wide blood biobanking program. ctDNA% correlates with serum and radiographic metrics of disease burden and is highest in patients with liver metastases. ctDNA% strongly predicts overall survival, progression-free survival, and treatment response independent of therapeutic context and outperformed established prognostic clinical factors. Recognizing that ctDNA-based biomarker genotyping is limited by low ctDNA% in some patients, we leverage the relationship between clinical prognostic factors and ctDNA% to develop a clinically-interpretable machine-learning tool that predicts whether a patient has sufficient ctDNA% for informative ctDNA genotyping (available online: https://www.ctDNA.org ). Our results affirm ctDNA% as an actionable tool for patient risk stratification and provide a practical framework for optimized biomarker testing.
Collapse
Affiliation(s)
- Nicolette M Fonseca
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Cameron Herberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wilson Tu
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - William Fan
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Andrew J Murtha
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Edmond M Kwan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
- Department of Medicine, School of Clinical Sciences; Monash University, Melbourne, VIC, Australia
| | - Karan Parekh
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elena Schönlau
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cecily Q Bernales
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Gráinne Donnellan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sarah W S Ng
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Takayuki Sumiyoshi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Joanna Vergidis
- Department of Medical Oncology, BC Cancer, Victoria, BC, Canada
| | - Krista Noonan
- Department of Medical Oncology, BC Cancer, Surrey, BC, Canada
| | - Daygen L Finch
- Department of Medical Oncology, BC Cancer, Kelowna, BC, Canada
| | | | - Stacy Miller
- Department of Radiation Oncology, BC Cancer, Prince George, BC, Canada
| | - Sunil Parimi
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | | | - Edward Hardy
- Tom McMurtry & Peter Baerg Cancer Centre, Vernon Jubilee Hospital, Vernon, BC, Canada
| | - Maryam Soleimani
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Lucia Nappi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Bernhard J Eigl
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | | | - Sinja Taavitsainen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Sofie H Tolmeijer
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Emmy Boerrigter
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Nielka P van Erp
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Bram De Laere
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Daniel J Khalaf
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Matti Annala
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland.
| | - Kim N Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada.
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.
| |
Collapse
|
25
|
Alberca-del Arco F, Prieto-Cuadra D, Santos-Perez de la Blanca R, Sáez-Barranquero F, Matas-Rico E, Herrera-Imbroda B. New Perspectives on the Role of Liquid Biopsy in Bladder Cancer: Applicability to Precision Medicine. Cancers (Basel) 2024; 16:803. [PMID: 38398192 PMCID: PMC10886494 DOI: 10.3390/cancers16040803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Bladder cancer (BC) is one of the most common tumors in the world. Cystoscopy and tissue biopsy are the standard methods in screening and early diagnosis of suspicious bladder lesions. However, they are invasive procedures that may cause pain and infectious complications. Considering the limitations of both procedures, and the recurrence and resistance to BC treatment, it is necessary to develop a new non-invasive methodology for early diagnosis and multiple evaluations in patients under follow-up for bladder cancer. In recent years, liquid biopsy has proven to be a very useful diagnostic tool for the detection of tumor biomarkers. This non-invasive technique makes it possible to analyze single tumor components released into the peripheral circulation and to monitor tumor progression. Numerous biomarkers are being studied and interesting clinical applications for these in BC are being presented, with promising results in early diagnosis, detection of microscopic disease, and prediction of recurrence and response to treatment.
Collapse
Affiliation(s)
- Fernardo Alberca-del Arco
- Departamento de Urología, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain; (F.A.-d.A.); (R.S.-P.d.l.B.); (F.S.-B.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), 29590 Málaga, Spain
| | - Daniel Prieto-Cuadra
- Departamento de Anatomía Patológica, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain;
- Unidad de Gestion Clinica de Anatomia Patologica, IBIMA, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- SYNLAB Pathology, 29007 Málaga, Spain
| | - Rocio Santos-Perez de la Blanca
- Departamento de Urología, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain; (F.A.-d.A.); (R.S.-P.d.l.B.); (F.S.-B.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), 29590 Málaga, Spain
- Genitourinary Alliance for Research and Development (GUARD Consortium), 29071 Málaga, Spain
| | - Felipe Sáez-Barranquero
- Departamento de Urología, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain; (F.A.-d.A.); (R.S.-P.d.l.B.); (F.S.-B.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), 29590 Málaga, Spain
- Genitourinary Alliance for Research and Development (GUARD Consortium), 29071 Málaga, Spain
| | - Elisa Matas-Rico
- Departamento de Urología, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain; (F.A.-d.A.); (R.S.-P.d.l.B.); (F.S.-B.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), 29590 Málaga, Spain
- Genitourinary Alliance for Research and Development (GUARD Consortium), 29071 Málaga, Spain
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga (UMA), 29071 Málaga, Spain
| | - Bernardo Herrera-Imbroda
- Departamento de Urología, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain; (F.A.-d.A.); (R.S.-P.d.l.B.); (F.S.-B.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), 29590 Málaga, Spain
- Genitourinary Alliance for Research and Development (GUARD Consortium), 29071 Málaga, Spain
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Universidad de Málaga (UMA), 29071 Málaga, Spain
| |
Collapse
|
26
|
Rijnders M, Nakauma-González JA, Robbrecht DGJ, Gil-Jimenez A, Balcioglu HE, Oostvogels AAM, Aarts MJB, Boormans JL, Hamberg P, van der Heijden MS, Szabados BE, van Leenders GJLH, Mehra N, Voortman J, Westgeest HM, de Wit R, van der Veldt AAM, Debets R, Lolkema MP. Gene-expression-based T-Cell-to-Stroma Enrichment (TSE) score predicts response to immune checkpoint inhibitors in urothelial cancer. Nat Commun 2024; 15:1349. [PMID: 38355607 PMCID: PMC10866910 DOI: 10.1038/s41467-024-45714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) improve overall survival in patients with metastatic urothelial cancer (mUC), but therapeutic success at the individual patient level varies significantly. Here we identify predictive markers of response, based on whole-genome DNA (n = 70) and RNA-sequencing (n = 41) of fresh metastatic biopsy samples, collected prior to treatment with pembrolizumab. We find that PD-L1 combined positivity score does not, whereas tumor mutational burden and APOBEC mutagenesis modestly predict response. In contrast, T cell-to-stroma enrichment (TSE) score, computed from gene expression signature data to capture the relative abundance of T cells and stromal cells, predicts response to immunotherapy with high accuracy. Patients with a positive and negative TSE score show progression free survival rates at 6 months of 67 and 0%, respectively. The abundance of T cells and stromal cells, as reflected by the TSE score is confirmed by immunofluorescence in tumor tissue, and its good performance in two independent ICI-treated cohorts of patients with mUC (IMvigor210) and muscle-invasive UC (ABACUS) validate the predictive power of the TSE score. In conclusion, the TSE score represents a clinically applicable metric that potentially supports the prospective selection of patients with mUC for ICI treatment.
Collapse
Affiliation(s)
- Maud Rijnders
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J Alberto Nakauma-González
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Debbie G J Robbrecht
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alberto Gil-Jimenez
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Hayri E Balcioglu
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Astrid A M Oostvogels
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maureen J B Aarts
- Department of Medical Oncology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joost L Boormans
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Paul Hamberg
- Department of Medical Oncology, Franciscus Gasthuis & Vlietland Hospital, Rotterdam/Schiedam, The Netherlands
| | - Michiel S van der Heijden
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Geert J L H van Leenders
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jens Voortman
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Hans M Westgeest
- Department of Internal Medicine, Amphia Hospital Breda, Breda, The Netherlands
| | - Ronald de Wit
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Astrid A M van der Veldt
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Reno Debets
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Martijn P Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Amgen Inc., Breda, The Netherlands
| |
Collapse
|
27
|
Yang Y, Wang J, Wang J, Zhao X, Zhang T, Yang Y, Pang J, Ou Q, Wu L, Xu X, Xu K, Zhao J, Bai N, Yang P, Wang S, Wang L, Bi N. Unrevealing the therapeutic benefits of radiotherapy and consolidation immunotherapy using ctDNA-defined tumor clonality in unresectable locally advanced non-small cell lung cancer. Cancer Lett 2024; 582:216569. [PMID: 38101608 DOI: 10.1016/j.canlet.2023.216569] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Progression occurs in approximately two-thirds of patients with locally advanced non-small cell lung cancer (LA-NSCLC) receiving chemoradiation and consolidation immunotherapy. Molecular indicators for outcome prediction are under development. A novel metric, the ratio of mean to max variant allele frequency (mmVAF), was derived from 431 pre-treatment tissue biopsies from The Cancer Genome Atlas and evaluated in serial circulating tumor DNA (ctDNA) from 70 LA-NSCLC patients receiving definitive radiotherapy/chemoradiotherapy (RT/CRT) with/without immunotherapy. High mmVAFs in pre-treatment tissue biopsies, indicating clonal predominant tumors (P < 0.01), were associated with inferior overall survival [OS, hazard ratio (HR): 1.48, 95 % confidence interval (CI): 1.11-1.98]. Similar associations of mmVAF with clonality (P < 0.01) and OS (HR: 2.24, 95 % CI: 0.71-7.08) were observed in pre-treatment ctDNA. At 1-month post-RT, ctDNA mmVAF-high patients receiving consolidation immunotherapy exhibited improved progression-free survival (PFS) compared to those who did not (HR: 0.14, 95 % CI: 0.03-0.67). From the baseline to week 4 of RT and/or 1-month post-RT, survival benefits from consolidation immunotherapy were exclusively observed in ctDNA mmVAF-increased patients (PFS, HR: 0.39, 95 % CI: 0.14-1.15), especially in terms of distant metastasis (HR: 0.11, 95 % CI: 0.01-0.95). In summary, our longitudinal data demonstrated the applicability of ctDNA-defined clonality for prognostic stratification and immunotherapy benefit prediction in LA-NSCLC.
Collapse
Affiliation(s)
- Yufan Yang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Radiation Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianyang Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingbo Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaotian Zhao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Tao Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yin Yang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaohui Pang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Qiuxiang Ou
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Linfang Wu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kunpeng Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jingjing Zhao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Bai
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Peng Yang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Sha Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Luhua Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.
| | - Nan Bi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
28
|
Ashley S, Choudhury A, Hoskin P, Song Y, Maitre P. Radiotherapy in metastatic bladder cancer. World J Urol 2024; 42:47. [PMID: 38244091 PMCID: PMC10799782 DOI: 10.1007/s00345-023-04744-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/30/2023] [Indexed: 01/22/2024] Open
Abstract
PURPOSE To review available and emerging evidence of radiotherapy for symptom management and disease control in metastatic bladder cancer. METHODS A literature search and subsequent cross-referencing were carried out for articles in the PubMed and Scopus databases using terms 'radiotherapy' OR 'palliative radiation therapy' with 'metastatic bladder cancer' OR 'advanced bladder cancer' between 1990 and 2023, excluding articles with no English translation. RESULTS Palliative radiotherapy is an effective and accessible treatment for the alleviation of haematuria and pain due to the primary and metastatic disease. With growing recognition of oligometastatic disease state at diagnosis, response, or progression, radiotherapy can consolidate response by ablating residual or resistant lesions. Experience with other primary cancers supports positive impact of radiotherapy on disease control, quality of life, and survival in oligometastatic stage, without significant adverse effects. Alongside immune checkpoint inhibitors, fibroblast growth receptor inhibitors, and antibody-drug conjugates, the immunomodulatory potential of radiotherapy is being explored in combination with these systemic therapies for metastatic bladder cancer. CONCLUSION Radiotherapy is an effective, safe, and accessible treatment modality for palliation as well as disease control in various clinical settings of metastatic bladder cancer. Its role in oligometastatic stage in combination with systemic therapy is expected to expand with emerging evidence.
Collapse
Affiliation(s)
- Sophie Ashley
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Ananya Choudhury
- The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Manchester Biomedical Research Centre, Manchester, United Kingdom
| | - Peter Hoskin
- The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - YeePei Song
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Priyamvada Maitre
- The Christie NHS Foundation Trust, Manchester, United Kingdom.
- Department of Radiation Oncology, Tata Memorial Hospital and Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Homi Bhabha National Institute (HBNI), Ernest Borges Road, Parel, Mumbai, India.
| |
Collapse
|
29
|
Witz A, Dardare J, Betz M, Gilson P, Merlin JL, Harlé A. Tumor-derived cell-free DNA and circulating tumor cells: partners or rivals in metastasis formation? Clin Exp Med 2024; 24:2. [PMID: 38231464 PMCID: PMC10794481 DOI: 10.1007/s10238-023-01278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
The origin of metastases is a topic that has sparked controversy. Despite recent advancements, metastatic disease continues to pose challenges. The first admitted model of how metastases develop revolves around cells breaking away from the primary tumor, known as circulating tumor cells (CTCs). These cells survive while circulating through the bloodstream and subsequently establish themselves in secondary organs, a process often referred to as the "metastatic cascade". This intricate and dynamic process involves various steps, but all the mechanisms behind metastatic dissemination are not yet comprehensively elucidated. The "seed and soil" theory has shed light on the phenomenon of metastatic organotropism and the existence of pre-metastatic niches. It is now established that these niches can be primed by factors secreted by the primary tumor before the arrival of CTCs. In particular, exosomes have been identified as important contributors to this priming. Another concept then emerged, i.e. the "genometastasis" theory, which challenged all other postulates. It emphasizes the intriguing but promising role of cell-free DNA (cfDNA) in metastasis formation through oncogenic formation of recipient cells. However, it cannot be ruled out that all these theories are intertwined. This review outlines the primary theories regarding the metastases formation that involve CTCs, and depicts cfDNA, a potential second player in the metastasis formation. We discuss the potential interrelationships between CTCs and cfDNA, and propose both in vitro and in vivo experimental strategies to explore all plausible theories.
Collapse
Affiliation(s)
- Andréa Witz
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France.
| | - Julie Dardare
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France
| | - Margaux Betz
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France
| | - Pauline Gilson
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France
| | - Jean-Louis Merlin
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France
| | - Alexandre Harlé
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France
| |
Collapse
|
30
|
Akashi Y, Yamamoto Y, Hashimoto M, Adomi S, Fujita K, Kiba K, Minami T, Yoshimura K, Hirayama A, Uemura H. Prognostic Factors of Platinum-Refractory Advanced Urothelial Carcinoma Treated with Pembrolizumab. Cancers (Basel) 2023; 15:5780. [PMID: 38136326 PMCID: PMC10742147 DOI: 10.3390/cancers15245780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
INTRODUCTION Immune checkpoint inhibitor (ICI) therapy has significantly improved the prognosis of some patients with advanced urothelial carcinoma (UC), but it does not provide high therapeutic efficacy in all patients. Therefore, identifying predictive biomarkers is crucial in determining which patients are candidates for ICI treatment. This study aimed to identify the predictors of ICI treatment response in patients with platinum-refractory advanced UC treated with pembrolizumab. METHODS Patients with platinum-refractory advanced UC who had received pembrolizumab at two hospitals in Japan were included. Univariate and multivariate analyses were performed to identify biomarkers for progression-free survival (PFS) and overall survival (OS). RESULTS Forty-one patients were evaluable for this analysis. Their median age was 75 years, and the vast majority of the patients were male (85.4%). The objective response rate was 29.3%, with a median overall survival (OS) of 17.8 months. On multivariate analysis, an Eastern Cooperative Oncology Group performance status (ECOG-PS) ≥ 2 (HR = 6.33, p = 0.03) and a baseline neutrophil-to-lymphocyte ratio (NLR) > 3 (HR = 2.79, p = 0.04) were significantly associated with poor OS. Antibiotic exposure did not have a significant impact on either PFS or OS. CONCLUSIONS ECOG-PS ≥ 2 and baseline NLR > 3 were independent risk factors for OS in patients with platinum-refractory advanced UC treated with pembrolizumab. Antibiotic exposure was not a predictor of ICI treatment response.
Collapse
Affiliation(s)
- Yasunori Akashi
- Department of Urology, Kindai University Nara Hospital, Ikoma 630-0293, Japan; (Y.A.)
| | - Yutaka Yamamoto
- Department of Urology, Kindai University Nara Hospital, Ikoma 630-0293, Japan; (Y.A.)
| | - Mamoru Hashimoto
- Department of Urology, Kindai University Hospital, Osakasayama 589-8511, Japan
| | - Shogo Adomi
- Department of Urology, Kindai University Hospital, Osakasayama 589-8511, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Hospital, Osakasayama 589-8511, Japan
| | - Keisuke Kiba
- Department of Urology, Kindai University Nara Hospital, Ikoma 630-0293, Japan; (Y.A.)
| | - Takafumi Minami
- Department of Urology, Kindai University Hospital, Osakasayama 589-8511, Japan
| | - Kazuhiro Yoshimura
- Department of Urology, Kindai University Hospital, Osakasayama 589-8511, Japan
| | - Akihide Hirayama
- Department of Urology, Kindai University Nara Hospital, Ikoma 630-0293, Japan; (Y.A.)
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Hospital, Osakasayama 589-8511, Japan
| |
Collapse
|
31
|
Helal C, Pobel C, Bayle A, Vasseur D, Nicotra C, Blanc-Durand F, Naoun N, Bernard-Tessier A, Patrikidou A, Colomba E, Flippot R, Fuerea A, Auger N, Ngo Camus M, Besse B, Lacroix L, Rouleau E, Ponce S, Italiano A, Loriot Y. Clinical utility of plasma ctDNA sequencing in metastatic urothelial cancer. Eur J Cancer 2023; 195:113368. [PMID: 37897866 DOI: 10.1016/j.ejca.2023.113368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Genomic stratification may help improve the management of patients with metastatic urothelial cancer (mUC), given the recent identification of targetable alterations. However, the collection of tissue samples remains challenging. Here, we assessed the clinical utility of plasma circulating tumour DNA (ctDNA) sequencing in these patients. METHODS Patients with mUC were prospectively enroled in the STING trial (NCT04932525), in which ctDNA was profiled using the Foundation One Liquid CDx Assay (324 genes, blood tumour mutational burden [bTMB], microsatellite instability status). Each genomic report was reviewed by a multidisciplinary tumor board (MTB). RESULTS Between January 2021 and June 2022, 140 mUC patients underwent molecular profiling. The median time to obtain the assay results was 20 days ((confidence interval) CI95%: [20,21]). The ctDNA analysis reproduced the somatic genomic landscape of previous tissue-based cohorts. Concordance for serial ctDNA samples was strong (r = 0.843 CI95%: [0.631-0.938], p < 0.001). At least one actionable target was detected in 63 patients (45%) with a total of 35 actionable alterations, including bTMB high (≥10 mutations/Mb) (N = 39, 21.1%), FGFR3 (N = 20, 10.8%), and Homologous recombination deficiency (HRD) alterations (N = 14, 7.6%). MTB recommended matched therapy in 63 patients (45.0%). Eight patients (5.7%) were treated, with an overall response rate of 50% (CI95%: 15.70-84.30) and a median progression-free survival (PFS) of 5.2 months (CI95%: 4.1 - NR). FGFR3 alterations were associated with a shorter PFS in patients treated with immunotherapy. CONCLUSION Overall, we demonstrated that genomic profiling with ctDNAs in mUC is a reliable and feasible approach for the timely initiation of genotype-matched therapies.
Collapse
Affiliation(s)
- Clara Helal
- Sorbonne University, Paris, France; Département de médecine oncologique, Gustave Roussy, université Paris-Saclay, Villejuif, France
| | | | - Arnaud Bayle
- INSERM U981, Gustave Roussy, Villejuif, France; Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Damien Vasseur
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, Gustave Roussy, Université Paris-Saclay, Villejuif, France; AMMICA, INSERM US23/CNRS UMS3655,Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Claudio Nicotra
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Félix Blanc-Durand
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Natacha Naoun
- Département de médecine oncologique, Gustave Roussy, université Paris-Saclay, Villejuif, France
| | - Alice Bernard-Tessier
- Département de médecine oncologique, Gustave Roussy, université Paris-Saclay, Villejuif, France; Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Anna Patrikidou
- Département de médecine oncologique, Gustave Roussy, université Paris-Saclay, Villejuif, France
| | - Emeline Colomba
- Département de médecine oncologique, Gustave Roussy, université Paris-Saclay, Villejuif, France
| | - Ronan Flippot
- Département de médecine oncologique, Gustave Roussy, université Paris-Saclay, Villejuif, France
| | - Alina Fuerea
- Département de médecine oncologique, Gustave Roussy, université Paris-Saclay, Villejuif, France
| | - Nathalie Auger
- Département de médecine oncologique, Gustave Roussy, université Paris-Saclay, Villejuif, France
| | - Maud Ngo Camus
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Benjamin Besse
- Département de médecine oncologique, Gustave Roussy, université Paris-Saclay, Villejuif, France
| | - Ludovic Lacroix
- Département de médecine oncologique, Gustave Roussy, université Paris-Saclay, Villejuif, France
| | - Etienne Rouleau
- Département de médecine oncologique, Gustave Roussy, université Paris-Saclay, Villejuif, France
| | - Santiago Ponce
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Antoine Italiano
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Yohann Loriot
- Département de médecine oncologique, Gustave Roussy, université Paris-Saclay, Villejuif, France; INSERM U981, Gustave Roussy, Villejuif, France; Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
32
|
Rapado-González Ó, Rodríguez-Ces AM, López-López R, Suárez-Cunqueiro MM. Liquid biopsies based on cell-free DNA as a potential biomarker in head and neck cancer. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:289-302. [PMID: 37680614 PMCID: PMC10480573 DOI: 10.1016/j.jdsr.2023.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
In the era of 'precision medicine', liquid biopsies based on cell-free DNA (cfDNA) have emerged as a promising tool in the oncology field. cfDNA from cancer patients is a mixture of tumoral (ctDNA) and non-tumoral DNA originated from healthy, cancer and tumor microenvironmental cells. Apoptosis, necrosis, and active secretion from extracellular vesicles represent the main mechanisms of cfDNA release into the physiological body fluids. Focused on HNC, two main types of cfDNA can be identified: the circulating cfDNA (ccfDNA) and the salivary cfDNA (scfDNA). Numerous studies have reported on the potential of cfDNA analysis as potential diagnostic, prognostic, and monitoring biomarker for HNC. Thus, ctDNA has emerged as an attractive strategy to detect cancer specific genetic and epigenetic alterations including DNA somatic mutations and DNA methylation patterns. This review aims to provide an overview of the up-to-date studies evaluating the value of the analysis of total cfDNA, cfDNA fragment length, and ctDNA analysis at DNA mutation and methylation level in HNC patients.
Collapse
Affiliation(s)
- Óscar Rapado-González
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana María Rodríguez-Ces
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Rafael López-López
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), 15706 Santiago de Compostela, Spain
| | - María Mercedes Suárez-Cunqueiro
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
33
|
Santini D, Banna GL, Buti S, Isella L, Stellato M, Roberto M, Iacovelli R. Navigating the Rapidly Evolving Advanced Urothelial Carcinoma Treatment Landscape: Insights from Italian Experts. Curr Oncol Rep 2023; 25:1345-1362. [PMID: 37855848 PMCID: PMC10640402 DOI: 10.1007/s11912-023-01461-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/20/2023]
Abstract
PURPOSE OF REVIEW To discuss recent advances in the treatment of advanced urothelial carcinoma (UC) and how best to incorporate new therapies into clinical practice. RECENT FINDINGS There have been several recent practice-changing phase 2 and 3 trials of immune checkpoint inhibitors (ICIs), antibody-drug conjugates (ADCs), and targeted agents in advanced UC. Based on data from these trials, ICIs can be used as first-line maintenance therapy in patients who do not progress on platinum-based chemotherapy, second-line therapy for those with progression, and first-line therapy in cisplatin-ineligible patients with PD-L1 expression; ADCs and targeted agents provide later-line treatment options. Despite substantial progress in the treatment of advanced UC, there are still many uncertainties, including the optimal treatment sequence for novel agents, and reliable predictive biomarkers to aid in treatment selection. There is also an unmet need for effective treatment options in patients unfit for any platinum-based chemotherapy.
Collapse
Affiliation(s)
- Daniele Santini
- Medical Oncology A, University of Rome, Policlinico Umberto I, "La Sapienza, Rome, Italy
| | - Giuseppe Luigi Banna
- Portsmouth Hospitals University NHS Trust, Portsmouth, PO6 3LY, UK
- Faculty of Science and Health, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2UP, UK
| | - Sebastiano Buti
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126, Parma, Italy.
- Oncology Unit, University Hospital of Parma, Viale A. Gramsci 14, 43126, Parma, Italy.
| | - Luca Isella
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126, Parma, Italy
| | - Marco Stellato
- Medical Oncology Department, Fondazione IRCCS National Cancer Institute, Milan, Italy
| | - Michela Roberto
- UOC Oncology A, Department of Radiological, Oncological and Anatomo-Pathological Science, Policlinico Umberto I, "La Sapienza" University of Rome, Rome, Italy
| | - Roberto Iacovelli
- UOC Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
34
|
Dyrskjøt L, Hansel DE, Efstathiou JA, Knowles MA, Galsky MD, Teoh J, Theodorescu D. Bladder cancer. Nat Rev Dis Primers 2023; 9:58. [PMID: 37884563 PMCID: PMC11218610 DOI: 10.1038/s41572-023-00468-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Bladder cancer is a global health issue with sex differences in incidence and prognosis. Bladder cancer has distinct molecular subtypes with multiple pathogenic pathways depending on whether the disease is non-muscle invasive or muscle invasive. The mutational burden is higher in muscle-invasive than in non-muscle-invasive disease. Commonly mutated genes include TERT, FGFR3, TP53, PIK3CA, STAG2 and genes involved in chromatin modification. Subtyping of both forms of bladder cancer is likely to change considerably with the advent of single-cell analysis methods. Early detection signifies a better disease prognosis; thus, minimally invasive diagnostic options are needed to improve patient outcomes. Urine-based tests are available for disease diagnosis and surveillance, and analysis of blood-based cell-free DNA is a promising tool for the detection of minimal residual disease and metastatic relapse. Transurethral resection is the cornerstone treatment for non-muscle-invasive bladder cancer and intravesical therapy can further improve oncological outcomes. For muscle-invasive bladder cancer, radical cystectomy with neoadjuvant chemotherapy is the standard of care with evidence supporting trimodality therapy. Immune-checkpoint inhibitors have demonstrated benefit in non-muscle-invasive, muscle-invasive and metastatic bladder cancer. Effective management requires a multidisciplinary approach that considers patient characteristics and molecular disease characteristics.
Collapse
Affiliation(s)
- Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Donna E Hansel
- Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason A Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Matthew D Galsky
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremy Teoh
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Dan Theodorescu
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Zhang C, Li Z, Liu J, Liu C, Zhang H, Lee WG, Yao C, Guo H, Xu F. Synthetic Gene Circuit-Based Assay with Multilevel Switch Enables Background-Free and Absolute Quantification of Circulating Tumor DNA. RESEARCH (WASHINGTON, D.C.) 2023; 6:0217. [PMID: 37789988 PMCID: PMC10543738 DOI: 10.34133/research.0217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/02/2023] [Indexed: 10/05/2023]
Abstract
Circulating tumor DNA (ctDNA) detection has found widespread applications in tumor diagnostics and treatment, where the key is to obtain accurate quantification of ctDNA. However, this remains challenging due to the issue of background noise associated with existing assays. In this work, we developed a synthetic gene circuit-based assay with multilevel switch (termed CATCH) for background-free and absolute quantification of ctDNA. The multilevel switch combining a small transcription activating RNA and a toehold switch was designed to simultaneously regulate transcription and translation processes in gene circuit to eliminate background noise. Moreover, such a multilevel switch-based gene circuit was integrated with a Cas9 nickase H840A (Cas9n) recognizer and a molecular beacon reporter to form CATCH for ctDNA detection. The CATCH can be implemented in one-pot reaction at 35 °C with virtually no background noise, and achieve robust absolute quantification of ctDNA when integrated with a digital chip (i.e., digital CATCH). Finally, we validated the clinical capability of CATCH by detecting drug-resistant ctDNA mutations from the plasma of 76 non-small cell lung cancer (NSCLC) patients, showing satisfying clinical sensitivity and specificity. We envision that the simple and robust CATCH would be a powerful tool for next-generation ctDNA detection.
Collapse
Affiliation(s)
- Chao Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
| | - Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
- TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, P.R. China
| | - Jie Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
| | - Chang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
| | - Haoqing Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
| | - Won Gu Lee
- Department of Mechanical Engineering,
Kyung Hee University, Yongin 17104, Republic of Korea
| | - Chunyan Yao
- Department of Transfusion Medicine, Southwest Hospital,
Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
| |
Collapse
|
36
|
Zang J, Zhang R, Jin D, Xie F, Shahatiaili A, Wu G, Zhang Y, Zhao Z, Du P, Jia S, Chen H, Zhuang G. Integrated longitudinal circulating tumor DNA profiling predicts immunotherapy response of metastatic urothelial carcinoma in the POLARIS-03 trial. J Pathol 2023; 261:198-209. [PMID: 37584165 DOI: 10.1002/path.6166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 08/17/2023]
Abstract
Non-invasive biomarkers for immunotherapy response remain a compelling unmet medical need. POLARIS-03 is a multicenter phase II trial to evaluate the safety and efficacy of toripalimab (anti-programmed cell death 1) in refractory metastatic urothelial carcinoma (mUC). We assessed the predictive utility of longitudinal circulating tumor DNA (ctDNA) analysis from a single-institution biomarker cohort. Twenty-seven mUC patients receiving toripalimab (3 mg/kg Q2W) at Ren Ji Hospital were enrolled. Serial plasma specimens were obtained at baseline and then every two cycles during treatment. The 600-gene panel (PredicineATLAS™) liquid biopsy assay was applied to probe somatic variants and cancer cell fraction (CCF). Low-pass whole genome sequencing was used to determine the copy number abnormality (CNA) score. Across the entire cohort, we observed different degrees of concordance between somatic aberrations detected by ctDNA and those inferred by matched tumor samples. Although the baseline CCF or CNA had limited predictive value, early ctDNA response at week 8 was associated with toripalimab efficacy and prolonged patient survival. Integrating CCF and CNA decrease achieved a superior accuracy of 90.5% in classifying responders and non-responders and predicted long-term benefit from toripalimab. Dynamic changes in the CCF and CNA in blood exquisitely reflected radiographic assessment of malignant lesions, including those with FGFR3-TACC3 gene fusion or microsatellite instability. This study demonstrates the feasibility and effectiveness of integrated longitudinal ctDNA profiling as a potential biomarker in mUC patients undergoing immunotherapy and supports further clinical evaluation of minimally invasive liquid biopsy assays for treatment stratification and therapy monitoring. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jingyu Zang
- State Key Laboratory of Systems Medicine for Cancer, Department of Radiation Oncology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ruiyun Zhang
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Di Jin
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Feng Xie
- Huidu Shanghai Medical Sciences Ltd, Shanghai, PR China
| | - Akezhouli Shahatiaili
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Guangyu Wu
- Department of Imaging, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yue Zhang
- Huidu Shanghai Medical Sciences Ltd, Shanghai, PR China
| | | | - Pan Du
- Predicine, Inc., Hayward, CA, USA
| | - Shidong Jia
- Huidu Shanghai Medical Sciences Ltd, Shanghai, PR China
| | - Haige Chen
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Guanglei Zhuang
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
37
|
Labaki C, Saad E, Choueiri TK, Bellmunt J. Oligometastatic Bladder Cancer: Defining a Novel Entity. Eur Urol 2023; 84:390-392. [PMID: 37414704 DOI: 10.1016/j.eururo.2023.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023]
Affiliation(s)
- Chris Labaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eddy Saad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joaquim Bellmunt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
38
|
Duwe G, Müller L, Ruckes C, Fischer ND, Frey LJ, Börner JH, Rölz N, Haack M, Sparwasser P, Jorg T, Neumann CCM, Tsaur I, Höfner T, Haferkamp A, Hahn F, Mager R, Brandt MP. Change in Splenic Volume as a Surrogate Marker for Immunotherapy Response in Patients with Advanced Urothelial and Renal Cell Carcinoma-Evaluation of a Novel Approach of Fully Automated Artificial Intelligence Based Splenic Segmentation. Biomedicines 2023; 11:2482. [PMID: 37760923 PMCID: PMC10526098 DOI: 10.3390/biomedicines11092482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND In the treatment of advanced urothelial (aUC) and renal cell carcinoma (aRCC), biomarkers such as PD-1 and PD-L1 are not robust prognostic markers for immunotherapy (IO) response. Previously, a significant association between IO and a change in splenic volume (SV) was described for several tumour entities. To the best of our knowledge, this study presents the first correlation of SV to IO in aUC and aRCC. METHODS All patients with aUC (05/2017-10/2021) and aRCC (01/2012-05/2022) treated with IO at our academic centre were included. SV was measured at baseline, 3 and 9 months after initiation of IO using an in-house developed convolutional neural network-based spleen segmentation method. Uni- and multivariate Cox regression models for overall survival (OS) and progression-free survival (PFS) were used. RESULTS In total, 35 patients with aUC and 30 patients with aRCC were included in the analysis. Lower SV at the three-month follow-up was significantly associated with improved OS in the aRCC group. CONCLUSIONS We describe a new, innovative artificial intelligence-based approach of a radiological surrogate marker for IO response in aUC and aRCC which presents a promising new predictive imaging marker. The data presented implicate improved OS with lower follow-up SV in patients with aRCC.
Collapse
Affiliation(s)
- Gregor Duwe
- Department of Urology and Pediatric Urology, University Medical Center, Johannes-Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Lukas Müller
- Department of Diagnostic and Interventional Radiology, University Medical Center, Johannes-Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Christian Ruckes
- Interdisciplinary Center for Clinical Trials Mainz, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Nikita Dhruva Fischer
- Department of Urology and Pediatric Urology, University Medical Center, Johannes-Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Lisa Johanna Frey
- Department of Urology and Pediatric Urology, University Medical Center, Johannes-Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Jan Hendrik Börner
- Department of Urology and Pediatric Urology, University Medical Center, Johannes-Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Niklas Rölz
- Department of Urology and Pediatric Urology, University Medical Center, Johannes-Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Maximilian Haack
- Department of Urology and Pediatric Urology, University Medical Center, Johannes-Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Peter Sparwasser
- Department of Urology and Pediatric Urology, University Medical Center, Johannes-Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Tobias Jorg
- Department of Diagnostic and Interventional Radiology, University Medical Center, Johannes-Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Christopher C. M. Neumann
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117 Berlin, Germany
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center, Johannes-Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Thomas Höfner
- Department of Urology and Pediatric Urology, University Medical Center, Johannes-Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
- Department of Urology, Ordensklinikum Linz Elisabethinen, Fadingerstraße 1, 4020 Linz, Austria
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center, Johannes-Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Felix Hahn
- Department of Diagnostic and Interventional Radiology, University Medical Center, Johannes-Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Rene Mager
- Department of Urology and Pediatric Urology, University Medical Center, Johannes-Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Maximilian Peter Brandt
- Department of Urology and Pediatric Urology, University Medical Center, Johannes-Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
39
|
Wu S, Li R, Jiang Y, Yu J, Zheng J, Li Z, Li M, Xin K, Wang Y, Xu Z, Li S, Chen X. Liquid biopsy in urothelial carcinoma: Detection techniques and clinical applications. Biomed Pharmacother 2023; 165:115027. [PMID: 37354812 DOI: 10.1016/j.biopha.2023.115027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
The types of urothelial carcinoma (UC) include urothelial bladder cancer and upper tract urothelial carcinoma. Current diagnostic techniques cannot meet the needs of patients. Liquid biopsy is an accurate method of determining the molecular profile of UC and is a cutting-edge and popular technique that is expected to complement existing detection techniques and benefit patients with UC. Circulating tumor cells, cell-free DNA, cell-free RNA, extracellular vesicles, proteins, and metabolites can be found in the blood, urine, or other bodily fluids and are examined during liquid biopsies. This article focuses on the components of liquid biopsies and their clinical applications in UC. Liquid biopsies have tremendous potential in multiple aspects of precision oncology, from early diagnosis and treatment monitoring to predicting prognoses. They may therefore play an important role in the management of UC and precision medicine.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Rong Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yuanhong Jiang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jiazheng Yu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Mingyang Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Kerong Xin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
40
|
Helzer KT, Sharifi MN, Sperger JM, Shi Y, Annala M, Bootsma ML, Reese SR, Taylor A, Kaufmann KR, Krause HK, Schehr JL, Sethakorn N, Kosoff D, Kyriakopoulos C, Burkard ME, Rydzewski NR, Yu M, Harari PM, Bassetti M, Blitzer G, Floberg J, Sjöström M, Quigley DA, Dehm SM, Armstrong AJ, Beltran H, McKay RR, Feng FY, O'Regan R, Wisinski KB, Emamekhoo H, Wyatt AW, Lang JM, Zhao SG. Fragmentomic analysis of circulating tumor DNA-targeted cancer panels. Ann Oncol 2023; 34:813-825. [PMID: 37330052 PMCID: PMC10527168 DOI: 10.1016/j.annonc.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND The isolation of cell-free DNA (cfDNA) from the bloodstream can be used to detect and analyze somatic alterations in circulating tumor DNA (ctDNA), and multiple cfDNA-targeted sequencing panels are now commercially available for Food and Drug Administration (FDA)-approved biomarker indications to guide treatment. More recently, cfDNA fragmentation patterns have emerged as a tool to infer epigenomic and transcriptomic information. However, most of these analyses used whole-genome sequencing, which is insufficient to identify FDA-approved biomarker indications in a cost-effective manner. PATIENTS AND METHODS We used machine learning models of fragmentation patterns at the first coding exon in standard targeted cancer gene cfDNA sequencing panels to distinguish between cancer and non-cancer patients, as well as the specific tumor type and subtype. We assessed this approach in two independent cohorts: a published cohort from GRAIL (breast, lung, and prostate cancers, non-cancer, n = 198) and an institutional cohort from the University of Wisconsin (UW; breast, lung, prostate, bladder cancers, n = 320). Each cohort was split 70%/30% into training and validation sets. RESULTS In the UW cohort, training cross-validated accuracy was 82.1%, and accuracy in the independent validation cohort was 86.6% despite a median ctDNA fraction of only 0.06. In the GRAIL cohort, to assess how this approach performs in very low ctDNA fractions, training and independent validation were split based on ctDNA fraction. Training cross-validated accuracy was 80.6%, and accuracy in the independent validation cohort was 76.3%. In the validation cohort where the ctDNA fractions were all <0.05 and as low as 0.0003, the cancer versus non-cancer area under the curve was 0.99. CONCLUSIONS To our knowledge, this is the first study to demonstrate that sequencing from targeted cfDNA panels can be utilized to analyze fragmentation patterns to classify cancer types, dramatically expanding the potential capabilities of existing clinically used panels at minimal additional cost.
Collapse
Affiliation(s)
- K T Helzer
- Department of Human Oncology, University of Wisconsin, Madison
| | - M N Sharifi
- Carbone Cancer Center, University of Wisconsin, Madison; Department of Medicine, University of Wisconsin, Madison, USA
| | - J M Sperger
- Department of Medicine, University of Wisconsin, Madison, USA
| | - Y Shi
- Department of Human Oncology, University of Wisconsin, Madison
| | - M Annala
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - M L Bootsma
- Department of Human Oncology, University of Wisconsin, Madison
| | - S R Reese
- Department of Human Oncology, University of Wisconsin, Madison; Department of Medicine, University of Wisconsin, Madison, USA
| | - A Taylor
- Department of Medicine, University of Wisconsin, Madison, USA
| | - K R Kaufmann
- Department of Medicine, University of Wisconsin, Madison, USA
| | - H K Krause
- Department of Medicine, University of Wisconsin, Madison, USA
| | - J L Schehr
- Carbone Cancer Center, University of Wisconsin, Madison
| | - N Sethakorn
- Carbone Cancer Center, University of Wisconsin, Madison; Department of Medicine, University of Wisconsin, Madison, USA
| | - D Kosoff
- Carbone Cancer Center, University of Wisconsin, Madison; Department of Medicine, University of Wisconsin, Madison, USA
| | - C Kyriakopoulos
- Carbone Cancer Center, University of Wisconsin, Madison; Department of Medicine, University of Wisconsin, Madison, USA
| | - M E Burkard
- Carbone Cancer Center, University of Wisconsin, Madison; Department of Medicine, University of Wisconsin, Madison, USA
| | - N R Rydzewski
- Department of Human Oncology, University of Wisconsin, Madison
| | - M Yu
- Carbone Cancer Center, University of Wisconsin, Madison; Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison
| | - P M Harari
- Department of Human Oncology, University of Wisconsin, Madison; Carbone Cancer Center, University of Wisconsin, Madison
| | - M Bassetti
- Department of Human Oncology, University of Wisconsin, Madison; Carbone Cancer Center, University of Wisconsin, Madison
| | - G Blitzer
- Department of Human Oncology, University of Wisconsin, Madison; Carbone Cancer Center, University of Wisconsin, Madison
| | - J Floberg
- Department of Human Oncology, University of Wisconsin, Madison; Carbone Cancer Center, University of Wisconsin, Madison
| | - M Sjöström
- Department of Radiation Oncology, University of California San Francisco, San Francisco; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco
| | - D A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco; Departments of Epidemiology and Biostatistics; Urology, University of California San Francisco, San Francisco
| | - S M Dehm
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis
| | - A J Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Department of Medicine, Duke University, Durham
| | - H Beltran
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston
| | - R R McKay
- Moores Cancer Center, University of California San Diego, La Jolla
| | - F Y Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis; Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco
| | - R O'Regan
- Carbone Cancer Center, University of Wisconsin, Madison; Department of Medicine, University of Wisconsin, Madison, USA; Department of Medicine, University of Rochester, Rochester, USA
| | - K B Wisinski
- Carbone Cancer Center, University of Wisconsin, Madison; Department of Medicine, University of Wisconsin, Madison, USA
| | - H Emamekhoo
- Carbone Cancer Center, University of Wisconsin, Madison; Department of Medicine, University of Wisconsin, Madison, USA
| | - A W Wyatt
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - J M Lang
- Carbone Cancer Center, University of Wisconsin, Madison; Department of Medicine, University of Wisconsin, Madison, USA
| | - S G Zhao
- Department of Human Oncology, University of Wisconsin, Madison; Carbone Cancer Center, University of Wisconsin, Madison; William S. Middleton Memorial Veterans' Hospital, Madison, USA.
| |
Collapse
|
41
|
Tripathi A, Lerner SP. Poly (ADP-ribose) Polymerase Inhibition in Advanced Urothelial Carcinoma. JCO Precis Oncol 2023; 7:e2300293. [PMID: 37535882 DOI: 10.1200/po.23.00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/01/2023] [Indexed: 08/05/2023] Open
Affiliation(s)
| | - Seth P Lerner
- Scott Department of Urology, Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX
| |
Collapse
|
42
|
Duquesne I, Abou Chakra M, Hage L, Pinar U, Loriot Y. Liquid biopsies for detection, surveillance, and prognosis of urothelial cancer: a future standard? Expert Rev Anticancer Ther 2023; 23:995-1007. [PMID: 37542214 DOI: 10.1080/14737140.2023.2245144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
INTRODUCTION Liquid biopsies are used for the detection of tumor-specific elements in body fluid. Their application in prognosis and diagnosis of muscle/non-muscle invasive bladder cancer (MIBC/NMIBC) or upper tract urothelial cancer (UTUC) remains poorly known and rarely mentioned in clinical guidelines. AREAS COVERED Herein, we provide an overview of current data regarding the use of liquid biopsies in urothelial tumors. EXPERT OPINION Studies that were included analyzed liquid biopsies using the detection of circulating tumor cells (CTCs), deoxyribonucleic acid (DNA), ribonucleic acid (RNA), exosomes, or metabolomics. The sensitivity of blood CTC detection in patients with localized cancer was 35% and raised to 50% in patients with metastatic cancer. In NMIBC patients, blood CTC was associated with poor prognosis, whereas discrepancies were seen in MIBC patients. Circulating plasma DNA presented a superior sensitivity to urine and was a good indicator for diagnosis, follow-up, and oncological outcome. In urine, specific bladder cancer (BC) microRNA had an overall sensitivity of 85% and a specificity of 86% in the diagnosis of urothelial cancer. These results are in favor of the use of liquid biopsies as biomarkers for in urothelial cancer management.
Collapse
Affiliation(s)
- Igor Duquesne
- Department of Urology, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Cite, Paris, France
| | - Mohamad Abou Chakra
- Department of Urology, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Cite, Paris, France
| | - Lory Hage
- Department of Urology, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Cite, Paris, France
| | - Ugo Pinar
- Department of Urology, Pitie Salpetriere Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Sorbonne, Paris, France
| | - Yohann Loriot
- Department of Cancer Medicine, Gustave Roussy Institute, Cancer Campus, Grand Paris, Universite Paris-Sud, Villejuif, France
| |
Collapse
|
43
|
Rose KM, Huelster HL, Meeks JJ, Faltas BM, Sonpavde GP, Lerner SP, Ross JS, Spiess PE, Grass GD, Jain RK, Kamat AM, Vosoughi A, Wang L, Wang X, Li R. Circulating and urinary tumour DNA in urothelial carcinoma - upper tract, lower tract and metastatic disease. Nat Rev Urol 2023; 20:406-419. [PMID: 36977797 DOI: 10.1038/s41585-023-00725-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 03/30/2023]
Abstract
Precision medicine has transformed the way urothelial carcinoma is managed. However, current practices are limited by the availability of tissue samples for genomic profiling and the spatial and temporal molecular heterogeneity observed in many studies. Among rapidly advancing genomic sequencing technologies, non-invasive liquid biopsy has emerged as a promising diagnostic tool to reproduce tumour genomics, and has shown potential to be integrated in several aspects of clinical care. In urothelial carcinoma, liquid biopsies such as plasma circulating tumour DNA (ctDNA) and urinary tumour DNA (utDNA) have been investigated as a surrogates for tumour biopsies and might bridge many shortfalls currently faced by clinicians. Both ctDNA and utDNA seem really promising in urothelial carcinoma diagnosis, staging and prognosis, response to therapy monitoring, detection of minimal residual disease and surveillance. The use of liquid biopsies in patients with urothelial carcinoma could further advance precision medicine in this population, facilitating personalized patient monitoring through non-invasive assays.
Collapse
Affiliation(s)
- Kyle M Rose
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Heather L Huelster
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Joshua J Meeks
- Department of Urology, Northwestern University, Chicago, IL, USA
| | - Bishoy M Faltas
- Department of Hematology/Oncology, Weill-Cornell Medicine, New York, NY, USA
| | - Guru P Sonpavde
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Seth P Lerner
- Department of Urology, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey S Ross
- Foundation Medicine, Inc, Cambridge, MA, USA
- Departments of Urology and Pathology, Upstate Medical University, Syracuse, NY, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - G Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Rohit K Jain
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ashish M Kamat
- Department of Urology, MD Anderson Cancer Center, Houston, TX, USA
| | - Aram Vosoughi
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Liang Wang
- Department of Tumour Biology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Xuefeng Wang
- Department of Biostatistics/Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
44
|
Raei N, Safaralizadeh R, Latifi-Navid S. Clinical application of circulating tumor DNA in metastatic cancers. Expert Rev Mol Diagn 2023; 23:1209-1220. [PMID: 37797209 DOI: 10.1080/14737159.2023.2268008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Advances in genomics have facilitated the application of cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA) in phase II and phase III clinical trials. The various mutations of cfDNA/ctDNA have been correlated with clinical features. Advances in next-generation sequencing (NGS) and digital droplet PCR have paved the way for identifying cfDNA/ctDNA mutations. AREAS COVERED Herein, the biology of ctDNA and its function in clinical application in metastasis, which may lead to improved clinical management of metastatic cancer patients, are comprehensively reviewed. EXPERT OPINION Metastatic cancer ctDNA shows the greatest frequency of mutations in TP53, HER-2, KRAS, and EGFR genes (alteration frequency of > 50%). Therefore, identifying key mutations frequently present in metastatic cancers can help identify patients with pre-malignant tumors before cancer progression. Studying ctDNA can help determine the prognosis and select appropriate treatments for affected patients. Nevertheless, the obstacles to detecting and analyzing ctDNA should be addressed before translation into routine practice. Also, more clinical trials should be conducted to study the significance of ctDNA in commonly diagnosed malignancies. Given the recent advances in personalized anti-neoplastic treatments, further studies are needed to detect a panel of ctDNA and patient-specific ctDNA for various cancers.
Collapse
Affiliation(s)
- Negin Raei
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
45
|
Luceno CF, Jeon WJ, Samaeekia R, Shin J, Sonpavde GP. Precision Medicine to Treat Urothelial Carcinoma-The Way Forward. Cancers (Basel) 2023; 15:cancers15113024. [PMID: 37296985 DOI: 10.3390/cancers15113024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The treatment of urothelial carcinoma (UC) is challenging given its molecular heterogeneity and variable response to current therapies. To address this, many tools, including tumor biomarker assessment and liquid biopsies, have been developed to predict prognosis and treatment response. Approved therapeutic modalities for UC currently include chemotherapy, immune checkpoint inhibitors, receptor tyrosine kinase inhibitors, and antibody drug conjugates. Ongoing investigations to improve the treatment of UC include the search for actionable alterations and the testing of novel therapies. An important objective in recent studies has been to increase efficacy while decreasing toxicity by taking into account unique patient and tumor-related factors-an endeavor called precision medicine. The aim of this review is to highlight advancements in the treatment of UC, describe ongoing clinical trials, and identify areas for future study in the context of precision medicine.
Collapse
Affiliation(s)
- Carvy Floyd Luceno
- Department of Internal Medicine, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Won Jin Jeon
- Department of Internal Medicine, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Ravand Samaeekia
- Department of Internal Medicine, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - John Shin
- Department of Medical Oncology/Hematology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Guru P Sonpavde
- Department of Medical Oncology, Section of Genitourinary Oncology and Phase I Clinical Research, AdventHealth Cancer Institute, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
46
|
Malalasekera AP, Neththikumara N, Somasundaram P, Pathirana S, Ediriweera C, Ediriweera D, Goonewardena SAS, Perera ND, Abeygunasekara A, Jayasekara RW, Wettasinghe K, Lokuhetty MDS, Dissanayake VHW. Clinical Exome Gene Panel Analysis of a Cohort of Urothelial Bladder Cancer Patients from Sri Lanka. Asian Pac J Cancer Prev 2023; 24:1533-1542. [PMID: 37247272 PMCID: PMC10495915 DOI: 10.31557/apjcp.2023.24.5.1533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Bladder cancer has a high rate of recurrence and high mortality rates in those who progress to muscle invasive disease. Biomarkers and molecular sub classification of tumours beyond standard histopathology has been proposed to address therapeutic dilemmas. The Cancer Genome Atlas project and other studies have contributed to the enhanced knowledge base of the mutational landscape of urothelial bladder cancer. Once again, these are mostly from Caucasian and Chinese patients, with data from the rest of Asia and Sri Lanka being sparse. The objective of this study was to assess the genomic variations of a cohort of urothelial bladder cancer patients in Sri Lanka. METHODS The molecular genetic study was conducted on formalin fixed paraffin embedded tumour samples of 24 patients, prospectively enrolled from 2013 to 2017. The samples were sequenced and variant distribution performed based on a 70-gene panel. RESULTS Total number of filtered mutations in the 24 patients was 10453. Median mutations per patient were 450 (range 22-987). The predominant mutational change was C>T and G>A. The top 5 mutated genes in our cohort were SYNE1, SYNE2, KMT2C, LRP2, and ANK2. The genes were clustered into 3 groups dependent on the number of mutations per patient per gene. The genes of cluster 1 and 2 mapped to Chromatin modifying enzymes and Generic Transcription Pathway. The chromatin remodelling pathway accounted for the largest proportion (22%) of mutations. CONCLUSIONS Clinical exome sequencing utilising a gene panel yielded a high mutation rate in our patients. The predominant mutational change was C>T and G>A. Three clusters of genes were identified. SYNE1 was the gene with the most mutations. The mutations comprised predominantly of genes of the chromatin remodelling pathway.
Collapse
Affiliation(s)
- Ajith P Malalasekera
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - Nilaksha Neththikumara
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - Praveenan Somasundaram
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - Sajeewani Pathirana
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | | | - Dileepa Ediriweera
- Health Data Science Unit, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka.
| | | | - Neville D Perera
- Department of Urology, National Hospital of Sri Lanka, Colombo, Sri Lanka.
| | | | - Rohan W Jayasekara
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - Kalum Wettasinghe
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - M Dilani S Lokuhetty
- Department of Pathology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - Vajira H W Dissanayake
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| |
Collapse
|
47
|
Xu Y, Yang Y, Wang Y, Su J, Chan T, Zhou J, Gong Y, Wang K, Gu Y, Zhang C, Wu G, Bi L, Qin X, Han J. Molecular fingerprints of nuclear genome and mitochondrial genome for early diagnosis of lung adenocarcinoma. J Transl Med 2023; 21:250. [PMID: 37038181 PMCID: PMC10084603 DOI: 10.1186/s12967-023-04099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer with high morbidity and mortality rates. Due to the heterogeneity of LUAD, its characteristics remain poorly understood. Exploring the clinical and molecular characteristics of LUAD is challenging but vital for early diagnosis. METHODS This observational and validation study enrolled 80 patients and 13 healthy controls. Nuclear and mtDNA-captured sequencings were performed. RESULTS This study identified a spectrum of nuclear and mitochondrial genome mutations in early-stage lung adenocarcinoma and explored their association with diagnosis. The correlation coefficient for somatic mutations in cfDNA and patient-matched tumor tissues was high in nuclear and mitochondrial genomes. The mutation number of highly mutated genes was evaluated, and the Least Absolute Shrinkage and Selection Operator (LASSO) established a diagnostic model. Receiver operating characteristic (ROC) curve analysis explored the diagnostic ability of the two panels. All models were verified in the testing cohort, and the mtDNA panel demonstrated excellent performance. This study identified somatic mutations in the nuclear and mitochondrial genomes, and detecting mutations in cfDNA displayed good diagnostic performance for early-stage LUAD. Moreover, detecting somatic mutations in the mitochondria may be a better tool for diagnosing early-stage LUAD. CONCLUSIONS This study identified specific and sensitive diagnostic biomarkers for early-stage LUAD by focusing on nuclear and mitochondrial genome mutations. This also further developed an early-stage LUAD-specific mutation gene panel for clinical utility. This study established a foundation for further investigation of LUAD molecular pathogenesis.
Collapse
Affiliation(s)
- Yichun Xu
- National Engineering Research Center for Biochip at Shanghai and Shanghai Biochip Limited Corporation, No.151, Libing Road, Shanghai, 201203, China.
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, China.
| | - Yong Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, No.241, Huaihai West Road, Shanghai, China
| | - Yichao Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Shanghai, China
| | - Jun Su
- National Engineering Research Center for Biochip at Shanghai and Shanghai Biochip Limited Corporation, No.151, Libing Road, Shanghai, 201203, China
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Tianlong Chan
- National Engineering Research Center for Biochip at Shanghai and Shanghai Biochip Limited Corporation, No.151, Libing Road, Shanghai, 201203, China
| | - Jiajing Zhou
- National Engineering Research Center for Biochip at Shanghai and Shanghai Biochip Limited Corporation, No.151, Libing Road, Shanghai, 201203, China
| | - Yi Gong
- National Engineering Research Center for Biochip at Shanghai and Shanghai Biochip Limited Corporation, No.151, Libing Road, Shanghai, 201203, China
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Ke Wang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifeng Gu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Shanghai, China
| | - Congmeng Zhang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Shanghai, China
| | - Guanjin Wu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiong Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, No.241, Huaihai West Road, Shanghai, China.
| | - Junsong Han
- National Engineering Research Center for Biochip at Shanghai and Shanghai Biochip Limited Corporation, No.151, Libing Road, Shanghai, 201203, China.
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, China.
| |
Collapse
|
48
|
Li S, Xin K, Pan S, Wang Y, Zheng J, Li Z, Liu X, Liu B, Xu Z, Chen X. Blood-based liquid biopsy: insights into early detection, prediction, and treatment monitoring of bladder cancer. Cell Mol Biol Lett 2023; 28:28. [PMID: 37016296 PMCID: PMC10074703 DOI: 10.1186/s11658-023-00442-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Bladder cancer (BC) is a clinical challenge worldwide with late clinical presentation, poor prognosis, and low survival rates. Traditional cystoscopy and tissue biopsy are routine methods for the diagnosis, prognosis, and monitoring of BC. However, due to the heterogeneity and limitations of tumors, such as aggressiveness, high cost, and limited applicability of longitudinal surveillance, the identification of tumor markers has attracted significant attention in BC. Over the past decade, liquid biopsies (e.g., blood) have proven to be highly efficient methods for the discovery of BC biomarkers. This noninvasive sampling method is used to analyze unique tumor components released into the peripheral circulation and allows serial sampling and longitudinal monitoring of tumor progression. Several liquid biopsy biomarkers are being extensively studied and have shown promising results in clinical applications of BC, including early detection, detection of microscopic residual disease, prediction of recurrence, and response to therapy. Therefore, in this review, we aim to provide an update on various novel blood-based liquid biopsy markers and review the advantages and current limitations of liquid biopsy in BC therapy. The role of blood-based circulating tumor cells, circulating tumor DNA, cell-free RNA, exosomes, metabolomics, and proteomics in diagnosis, prognosis, and treatment monitoring, and their applicability to the personalized management of BC, are highlighted.
Collapse
Affiliation(s)
- Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Kerong Xin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Shen Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, People's Republic of China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Xuefeng Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Bitian Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
49
|
Ritch EJ, Herberts C, Warner EW, Ng SWS, Kwan EM, Bacon JVW, Bernales CQ, Schönlau E, Fonseca NM, Giri VN, Maurice-Dror C, Vandekerkhove G, Jones SJM, Chi KN, Wyatt AW. A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes. NPJ Precis Oncol 2023; 7:27. [PMID: 36914848 PMCID: PMC10011564 DOI: 10.1038/s41698-023-00366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Specific classes of DNA damage repair (DDR) defect can drive sensitivity to emerging therapies for metastatic prostate cancer. However, biomarker approaches based on DDR gene sequencing do not accurately predict DDR deficiency or treatment benefit. Somatic alteration signatures may identify DDR deficiency but historically require whole-genome sequencing of tumour tissue. We assembled whole-exome sequencing data for 155 high ctDNA fraction plasma cell-free DNA and matched leukocyte DNA samples from patients with metastatic prostate or bladder cancer. Labels for DDR gene alterations were established using deep targeted sequencing. Per sample mutation and copy number features were used to train XGBoost ensemble models. Naive somatic features and trinucleotide signatures were associated with specific DDR gene alterations but insufficient to resolve each class. Conversely, XGBoost-derived models showed strong performance including an area under the curve of 0.99, 0.99 and 1.00 for identifying BRCA2, CDK12, and mismatch repair deficiency in metastatic prostate cancer. Our machine learning approach re-classified several samples exhibiting genomic features inconsistent with original labels, identified a metastatic bladder cancer sample with a homozygous BRCA2 copy loss, and outperformed an existing exome-based classifier for BRCA2 deficiency. We present DARC Sign (DnA Repair Classification SIGNatures); a public machine learning tool leveraging clinically-practical liquid biopsy specimens for simultaneously identifying multiple types of metastatic prostate cancer DDR deficiencies. We posit that it will be useful for understanding differential responses to DDR-directed therapies in ongoing clinical trials and may ultimately enable prospective identification of prostate cancers with phenotypic evidence of DDR deficiency.
Collapse
Affiliation(s)
- Elie J Ritch
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cameron Herberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Evan W Warner
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sarah W S Ng
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Edmond M Kwan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jack V W Bacon
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cecily Q Bernales
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elena Schönlau
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Nicolette M Fonseca
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Veda N Giri
- Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | | | - Gillian Vandekerkhove
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Steven J M Jones
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Kim N Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada. .,Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.
| |
Collapse
|
50
|
Prognostic Value of the Lung Immune Prognosis Index Score for Patients Treated with Immune Checkpoint Inhibitors for Advanced or Metastatic Urinary Tract Carcinoma. Cancers (Basel) 2023; 15:cancers15041066. [PMID: 36831409 PMCID: PMC9954148 DOI: 10.3390/cancers15041066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Few prognostic factors have been identified in patients with metastatic urothelial carcinoma (mUC) treated with immune checkpoint inhibitors (ICIs). The Lung Immune Prognostic Index (LIPI) was associated with clinical outcomes for ICIs in several tumor types. We aim to assess the value of the LIPI in patients with mUC treated with ICIs. A retrospective ICI cohort and a validation cohort (SAUL cohort) included, respectively, patients with mUC treated with ICI in 8 European centers (any line) and patients treated with atezolizumab in a second or further line. A chemotherapy-only cohort was also analyzed. The LIPI score was based on 2 factors, derived neutrophils/(leukocytes minus neutrophils) ratio (dNLR) > 3 and lactate dehydrogenase > upper limit of normal, and defined 3 prognostic groups. The association of LIPI with progression-free survival (PFS) and overall survival (OS) was assessed. In the ICI and SAUL cohorts, 137 and 541 patients were respectively analyzed. In the ICI cohort, mPFS and mOS were 3.6 mo (95% CI; 2.6-6.0) and 13.8 mo (95% CI; 11.5-23.2) whereas in the SAUL cohort the mPFS and mOS were 2.2 mo (95% CI; 2.1-2.3) and 8.7 mo (95% CI; 7.8-9.9) respectively. The LIPI classified the population of these cohorts in good (56%; 52%), intermediate (35%; 36%) and poor (9%; 12%) prognostic groups (values for the ICI and SAUL cohorts respectively). Poor LIPI was associated with a poorer OS in both cohorts: hazard ratio (HR) for the ICI cohort = 2.69 (95% CI; 1.24-5.84, p = 0.035); HR = 2. 89 for the SAUL cohort (CI 95%: 1.93-4.32, p < 0.0001). Similar results were found in the chemo cohort. The LIPI score allows to identify different subgroups in patients with good prognostis according to the Bellmunt score criteria, with a subset of patients with poorer outcomes having an mOS of 3.7 mo compared to the good and intermediate LIPI subgroups with mOS of 17.9 and 7.4 mo, respectively. The LIPI score was associated with survival in mUC patients treated by ICIs. Future prospective studies will be required to test the combination of Bellmunt score and the LIPI score as a more accurate prognosis tool.
Collapse
|