1
|
Pan BY, Xu Y, Ni JM, Zhou SY, Hong XC, Qiu X, Li SY. Unambiguous Experimental Verification of Linear-in-Temperature Spinon Thermal Conductivity in an Antiferromagnetic Heisenberg Chain. PHYSICAL REVIEW LETTERS 2022; 129:167201. [PMID: 36306770 DOI: 10.1103/physrevlett.129.167201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/07/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The everlasting interest in spin chains is mostly rooted in the fact that they generally allow for comparisons between theory and experiment with remarkable accuracy, especially for exactly solvable models. A notable example is the spin-1/2 antiferromagnetic Heisenberg chain (AFHC), which can be well described by the Tomonaga-Luttinger liquid theory and exhibits fractionalized spinon excitations with distinct thermodynamic and spectroscopic experimental signatures consistent with theoretical predictions. A missing piece, however, is the lack of a comprehensive understanding of the spinon heat transport in AFHC systems, due to difficulties in its experimental evaluation against the backdrop of other heat carriers and complex scattering processes. Here we address this situation by performing ultralow-temperature thermal conductivity measurements on a nearly ideal spin-1/2 AFHC system copper benzoate Cu(C_{6}H_{5}COO)_{2}·3H_{2}O, whose field-dependent spin excitation gap enables a reliable extraction of the spinon thermal conductivity κ_{s} at zero field. κ_{s} was found to exhibit a linear temperature dependence κ_{s}∼T at low temperatures, with κ_{s}/T as large as 1.70 mW cm^{-1} K^{-2}, followed by a precipitate decline below ∼0.3 K. The observed κ_{s}∼T clarifies the discrepancies between various spin chain systems and serves as a benchmark for one-dimensional spinon heat transport in the low-temperature limit. The abrupt loss of κ_{s} with no corresponding anomaly in the specific heat is discussed in the context of many-body localization.
Collapse
Affiliation(s)
- B Y Pan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Y Xu
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - J M Ni
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - S Y Zhou
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - X C Hong
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - X Qiu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - S Y Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Shanghai Research Center for Quantum Sciences, Shanghai, 201315, China
| |
Collapse
|
2
|
Uehara T, Ohtsuki T, Udagawa M, Nakatsuji S, Machida Y. Phonon thermal Hall effect in a metallic spin ice. Nat Commun 2022; 13:4604. [PMID: 35933516 PMCID: PMC9357082 DOI: 10.1038/s41467-022-32375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
It has become common knowledge that phonons can generate thermal Hall effect in a wide variety of materials, although the underlying mechanism is still controversial. We study longitudinal κxx and transverse κxy thermal conductivity in Pr2Ir2O7, which is a metallic analog of spin ice. Despite the presence of mobile charge carriers, we find that both κxx and κxy are dominated by phonons. A T/H scaling of κxx unambiguously reveals that longitudinal heat current is substantially impeded by resonant scattering of phonons on paramagnetic spins. Upon cooling, the resonant scattering is strongly affected by a development of spin ice correlation and κxx deviates from the scaling in an anisotropic way with respect to field directions. Strikingly, a set of the κxx and κxy data clearly shows that κxy correlates with κxx in its response to magnetic field including a success of the T/H scaling and its failure at low temperature. This remarkable correlation provides solid evidence that an indispensable role is played by spin-phonon scattering not only for hindering the longitudinal heat conduction, but also for generating the transverse response.
Collapse
Affiliation(s)
- Taiki Uehara
- Department of Physics, Gakushuin University, Tokyo, 171-8588, Japan
| | - Takumi Ohtsuki
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan
| | - Masafumi Udagawa
- Department of Physics, Gakushuin University, Tokyo, 171-8588, Japan
| | - Satoru Nakatsuji
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan
- Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan
- The Institute for Quantum Matter and the Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yo Machida
- Department of Physics, Gakushuin University, Tokyo, 171-8588, Japan.
| |
Collapse
|
3
|
Huang YY, Xu Y, Wang L, Zhao CC, Tu CP, Ni JM, Wang LS, Pan BL, Fu Y, Hao Z, Liu C, Mei JW, Li SY. Heat Transport in Herbertsmithite: Can a Quantum Spin Liquid Survive Disorder? PHYSICAL REVIEW LETTERS 2021; 127:267202. [PMID: 35029499 DOI: 10.1103/physrevlett.127.267202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
One favorable situation for spins to enter the long-sought quantum spin liquid (QSL) state is when they sit on a kagome lattice. No consensus has been reached in theory regarding the true ground state of this promising platform. The experimental efforts, relying mostly on one archetypal material ZnCu_{3}(OH)_{6}Cl_{2}, have also led to diverse possibilities. Apart from subtle interactions in the Hamiltonian, there is the additional degree of complexity associated with disorder in the real material ZnCu_{3}(OH)_{6}Cl_{2} that haunts most experimental probes. Here we resort to heat transport measurement, a cleaner probe in which instead of contributing directly, the disorder only impacts the signal from the kagome spins. For ZnCu_{3}(OH)_{6}Cl_{2}, we observed no contribution by any spin excitation nor obvious field-induced change to the thermal conductivity. These results impose strong constraints on various scenarios about the ground state of this kagome compound: while certain quantum paramagnetic states other than a QSL may serve as natural candidates, a QSL state, gapless or gapped, must be dramatically modified by the disorder so that the kagome spin excitations are localized.
Collapse
Affiliation(s)
- Y Y Huang
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - Y Xu
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Le Wang
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - C C Zhao
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - C P Tu
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - J M Ni
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - L S Wang
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - B L Pan
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - Ying Fu
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhanyang Hao
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cai Liu
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jia-Wei Mei
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| | - S Y Li
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|