1
|
Pedrani M, Salfi G, Merler S, Testi I, Cani M, Turco F, Trevisi E, Tortola L, Treglia G, Di Tanna GL, Vogl U, Gillessen S, Theurillat JP, Pereira Mestre R. Prognostic and Predictive Role of SPOP Mutations in Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Oncol 2024; 7:1199-1215. [PMID: 38704358 DOI: 10.1016/j.euo.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
CONTEXT Mutations in the speckle-type POZ (SPOP) gene are frequently identified in prostate cancer (PC); yet, prognostic implications for affected patients remain unclear. Limited consensus exists regarding tailored treatments for SPOP-mutant (SPOPmut) PC. OBJECTIVE To elucidate the prognostic and predictive significance of SPOP mutations across distinct PC stages and treatments. EVIDENCE ACQUISITION A systematic literature search of PubMed, Embase, and Scopus was conducted up to January 29, 2024. The meta-analysis included studies comparing survival outcomes between SPOPmut and SPOP wild-type (SPOPwt) PC. EVIDENCE SYNTHESIS From 669 records, 26 studies (including five abstracts) were analyzed. A meta-analysis of metastasis-free survival in localized (hazard ratio [HR]: 0.72, 95% confidence interval [CI]: 0.59-0.88; p < 0.01) and overall survival (OS) in metastatic PC (HR: 0.64, 95% CI: 0.53-0.76; p < 0.01) showed a favorable prognosis for patients with SPOPmut PC. In metastatic settings, SPOP mutations correlated with improved progression-free survival (PFS) and OS in patients undergoing androgen deprivation therapy ± androgen receptor signaling inhibitor (HR: 0.51, 95% CI: 0.35-0.76, p < 0.01, and HR: 0.60, 95% CI:0.46-0.79, p < 0.01, respectively). In metastatic castration-resistant PC, only abiraterone provided improved PFS and OS to patients with SPOP mutations compared with patients with SPOPwt, but data were limited. SPOP mutations did not correlate with improved PFS (p = 0.80) or OS (p = 0.27) for docetaxel. CONCLUSIONS Patients with SPOPmut PC seem to exhibit superior oncological outcomes compared with patients with SPOPwt. Tailored risk stratification and treatment approaches should be explored in such patients. PATIENT SUMMARY Speckle-type POZ (SPOP) mutations could be a favorable prognostic factor in patients with prostate cancer (PC) and may also predict better progression-free and overall survival than treatment with hormonal agents. Therefore, less intensified treatments omitting chemotherapy for patients with SPOP-mutant PC should be explored in clinical trials.
Collapse
Affiliation(s)
- Martino Pedrani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Salfi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Sara Merler
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Institute of Oncology Research (IOR), Bellinzona, Switzerland; Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University Hospital Trust, Verona, Italy; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Irene Testi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Massimiliano Cani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano, Italy
| | - Fabio Turco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Elena Trevisi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Luigi Tortola
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Giorgio Treglia
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Gian Luca Di Tanna
- Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Ursula Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Institute of Oncology Research (IOR), Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Clinical Research Unit, myDoctorAngel Sagl, Bioggio, Switzerland.
| |
Collapse
|
2
|
Chang X, Li W, Matsui S, Huynh C, Cederquist GY, Studer L, Iwafuchi M, Shillington A, Chronis C, Tchieu J. ZMYND11 Functions in Bimodal Regulation of Latent Genes and Brain-like Splicing to Safeguard Corticogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618524. [PMID: 39464123 PMCID: PMC11507784 DOI: 10.1101/2024.10.15.618524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Despite the litany of pathogenic variants linked to neurodevelopmental disorders (NDD) including autism (ASD) and intellectual disability 1,2 , our understanding of the underlying mechanisms caused by risk genes remain unclear. Here, we leveraged a human pluripotent stem cell model to uncover the neurodevelopmental consequences of mutations in ZMYND11 , a newly implicated risk gene 3,4 . ZMYND11, known for its tumor suppressor function, encodes a histone-reader that recognizes sites of transcriptional elongation and acts as a co-repressor 5,6 . Our findings reveal that ZMYND11-deficient cortical neural stem cells showed upregulation of latent developmental pathways, impairing progenitor and neuron production. In addition to its role on histones, ZMYND11 controls a brain-specific isoform switch involving the splicing regulator RBFOX2. Extending our findings to other chromatin-related ASD risk factors revealed similar developmental pathway activation and splicing dysregulation, partially rescuable through ZMYND11's regulatory functions.
Collapse
|
3
|
Chen R, Tang L, Melendy T, Yang L, Goodison S, Sun Y. Prostate Cancer Progression Modeling Provides Insight into Dynamic Molecular Changes Associated with Progressive Disease States. CANCER RESEARCH COMMUNICATIONS 2024; 4:2783-2798. [PMID: 39347576 PMCID: PMC11500312 DOI: 10.1158/2767-9764.crc-24-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/27/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Prostate cancer is a significant health concern and the most commonly diagnosed cancer in men worldwide. Understanding the complex process of prostate tumor evolution and progression is crucial for improved diagnosis, treatments, and patient outcomes. Previous studies have focused on unraveling the dynamics of prostate cancer evolution using phylogenetic or lineage analysis approaches. However, those approaches have limitations in capturing the complete disease process or incorporating genomic and transcriptomic variations comprehensively. In this study, we applied a novel computational approach to derive a prostate cancer progression model using multidimensional data from 497 prostate tumor samples and 52 tumor-adjacent normal samples obtained from The Cancer Genome Atlas study. The model was validated using data from an independent cohort of 545 primary tumor samples. By integrating transcriptomic and genomic data, our model provides a comprehensive view of prostate tumor progression, identifies crucial signaling pathways and genetic events, and uncovers distinct transcription signatures associated with disease progression. Our findings have significant implications for cancer research and hold promise for guiding personalized treatment strategies in prostate cancer. SIGNIFICANCE We developed and validated a progression model of prostate cancer using >1,000 tumor and normal tissue samples. The model provided a comprehensive view of prostate tumor evolution and progression.
Collapse
Affiliation(s)
- Runpu Chen
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York
| | - Li Tang
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Thomas Melendy
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York
| | - Le Yang
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York
| | - Steve Goodison
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida
| | - Yijun Sun
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
4
|
Hu J, Chen X, Sun F, Liu L, Liu L, Yang Z, Zhang H, Yu Z, Zhao R, Wang Y, Liu H, Yang X, Sun F, Han B. Identification of recurrent BRAF non-V600 mutations in intraductal carcinoma of the prostate in Chinese populations. Neoplasia 2024; 50:100983. [PMID: 38417222 PMCID: PMC10904907 DOI: 10.1016/j.neo.2024.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
While BRAF alterations have been established as a driver in various solid malignancies, the characterization of BRAF alterations in prostate cancer (PCa) has not been thoroughly interrogated. By bioinformatics analysis, we first found that BRAF alterations were associated with advanced PCa and exhibited mutually exclusive pattern with ERG alteration across multiple cohorts. Of the most interest, recurrent non-V600 BRAF mutations were found in 3 of 21 (14.3 %) PCa patients demonstrating IDC-P morphology. Furthermore, experimental overexpression of BRAFK601E and BRAFL597R exhibited emergence of oncogenic phenotypes with intensified MAPK signaling in vitro, which could be targeted by MEK inhibitors. Comparison of the incidence of BRAF alterations in IDC-P between western and Chinese ancestry revealed an increased prevalence in the Chinese population. The BRAF mutation may represent important genetic alteration in a subset of IDC-P, highlighting the role of MAPK signaling pathway in this subtype of PCa. To the best of knowledge, this is the first description of non-V600 BRAF mutation in setting of IDC-P, which may in part explain the aggressive phenotype seen in IDC-P and could also bring more treatment options for PCa patients with IDC-P harboring such mutations.
Collapse
Affiliation(s)
- Jing Hu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xinyi Chen
- Department of Pathology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group) Qingdao, Shandong, China; The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Feifei Sun
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Lili Liu
- Department of Pathology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group) Qingdao, Shandong, China
| | - Long Liu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Zimeng Yang
- Department of Taekwondo, Art, Design, & Physical Education, Chosun University, Gwangju, Republic of Korea
| | - Hanwen Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zeyuan Yu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ru Zhao
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yueyao Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Liu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fusheng Sun
- Department of Pathology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Bo Han
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Linder SJ, Bernasocchi T, Martínez-Pastor B, Sullivan KD, Galbraith MD, Lewis CA, Ferrer CM, Boon R, Silveira GG, Cho HM, Vidoudez C, Shroff S, Oliveira-Costa JP, Ross KN, Massri R, Matoba Y, Kim E, Rueda BR, Stott SL, Gottlieb E, Espinosa JM, Mostoslavsky R. Inhibition of the proline metabolism rate-limiting enzyme P5CS allows proliferation of glutamine-restricted cancer cells. Nat Metab 2023; 5:2131-2147. [PMID: 37957387 PMCID: PMC11639397 DOI: 10.1038/s42255-023-00919-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/02/2023] [Indexed: 11/15/2023]
Abstract
Glutamine is a critical metabolite for rapidly proliferating cells as it is used for the synthesis of key metabolites necessary for cell growth and proliferation. Glutamine metabolism has been proposed as a therapeutic target in cancer and several chemical inhibitors are in development or in clinical trials. How cells subsist when glutamine is limiting is poorly understood. Here, using an unbiased screen, we identify ALDH18A1, which encodes P5CS, the rate-limiting enzyme in the proline biosynthetic pathway, as a gene that cells can downregulate in response to glutamine starvation. Notably, P5CS downregulation promotes de novo glutamine synthesis, highlighting a previously unrecognized metabolic plasticity of cancer cells. The glutamate conserved from reducing proline synthesis allows cells to produce the key metabolites necessary for cell survival and proliferation under glutamine-restricted conditions. Our findings reveal an adaptive pathway that cancer cells acquire under nutrient stress, identifying proline biosynthesis as a previously unrecognized major consumer of glutamate, a pathway that could be exploited for developing effective metabolism-driven anticancer therapies.
Collapse
Affiliation(s)
- Samantha J Linder
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Tiziano Bernasocchi
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Denver, CO, USA.
| | - Bárbara Martínez-Pastor
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Denver, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Caroline A Lewis
- The Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina M Ferrer
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ruben Boon
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Galapagos de Wittelaan, Mechelen, Belgium
| | - Giorgia G Silveira
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Hyo Min Cho
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Stuti Shroff
- Department of Pathology, The Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joao P Oliveira-Costa
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Kenneth N Ross
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rami Massri
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yusuke Matoba
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Eugene Kim
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Shannon L Stott
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Engineering in Medicine and Surgery, The Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Eyal Gottlieb
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- MD Anderson Cancer Center, Houston, TX, USA
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Denver, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Raul Mostoslavsky
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Denver, CO, USA.
| |
Collapse
|
6
|
Ge Q, Li J, Yang F, Tian X, Zhang M, Hao Z, Liang C, Meng J. Molecular classifications of prostate cancer: basis for individualized risk stratification and precision therapy. Ann Med 2023; 55:2279235. [PMID: 37939258 PMCID: PMC10653710 DOI: 10.1080/07853890.2023.2279235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Tumour classifications play a pivotal role in prostate cancer (PCa) management. It can predict the clinical outcomes of PCa as early as the disease is diagnosed and then guide therapeutic schemes, such as active monitoring, standalone surgical intervention, or surgery supplemented with postoperative adjunctive therapy, thereby circumventing disease exacerbation and excessive treatment. Classifications based on clinicopathological features, such as prostate cancer-specific antigen, Gleason score, and TNM stage, are still the main risk stratification strategies and have played an essential role in standardized clinical decision-making. However, mounting evidence indicates that clinicopathological parameters in isolation fail to adequately capture the heterogeneity exhibited among distinct PCa patients, such as those sharing identical Gleason scores yet experiencing divergent prognoses. As a remedy, molecular classifications have been introduced. Currently, molecular studies have revealed the characteristic genomic alterations, epigenetic modulations, and tumour microenvironment associated with different types of PCa, which provide a chance for urologists to refine the PCa classification. In this context, numerous invaluable molecular classifications have been devised, employing disparate statistical methodologies and algorithmic approaches, encompassing self-organizing map clustering, unsupervised cluster analysis, and multifarious algorithms. Interestingly, the classifier PAM50 was used in a phase-2 multicentre open-label trial, NRG-GU-006, for further validation, which hints at the promise of molecular classification for clinical use. Consequently, this review examines the extant molecular classifications, delineates the prevailing panorama of clinically pertinent molecular signatures, and delves into eight emblematic molecular classifications, dissecting their methodological underpinnings and clinical utility.
Collapse
Affiliation(s)
- Qintao Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Jiawei Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Feixiang Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | | | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
- Institute of Urology, Anhui Medical University, Hefei, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| |
Collapse
|
7
|
Stevens C, Hightower A, Buxbaum SG, Falzarano SM, Rhie SK. Genomic, epigenomic, and transcriptomic signatures of prostate cancer between African American and European American patients. Front Oncol 2023; 13:1079037. [PMID: 36937425 PMCID: PMC10018228 DOI: 10.3389/fonc.2023.1079037] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Prostate cancer is the second most common cancer in men in the United States, and racial disparities are greatly observed in the disease. Specifically, African American (AA) patients have 60% higher incidence and mortality rates, in addition to higher grade and stage prostate tumors, than European American (EA) patients. In order to narrow the gap between clinical outcomes for these two populations, genetic and molecular signatures contributing to this disparity have been characterized. Over the past decade, profiles of prostate tumor samples from different ethnic groups have been developed using molecular and functional assays coupled with next generation sequencing or microarrays. Comparative genome-wide analyses of genomic, epigenomic, and transcriptomic profiles from prostate tumor samples have uncovered potential race-specific mutations, copy number alterations, DNA methylation, and gene expression patterns. In this study, we reviewed over 20 published studies that examined the aforementioned molecular contributions to racial disparities in AA and EA prostate cancer patients. The reviewed genomic studies revealed mutations, deletions, amplifications, duplications, or fusion genes differentially enriched in AA patients relative to EA patients. Commonly reported genomic alterations included mutations or copy number alterations of FOXA1, KMT2D, SPOP, MYC, PTEN, TP53, ZFHX3, and the TMPRSS2-ERG fusion. The reviewed epigenomic studies identified that CpG sites near the promoters of PMEPA1, RARB, SNRPN, and TIMP3 genes were differentially methylated between AA and EA patients. Lastly, the reviewed transcriptomic studies identified genes (e.g. CCL4, CHRM3, CRYBB2, CXCR4, GALR1, GSTM3, SPINK1) and signaling pathways dysregulated between AA and EA patients. The most frequently found dysregulated pathways were involved in immune and inflammatory responses and neuroactive ligand signaling. Overall, we observed that the genomic, epigenomic, and transcriptomic alterations evaluated between AA and EA prostate cancer patients varied between studies, highlighting the impact of using different methods and sample sizes. The reported genomic, epigenomic, and transcriptomic alterations do not only uncover molecular mechanisms of tumorigenesis but also provide researchers and clinicians valuable resources to identify novel biomarkers and treatment modalities to improve the disparity of clinical outcomes between AA and EA patients.
Collapse
Affiliation(s)
- Claire Stevens
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA, United States
- CaRE2 Program, Florida-California Health Equity Center, Los Angeles, CA, United States
| | - Alexandria Hightower
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA, United States
- CaRE2 Program, Florida-California Health Equity Center, Los Angeles, CA, United States
| | - Sarah G. Buxbaum
- CaRE2 Program, Florida-California Health Equity Center, Los Angeles, CA, United States
- Department of Epidemiology and Biostatistics, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, United States
| | - Sara M. Falzarano
- CaRE2 Program, Florida-California Health Equity Center, Los Angeles, CA, United States
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Suhn K. Rhie
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA, United States
- CaRE2 Program, Florida-California Health Equity Center, Los Angeles, CA, United States
| |
Collapse
|
8
|
Wang Y, Huang Z, Sun M, Huang W, Xia L. ETS transcription factors: Multifaceted players from cancer progression to tumor immunity. Biochim Biophys Acta Rev Cancer 2023; 1878:188872. [PMID: 36841365 DOI: 10.1016/j.bbcan.2023.188872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/26/2023]
Abstract
The E26 transformation specific (ETS) family comprises 28 transcription factors, the majority of which are involved in tumor initiation and development. Serving as a group of functionally heterogeneous gene regulators, ETS factors possess a structurally conserved DNA-binding domain. As one of the most prominent families of transcription factors that control diverse cellular functions, ETS activation is modulated by multiple intracellular signaling pathways and post-translational modifications. Disturbances in ETS activity often lead to abnormal changes in oncogenicity, including cancer cell survival, growth, proliferation, metastasis, genetic instability, cell metabolism, and tumor immunity. This review systematically addresses the basics and advances in studying ETS factors, from their tumor relevance to clinical translational utility, with a particular focus on elucidating the role of ETS family in tumor immunity, aiming to decipher the vital role and clinical potential of regulation of ETS factors in the cancer field.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
9
|
Li Y, Wang H, Pan Y, Wang S, Zhang Z, Zhou H, Xu M, Liu X. Identification of bicalutamide resistance-related genes and prognosis prediction in patients with prostate cancer. Front Endocrinol (Lausanne) 2023; 14:1125299. [PMID: 37143720 PMCID: PMC10151815 DOI: 10.3389/fendo.2023.1125299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/30/2023] [Indexed: 05/06/2023] Open
Abstract
Background Prostate cancer (PCa) is the second most common type of cancer and the fifth leading cause of cancer-related death in men. Androgen deprivation therapy (ADT) has become the first-line therapy for inhibiting PCa progression; however, nearly all patients receiving ADT eventually progress to castrate-resistant prostate cancer. Therefore, this study aimed to identify hub genes related to bicalutamide resistance in PCa and provide new insights into endocrine therapy resistance. Methods The data were obtained from public databases. Weighted correlation network analysis was used to identify the gene modules related to bicalutamide resistance, and the relationship between the samples and disease-free survival was analyzed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed, and hub genes were identified. The LASSO algorithm was used to develop a bicalutamide resistance prognostic model in patients with PCa, which was then verified. Finally, we analyzed the tumor mutational heterogeneity and immune microenvironment in both groups. Results Two drug resistance gene modules were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that both modules are involved in RNA splicing. The protein-protein interaction network identified 10 hub genes in the brown module LUC7L3, SNRNP70, PRPF3, LUC7L, CLASRP, CLK1, CLK2, U2AF1L4, NXF1, and THOC1) and 13 in the yellow module (PNN, PPWD1, SRRM2, DHX35, DMTF1, SALL4, MTA1, HDAC7, PHC1, ACIN1, HNRNPH1, DDX17, and HDAC6). The prognostic model composed of RNF207, REC8, DFNB59, HOXA2, EPOR, PILRB, LSMEM1, TCIRG1, ABTB1, ZNF276, ZNF540, and DPY19L2 could effectively predict patient prognosis. Genomic analysis revealed that the high- and low-risk groups had different mutation maps. Immune infiltration analysis showed a statistically significant difference in immune infiltration between the high- and low-risk groups, and that the high-risk group may benefit from immunotherapy. Conclusion In this study, bicalutamide resistance genes and hub genes were identified in PCa, a risk model for predicting the prognosis of patients with PCa was constructed, and the tumor mutation heterogeneity and immune infiltration in high- and low-risk groups were analyzed. These findings offer new insights into ADT resistance targets and prognostic prediction in patients with PCa.
Collapse
|
10
|
Zhang GM, Huang SS, Ye LX, Liu XL, Shi WH, Ren ZL, Zhou RH, Zhang JJ, Pan JX, Liu SW, Yu L, Li YL. Reciprocal positive regulation between BRD4 and YAP in GNAQ-mutant uveal melanoma cells confers sensitivity to BET inhibitors. Pharmacol Res 2022; 184:106464. [PMID: 36162600 DOI: 10.1016/j.phrs.2022.106464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
Uveal melanoma (UM) is the most common intraocular cancer in adults. UMs are usually initiated by a mutation in GNAQ or GNA11 (encoding Gq or G11, respectively), unlike cutaneous melanomas (CMs), which usually carry a BRAF or NRAS mutation. Currently, there are no clinically effective targeted therapies for UM carrying Gq/11 mutations. Here, we identified a causal link between Gq activating mutations and hypersensitivity to bromodomain and extra-terminal (BET) inhibitors. BET inhibitors transcriptionally repress YAP via BRD4 regardless of Gq mutation status, independently of Hippo core components LATS1/2. In contrast, YAP/TAZ downregulation reduces BRD4 transcription exclusively in Gq-mutant cells and LATS1/2 double knockout cells, both of which are featured by constitutively active YAP/TAZ. The transcriptional interdependency between BRD4 and YAP identified in Gq-mutated cells is responsible for the preferential inhibitory effect of BET inhibitors on the growth and dissemination of Gq-mutated UM cells compared to BRAF-mutated CM cells in both culture cells and animal models. Our findings suggest BRD4 as a viable therapeutic target for Gq-driven UMs that are addicted to unrestrained YAP function.
Collapse
Affiliation(s)
- Gui-Ming Zhang
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Si-Si Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin-Xuan Ye
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Lian Liu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wen-Hui Shi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhong-Lu Ren
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Run-Hua Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jia-Jie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing-Xuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shu-Wen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Le Yu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Yi-Lei Li
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
11
|
Zhou J, Lai Y, Peng S, Tang C, Chen Y, Li L, Huang H, Guo Z. Comprehensive analysis of TP53 and SPOP mutations and their impact on survival in metastatic prostate cancer. Front Oncol 2022; 12:957404. [PMID: 36119488 PMCID: PMC9471084 DOI: 10.3389/fonc.2022.957404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
BackgroundAlthough TP53 and SPOP are frequently mutated in metastatic prostate cancer (PCa), their prognostic value is ambiguous, and large sample studies are lacking, especially when they co-occur with other genetic alterations.MethodsGenomic data and patients’ clinical characteristics in PCa were downloaded from the cBioPortal database. We extensively analyzed other gene alterations in different mutation status of TP53 and SPOP. We further subdivided TP53 and SPOP mutation into subgroups based on different mutation status, and then evaluated the prognostic value. Two classification systems for TP53 survival analysis were used.ResultsA total of 2,172 patients with PCa were analyzed in our study, of which 1,799 were metastatic PCa patients. The mutual exclusivity analysis showed that TP53 and SPOP mutation has a strong mutual exclusion (p<0.001). In multivariable analysis, truncating TP53 mutations (HR=1.773, 95%CI:1.403-2.239, p<0.001) and other TP53 mutations(HR=1.555, 95%CI:1.267-1.908, p<0.001) were independent negative prognostic markers in metastatic PCa, whereas SPOP mutations(HR=0.592, 95%CI:0.427-0.819, p<0.001) were an independent prognostic factor for better prognosis. Mutations in TP53 were significantly associated with wild-type status for SPOP and CDK12, structural variants/fusions for TMPRSS2 and ERG, AR amplification and PTEN deletion (p<0.001). And truncating TP53 mutations have higher AR amplification rates than other TP53 mutations (p=0.022). Consistently, truncating TP53 mutations had a worse prognosis than other TP53 mutations (p<0.05). Then Kaplan-Meier survival curve showed that Co-occurring TP53 mutations in AR amplification or PTEN deletion tumors significantly reduced survival (p<0.05). Furthermore, those with SPOP-mutant tumors with co-occurring TP53 truncating mutations had shorter overall survival than those with SPOP-mutant tumors with wild-type or other TP53 mutations.ConclusionsThis study found that TP53 and SPOP mutations were mutually exclusive and both were independent prognostic markers for metastatic PCa. Genomic alteration and survival analysis revealed that TP53 and SPOP mutations represented distinct molecular subtypes. Our data suggest that molecular stratification on the basis of TP53 and SPOP mutation status should be implemented for metastatic PCa to optimize and modify clinical decision-making.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiming Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chen Tang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongming Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lingfeng Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Zhenghui Guo, ; Hai Huang,
| | - Zhenghui Guo
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Zhenghui Guo, ; Hai Huang,
| |
Collapse
|
12
|
Arenas-Gallo C, Owiredu J, Weinstein I, Lewicki P, Basourakos SP, Vince R, Al Hussein Al Awamlh B, Schumacher FR, Spratt DE, Barbieri CE, Shoag JE. Race and prostate cancer: genomic landscape. Nat Rev Urol 2022; 19:547-561. [PMID: 35945369 DOI: 10.1038/s41585-022-00622-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
In the past 20 years, new insights into the genomic pathogenesis of prostate cancer have been provided. Large-scale integrative genomics approaches enabled researchers to characterize the genetic and epigenetic landscape of prostate cancer and to define different molecular subclasses based on the combination of genetic alterations, gene expression patterns and methylation profiles. Several molecular drivers of prostate cancer have been identified, some of which are different in men of different races. However, the extent to which genomics can explain racial disparities in prostate cancer outcomes is unclear. Future collaborative genomic studies overcoming the underrepresentation of non-white patients and other minority populations are essential.
Collapse
Affiliation(s)
- Camilo Arenas-Gallo
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jude Owiredu
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Ilon Weinstein
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Patrick Lewicki
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Spyridon P Basourakos
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Randy Vince
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Bashir Al Hussein Al Awamlh
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA.,Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher E Barbieri
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan E Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
13
|
Mourkioti I, Angelopoulou A, Belogiannis K, Lagopati N, Potamianos S, Kyrodimos E, Gorgoulis V, Papaspyropoulos A. Interplay of Developmental Hippo-Notch Signaling Pathways with the DNA Damage Response in Prostate Cancer. Cells 2022; 11:cells11152449. [PMID: 35954292 PMCID: PMC9367915 DOI: 10.3390/cells11152449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer belongs in the class of hormone-dependent cancers, representing a major cause of cancer incidence in men worldwide. Since upon disease onset almost all prostate cancers are androgen-dependent and require active androgen receptor (AR) signaling for their survival, the primary treatment approach has for decades relied on inhibition of the AR pathway via androgen deprivation therapy (ADT). However, following this line of treatment, cancer cell pools often become resistant to therapy, contributing to disease progression towards the significantly more aggressive castration-resistant prostate cancer (CRPC) form, characterized by poor prognosis. It is, therefore, of critical importance to elucidate the molecular mechanisms and signaling pathways underlying the progression of early-stage prostate cancer towards CRPC. In this review, we aim to shed light on the role of major signaling pathways including the DNA damage response (DDR) and the developmental Hippo and Notch pathways in prostate tumorigenesis. We recapitulate key evidence demonstrating the crosstalk of those pathways as well as with pivotal prostate cancer-related 'hubs' such as AR signaling, and evaluate the clinical impact of those interactions. Moreover, we attempt to identify molecules of the complex DDR-Hippo-Notch interplay comprising potentially novel therapeutic targets in the battle against prostate tumorigenesis.
Collapse
Affiliation(s)
- Ioanna Mourkioti
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Andriani Angelopoulou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Konstantinos Belogiannis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Spyridon Potamianos
- First ENT Department, Hippocration Hospital, University of Athens, 11527 Athens, Greece
| | - Efthymios Kyrodimos
- First ENT Department, Hippocration Hospital, University of Athens, 11527 Athens, Greece
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Clinical Molecular Pathology, Medical School, University of Dundee, Dundee DD1 9SY, UK
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
- Correspondence: (V.G.); (A.P.); Tel.: +30-210-7462352 (V.G.); +30-210-7462174 (A.P.)
| | - Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Correspondence: (V.G.); (A.P.); Tel.: +30-210-7462352 (V.G.); +30-210-7462174 (A.P.)
| |
Collapse
|
14
|
Cotter K, Rubin MA. The evolving landscape of prostate cancer somatic mutations. Prostate 2022; 82 Suppl 1:S13-S24. [PMID: 35657155 PMCID: PMC9328313 DOI: 10.1002/pros.24353] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The landscape of somatic mutations in prostate cancer (PCa) has quickly evolved over the past years. RESULTS This evolution was in part due to the improved quality and lower cost of genomic sequencing platforms available to an ever-larger group of clinicians and researchers. The result of these efforts is a better understanding of early and late mutations that are enriched or nearly exclusive to treated PCa. There are, however, some important limitations to the current knowledge. The expanding variety of next-generation sequencing (NGS) assays either capture a wide spectrum of mutations but at low coverage or are focused panels that cover a select number of genes, most often cancer-related, at a deep coverage. Both of these approaches have their advantages, but ultimately miss low-frequency mutations or fail to cover the spectrum of potential mutations. Additionally, some alterations, such as the common ETS gene fusions, require a mixture of DNA and RNA analysis to capture the true frequency. Finally, almost all studies rely on bulk PCa tumor samples, which fail to consider tumor heterogeneity. Given all these caveats, the true picture of the somatic landscape of PCa continues to develop. SUMMARY In this review, the focus will be on how the landscape of mutations evolves during disease progression considering therapy. It will focus on a select group of early and late mutations and utilize SPOP mutations to illustrate recurrent alterations that may have clinical implications.
Collapse
Affiliation(s)
- Kellie Cotter
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Mark A. Rubin
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
- Bern Center for Precision MedicineUniversity of BernBernSwitzerland
| |
Collapse
|
15
|
Fan Y, Hou T, Dan W, Zhu Y, Liu B, Wei Y, Wang Z, Gao Y, Zeng J, Li L. ERK1/2 inhibits Cullin 3/SPOP-mediated PrLZ ubiquitination and degradation to modulate prostate cancer progression. Cell Death Differ 2022; 29:1611-1624. [PMID: 35194188 PMCID: PMC9345960 DOI: 10.1038/s41418-022-00951-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 11/09/2022] Open
Abstract
The gene encoding the E3 ubiquitin ligase substrate-binding adaptor SPOP is frequently mutated in prostate cancer (PCa), but how SPOP functions as a tumor suppressor and contributes to PCa pathogenesis remains poorly understood. Prostate Leucine Zipper (PrLZ) serves as a prostate-specific and androgen-responsive gene, which plays a pivotal role in the malignant progression of PCa. However, the upstream regulatory mechanism of PrLZ protein stability and its physiological contribution to PCa carcinogenesis remain largely elusive. Here we report that PrLZ can be degraded by SPOP. PrLZ abundance is elevated in SPOP-mutant expressing PCa cell lines and patient specimens. Meanwhile, ERK1/2 might regulate SPOP-mediated PrLZ degradation through phosphorylating PrLZ at Ser40, which blocks the interaction between SPOP and PrLZ. In addition, we identify IL-6 might act as an upstream PrLZ degradation regulator via promoting its phosphorylation by ERK1/2, leading to its impaired recognition by SPOP. Thus, our study reveals a novel SPOP substrate PrLZ which might be controlled by ERK1/2-mediated phosphorylation, thereby facilitating to explore novel drug targets and improve therapeutic strategy for PCa.
Collapse
|
16
|
Yan W, Shi X, Wang H, Liao A, Yang W. Aberrant SPOP-CHAF1A ubiquitination axis triggers tumor autophagy that endows a therapeutical vulnerability in diffuse large B cell lymphoma. Lab Invest 2022; 20:296. [PMID: 35773729 PMCID: PMC9248129 DOI: 10.1186/s12967-022-03476-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 01/02/2023]
Abstract
Purpose Aberrant epigenetic changes, like DNA methylation, histone modifications, or ubiquitination, could trigger metabolic disorders in human cancer cells. This study planed to uncover the biological roles of epigenetic SPOP/CHAF1A axis in modulating tumor autophagy during Diffuse large B-cell lymphoma (DLBCL) tumorigenesis. Materials and methods The Immunohistochemistry (IHC) was performed to assess the CHAF1A expressions. The expression data of CHAF1A was derived from The Cancer Genome Atlas (TCGA), GSE32918 and GSE83632 datasets. Bioinformatic assays contain differential analysis, functional enrichment analysis and Kaplan–Meier survival curve analysis. The colony generation assay, Transwell assay and CCK-8 assays were conducted for the in vitro assays. The in vivo ubiquitination assays were used to assess regulations of SPOP on CHAF1A. The Chromatin immunoprecipitation (ChIP) assays were used to uncover epigenetic regulations of CHAF1A on TFEB. The relevant DLBCL cells were subcutaneously injected to SCID beige mice to establish the xenograft models. Results Bioinformatic results revealed that CHAF1A expressed highly in DLBCL that were validated in patients samples. Patients with high CHAF1A suffered from inferior prognosis with shorter survival months relative to those with low CHAF1A. High CHAF1A enhanced DLBCL aggressiveness, including cell proliferation, migration and in vivo growth. Mechanistically, E3 ubiquitin ligase SPOP binds to and induces the degradative ubiquitination of CHAF1A via recognizing a consensus SPOP-binding motif in CHAF1A. SPOP is down-regulated in DLBCL and habours two DLBCL-associated mutations. Deficient SPOP leads to accumulated CHAF1A proteins that promote malignant features of DLBCL. Subsequently, ChIP-qPCR assay revealed that CHAF1A directly binds to TFEB promoters to activate the expressions. High CHAF1A could enhance the transcriptional activity of TFEB and downstream genes. The SPOP/CHAF1A axis modulates TFEB-dependent transactivation to regulate the lysosomal biogenesis and autophagy. The in vivo models suggested that TFEB inhibition is effective to suppress growth of SPOP-deficient DLBCLs. Conclusions CHAF1A is aberrantly elevated in SPOP-deficient DLBCL. The in‐depth mechanism understanding of SPOP/CHAF1A/TFEB axis endows novel targets for DLBCL treatment.
Collapse
Affiliation(s)
- Wei Yan
- Department of Hematology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, Liaoning, China
| | - Xue Shi
- Department of Hematology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, Liaoning, China
| | - Huihan Wang
- Department of Hematology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, Liaoning, China
| | - Aijun Liao
- Department of Hematology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, Liaoning, China
| | - Wei Yang
- Department of Hematology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, Liaoning, China.
| |
Collapse
|
17
|
Mai CW, Chin KY, Foong LC, Pang KL, Yu B, Shu Y, Chen S, Cheong SK, Chua CW. Modeling prostate cancer: What does it take to build an ideal tumor model? Cancer Lett 2022; 543:215794. [PMID: 35718268 DOI: 10.1016/j.canlet.2022.215794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Prostate cancer is frequently characterized as a multifocal disease with great intratumoral heterogeneity as well as a high propensity to metastasize to bone. Consequently, modeling prostate tumor has remained a challenging task for researchers in this field. In the past decades, genomic advances have led to the identification of key molecular alterations in prostate cancer. Moreover, resistance towards second-generation androgen-deprivation therapy, namely abiraterone and enzalutamide has unveiled androgen receptor-independent diseases with distinctive histopathological and clinical features. In this review, we have critically evaluated the commonly used preclinical models of prostate cancer with respect to their capability of recapitulating the key genomic alterations, histopathological features and bone metastatic potential of human prostate tumors. In addition, we have also discussed the potential use of the emerging organoid models in prostate cancer research, which possess clear advantages over the commonly used preclinical tumor models. We anticipate that no single model can faithfully recapitulate the complexity of prostate cancer, and thus, propose the use of a cost- and time-efficient integrated tumor modeling approach for future prostate cancer investigations.
Collapse
Affiliation(s)
- Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Yong Chin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri, 79200, Malaysia
| | - Bin Yu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Shu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sisi Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Soon-Keng Cheong
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Chee Wai Chua
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
18
|
Nevedomskaya E, Haendler B. From Omics to Multi-Omics Approaches for In-Depth Analysis of the Molecular Mechanisms of Prostate Cancer. Int J Mol Sci 2022; 23:6281. [PMID: 35682963 PMCID: PMC9181488 DOI: 10.3390/ijms23116281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer arises following alterations at different cellular levels, including genetic and epigenetic modifications, transcription and translation dysregulation, as well as metabolic variations. High-throughput omics technologies that allow one to identify and quantify processes involved in these changes are now available and have been instrumental in generating a wealth of steadily increasing data from patient tumors, liquid biopsies, and from tumor models. Extensive investigation and integration of these data have led to new biological insights into the origin and development of multiple cancer types and helped to unravel the molecular networks underlying this complex pathology. The comprehensive and quantitative analysis of a molecule class in a biological sample is named omics and large-scale omics studies addressing different prostate cancer stages have been performed in recent years. Prostate tumors represent the second leading cancer type and a prevalent cause of cancer death in men worldwide. It is a very heterogenous disease so that evaluating inter- and intra-tumor differences will be essential for a precise insight into disease development and plasticity, but also for the development of personalized therapies. There is ample evidence for the key role of the androgen receptor, a steroid hormone-activated transcription factor, in driving early and late stages of the disease, and this led to the development and approval of drugs addressing diverse targets along this pathway. Early genomic and transcriptomic studies have allowed one to determine the genes involved in prostate cancer and regulated by androgen signaling or other tumor-relevant signaling pathways. More recently, they have been supplemented by epigenomic, cistromic, proteomic and metabolomic analyses, thus, increasing our knowledge on the intricate mechanisms involved, the various levels of regulation and their interplay. The comprehensive investigation of these omics approaches and their integration into multi-omics analyses have led to a much deeper understanding of the molecular pathways involved in prostate cancer progression, and in response and resistance to therapies. This brings the hope that novel vulnerabilities will be identified, that existing therapies will be more beneficial by targeting the patient population likely to respond best, and that bespoke treatments with increased efficacy will be available soon.
Collapse
Affiliation(s)
| | - Bernard Haendler
- Research and Early Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany;
| |
Collapse
|
19
|
Lorenzin F, Demichelis F. Past, Current, and Future Strategies to Target ERG Fusion-Positive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14051118. [PMID: 35267426 PMCID: PMC8909394 DOI: 10.3390/cancers14051118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
Simple Summary In addition to its role in development and in the vascular and hematopoietic systems, ERG plays a central role in prostate cancer. Approximately 40–50% of prostate cancer cases are characterized by ERG gene fusions, which lead to ERG overexpression. Importantly, inhibition of ERG activity in prostate cancer cells decreases their viability. Therefore, inhibiting ERG might represent an important step to improve treatment efficacy for patients with ERG-positive prostate tumors. Here, we summarize the attempts made over the past years to repress ERG activity, the current use of ERG fusion detection and the strategies that might be utilized in the future to treat ERG fusion-positive tumors. Abstract The ETS family member ERG is a transcription factor with physiological roles during development and in the vascular and hematopoietic systems. ERG oncogenic activity characterizes several malignancies, including Ewing’s sarcoma, leukemia and prostate cancer (PCa). In PCa, ERG rearrangements with androgen-regulated genes—mostly TMPRSS2—characterize a large subset of patients across disease progression and result in androgen receptor (AR)-mediated overexpression of ERG in the prostate cells. Importantly, PCa cells overexpressing ERG are dependent on ERG activity for survival, further highlighting its therapeutic potential. Here, we review the current understanding of the role of ERG and its partners in PCa. We discuss the strategies developed in recent years to inhibit ERG activity, the current therapeutic utility of ERG fusion detection in PCa patients, and the possible future approaches to target ERG fusion-positive tumors.
Collapse
Affiliation(s)
- Francesca Lorenzin
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- Correspondence: (F.L.); (F.D.)
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: (F.L.); (F.D.)
| |
Collapse
|
20
|
Burleson M, Deng JJ, Qin T, Duong TM, Yan Y, Gu X, Das D, Easley A, Liss MA, Yew PR, Bedolla R, Kumar AP, Huang THM, Zou Y, Chen Y, Chen CL, Huang H, Sun LZ, Boyer TG. GLI3 Is Stabilized by SPOP Mutations and Promotes Castration Resistance via Functional Cooperation with Androgen Receptor in Prostate Cancer. Mol Cancer Res 2022; 20:62-76. [PMID: 34610962 PMCID: PMC9258906 DOI: 10.1158/1541-7786.mcr-21-0108] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Although the Sonic hedgehog (SHH) signaling pathway has been implicated in promoting malignant phenotypes of prostate cancer, details on how it is activated and exerts its oncogenic role during prostate cancer development and progression is less clear. Here, we show that GLI3, a key SHH pathway effector, is transcriptionally upregulated during androgen deprivation and posttranslationally stabilized in prostate cancer cells by mutation of speckle-type POZ protein (SPOP). GLI3 is a substrate of SPOP-mediated proteasomal degradation in prostate cancer cells and prostate cancer driver mutations in SPOP abrogate GLI3 degradation. Functionally, GLI3 is necessary and sufficient for the growth and migration of androgen receptor (AR)-positive prostate cancer cells, particularly under androgen-depleted conditions. Importantly, we demonstrate that GLI3 physically interacts and functionally cooperates with AR to enrich an AR-dependent gene expression program leading to castration-resistant growth of xenografted prostate tumors. Finally, we identify an AR/GLI3 coregulated gene signature that is highly correlated with castration-resistant metastatic prostate cancer and predictive of disease recurrence. Together, these findings reveal that hyperactivated GLI3 promotes castration-resistant growth of prostate cancer and provide a rationale for therapeutic targeting of GLI3 in patients with castration-resistant prostate cancer (CRPC). IMPLICATIONS: We describe two clinically relevant mechanisms leading to hyperactivated GLI3 signaling and enhanced AR/GLI3 cross-talk, suggesting that GLI3-specific inhibitors might prove effective to block prostate cancer development or delay CRPC.
Collapse
Affiliation(s)
- Marieke Burleson
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
| | - Janice J Deng
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Tai Qin
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Thu Minh Duong
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
| | - Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Xiang Gu
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Debodipta Das
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Acarizia Easley
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Michael A Liss
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - P Renee Yew
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
| | - Roble Bedolla
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | | | - Tim Hui-Ming Huang
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas
| | - Chun-Liang Chen
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lu-Zhe Sun
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas.
| | - Thomas G Boyer
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas.
| |
Collapse
|
21
|
Kneppers J, Bergman AM, Zwart W. Prostate Cancer Epigenetic Plasticity and Enhancer Heterogeneity: Molecular Causes, Consequences and Clinical Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:255-275. [DOI: 10.1007/978-3-031-11836-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
22
|
Bernasocchi T, Theurillat JPP. SPOP-mutant prostate cancer: Translating fundamental biology into patient care. Cancer Lett 2021; 529:11-18. [PMID: 34974131 DOI: 10.1016/j.canlet.2021.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023]
Abstract
Comprehensive cancer genome studies have revealed genetically-defined subtypes of prostate cancer with distinct truncal driver mutations. Because prostate cancer has been largely seen as a rather uniform disease, the clinical significance of this discovery remained largely obscure. However, recent findings imply distinct biological features and therapeutic vulnerabilities linked to specific truncal mutations. Here we review our current understanding of prostate cancers harboring recurrent point mutations in the ubiquitin ligase adaptor protein SPOP and discuss opportunities for future clinical translation. More specifically, activation of the androgen receptor (AR) signaling emerges as the key oncogenic pathway. SPOP-mutant prostate cancer patients respond to AR inhibition in various clinical settings. Molecular insights on how mutant SPOP promotes tumorigenesis may open more specific therapeutic avenues which, in combination with conventional AR-targeting agents, could improve the outcome of patients with SPOP-mutant prostate cancer.
Collapse
Affiliation(s)
- Tiziano Bernasocchi
- Institute of Oncology Research, Bellinzona, TI, 6500, Switzerland; Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, TI, 6900, Lugano, Switzerland
| | - Jean-Philippe P Theurillat
- Institute of Oncology Research, Bellinzona, TI, 6500, Switzerland; Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, TI, 6900, Lugano, Switzerland.
| |
Collapse
|
23
|
Bolis M, Bossi D, Vallerga A, Ceserani V, Cavalli M, Impellizzieri D, Di Rito L, Zoni E, Mosole S, Elia AR, Rinaldi A, Pereira Mestre R, D’Antonio E, Ferrari M, Stoffel F, Jermini F, Gillessen S, Bubendorf L, Schraml P, Calcinotto A, Corey E, Moch H, Spahn M, Thalmann G, Kruithof-de Julio M, Rubin MA, Theurillat JPP. Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression. Nat Commun 2021; 12:7033. [PMID: 34857732 PMCID: PMC8640014 DOI: 10.1038/s41467-021-26840-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Comprehensive genomic studies have delineated key driver mutations linked to disease progression for most cancers. However, corresponding transcriptional changes remain largely elusive because of the bias associated with cross-study analysis. Here, we overcome these hurdles and generate a comprehensive prostate cancer transcriptome atlas that describes the roadmap to tumor progression in a qualitative and quantitative manner. Most cancers follow a uniform trajectory characterized by upregulation of polycomb-repressive-complex-2, G2-M checkpoints, and M2 macrophage polarization. Using patient-derived xenograft models, we functionally validate our observations and add single-cell resolution. Thereby, we show that tumor progression occurs through transcriptional adaption rather than a selection of pre-existing cancer cell clusters. Moreover, we determine at the single-cell level how inhibition of EZH2 - the top upregulated gene along the trajectory - reverts tumor progression and macrophage polarization. Finally, a user-friendly web-resource is provided enabling the investigation of dynamic transcriptional perturbations linked to disease progression.
Collapse
Affiliation(s)
- Marco Bolis
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI, 6500, Switzerland. .,Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche 'Mario Negri' IRCCS, 20156, Milano, Italy. .,Bioinformatics Core Unit, Swiss Institute of Bioinformatics, TI, 6500, Bellinzona, Switzerland.
| | - Daniela Bossi
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Arianna Vallerga
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland ,grid.419765.80000 0001 2223 3006Bioinformatics Core Unit, Swiss Institute of Bioinformatics, TI 6500 Bellinzona, Switzerland
| | - Valentina Ceserani
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Manuela Cavalli
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Daniela Impellizzieri
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Laura Di Rito
- grid.4527.40000000106678902Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche ‘Mario Negri’ IRCCS, 20156 Milano, Italy
| | - Eugenio Zoni
- grid.5734.50000 0001 0726 5157Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Simone Mosole
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Angela Rita Elia
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Andrea Rinaldi
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Ricardo Pereira Mestre
- grid.419922.5Oncology Institute of Southern Switzerland, Bellinzona, TI 6500 Switzerland
| | - Eugenia D’Antonio
- grid.419922.5Oncology Institute of Southern Switzerland, Bellinzona, TI 6500 Switzerland
| | - Matteo Ferrari
- grid.469433.f0000 0004 0514 7845Urology Department, Ente Ospedaliero Cantonale, Bellinzona, TI Switzerland
| | - Flavio Stoffel
- grid.469433.f0000 0004 0514 7845Urology Department, Ente Ospedaliero Cantonale, Bellinzona, TI Switzerland
| | - Fernando Jermini
- grid.469433.f0000 0004 0514 7845Urology Department, Ente Ospedaliero Cantonale, Bellinzona, TI Switzerland
| | - Silke Gillessen
- grid.419922.5Oncology Institute of Southern Switzerland, Bellinzona, TI 6500 Switzerland ,grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, University of Southern Switzerland (USI), TI 6900 Lugano, Switzerland
| | - Lukas Bubendorf
- grid.410567.1Institute of Surgical Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Peter Schraml
- grid.412004.30000 0004 0478 9977Department of Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Arianna Calcinotto
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Eva Corey
- grid.34477.330000000122986657Department of Urology, University of Washington, Seattle, WA 98195 USA
| | - Holger Moch
- grid.412004.30000 0004 0478 9977Department of Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Martin Spahn
- grid.415941.c0000 0004 0509 4333Lindenhofspital Bern, Prostate Center Bern, 3012 Bern, Switzerland
| | - George Thalmann
- grid.5734.50000 0001 0726 5157Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland ,grid.411656.10000 0004 0479 0855Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- grid.5734.50000 0001 0726 5157Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland ,grid.411656.10000 0004 0479 0855Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Mark A. Rubin
- grid.5734.50000 0001 0726 5157Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Bern Center for Precision Medicine, University of Bern and Inselspital, 3012 Bern, Switzerland
| | - Jean-Philippe P. Theurillat
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| |
Collapse
|
24
|
Tewari AK, Cheung ATM, Crowdis J, Conway JR, Camp SY, Wankowicz SA, Livitz DG, Park J, Lis RT, Bosma-Moody A, He MX, AlDubayan SH, Zhang Z, McKay RR, Leshchiner I, Brown M, Balk SP, Getz G, Taplin ME, Van Allen EM. Molecular features of exceptional response to neoadjuvant anti-androgen therapy in high-risk localized prostate cancer. Cell Rep 2021; 36:109665. [PMID: 34496240 DOI: 10.1016/j.celrep.2021.109665] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/17/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
High-risk localized prostate cancer (HRLPC) is associated with a substantial risk of recurrence and disease mortality. Recent clinical trials have shown that intensifying anti-androgen therapies administered before prostatectomy can induce pathologic complete responses or minimal residual disease, called exceptional response, although the molecular determinants of these clinical outcomes are largely unknown. Here, we perform whole-exome and transcriptome sequencing on pre-treatment multi-regional tumor biopsies from exceptional responders (ERs) and non-responders (NRs, pathologic T3 or lymph node-positive disease) to intensive neoadjuvant anti-androgen therapies. Clonal SPOP mutation and SPOPL copy-number loss are exclusively observed in ERs, while clonal TP53 mutation and PTEN copy-number loss are exclusively observed in NRs. Transcriptional programs involving androgen signaling and TGF-β signaling are enriched in ERs and NRs, respectively. These findings may guide prospective validation studies of these molecular features in large HRLPC clinical cohorts treated with neoadjuvant anti-androgens to improve patient stratification.
Collapse
Affiliation(s)
- Alok K Tewari
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexander T M Cheung
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jett Crowdis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jake R Conway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Graduate Program in Bioinformatics and Integrative Genomics, Boston, MA 02115, USA
| | - Sabrina Y Camp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Stephanie A Wankowicz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rosina T Lis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alice Bosma-Moody
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Meng Xiao He
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Graduate Program in Biophysics, Boston, MA 02115, USA
| | - Saud H AlDubayan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Zhenwei Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rana R McKay
- Division of Hematology/Oncology, University of California San Diego, San Diego, CA 92037, USA
| | | | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Steven P Balk
- Division of Cancer Biology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
25
|
Fedrizzi T, Ciani Y, Lorenzin F, Cantore T, Gasperini P, Demichelis F. Fast mutual exclusivity algorithm nominates potential synthetic lethal gene pairs through brute force matrix product computations. Comput Struct Biotechnol J 2021; 19:4394-4403. [PMID: 34429855 PMCID: PMC8369001 DOI: 10.1016/j.csbj.2021.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Mutual Exclusivity analysis of genomic aberrations contributes to the exploration of potential synthetic lethal (SL) relationships thus guiding the nomination of specific cancer cells vulnerabilities. When multiple classes of genomic aberrations and large cohorts of patients are interrogated, exhaustive genome-wide analyses are not computationally feasible with commonly used approaches. Here we present Fast Mutual Exclusivity (FaME), an algorithm based on matrix multiplication that employs a logarithm-based implementation of the Fisher's exact test to achieve fast computation of genome-wide mutual exclusivity tests; we show that brute force testing for mutual exclusivity of hundreds of millions of aberrations combinations can be performed in few minutes. We applied FaME to allele-specific data from whole exome experiments of 27 TCGA studies cohorts, detecting both mutual exclusivity of point mutations, as well as allele-specific copy number signals that span sets of contiguous cytobands. We next focused on a case study involving the loss of tumor suppressors and druggable genes while exploiting an integrated analysis of both public cell lines loss of function screens data and patients' transcriptomic profiles. FaME algorithm implementation as well as allele-specific analysis output are publicly available at https://github.com/demichelislab/FaME.
Collapse
Affiliation(s)
- Tarcisio Fedrizzi
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Yari Ciani
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Francesca Lorenzin
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Thomas Cantore
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Paola Gasperini
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
26
|
Jillson LK, Yette GA, Laajala TD, Tilley WD, Costello JC, Cramer SD. Androgen Receptor Signaling in Prostate Cancer Genomic Subtypes. Cancers (Basel) 2021; 13:3272. [PMID: 34208794 PMCID: PMC8269091 DOI: 10.3390/cancers13133272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
While many prostate cancer (PCa) cases remain indolent and treatable, others are aggressive and progress to the metastatic stage where there are limited curative therapies. Androgen receptor (AR) signaling remains an important pathway for proliferative and survival programs in PCa, making disruption of AR signaling a viable therapy option. However, most patients develop resistance to AR-targeted therapies or inherently never respond. The field has turned to PCa genomics to aid in stratifying high risk patients, and to better understand the mechanisms driving aggressive PCa and therapy resistance. While alterations to the AR gene itself occur at later stages, genomic changes at the primary stage can affect the AR axis and impact response to AR-directed therapies. Here, we review common genomic alterations in primary PCa and their influence on AR function and activity. Through a meta-analysis of multiple independent primary PCa databases, we also identified subtypes of significantly co-occurring alterations and examined their combinatorial effects on the AR axis. Further, we discussed the subsequent implications for response to AR-targeted therapies and other treatments. We identified multiple primary PCa genomic subtypes, and given their differing effects on AR activity, patient tumor genetics may be an important stratifying factor for AR therapy resistance.
Collapse
Affiliation(s)
- Lauren K. Jillson
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Gabriel A. Yette
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Teemu D. Laajala
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
- Department of Mathematics and Statistics, University of Turku, 20500 Turku, Finland
| | - Wayne D. Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Freemason’s Foundation Centre for Men’s Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Scott D. Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| |
Collapse
|
27
|
El Tekle G, Bernasocchi T, Unni AM, Bertoni F, Rossi D, Rubin MA, Theurillat JP. Co-occurrence and mutual exclusivity: what cross-cancer mutation patterns can tell us. Trends Cancer 2021; 7:823-836. [PMID: 34031014 DOI: 10.1016/j.trecan.2021.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022]
Abstract
Cancer is the dysregulated proliferation of cells caused by acquired mutations in key driver genes. The most frequently mutated driver genes promote tumorigenesis in various organisms, cell types, and genetic backgrounds. However, recent cancer genomics studies also point to the existence of context-dependent driver gene functions, where specific mutations occur predominately or even exclusively in certain tumor types or genetic backgrounds. Here, we review examples of co-occurring and mutually exclusive driver gene mutation patterns across cancer genomes and discuss their underlying biology. While co-occurring driver genes typically activate collaborating oncogenic pathways, we identify two distinct biological categories of incompatibilities among the mutually exclusive driver genes depending on whether the mutated drivers trigger the same or divergent tumorigenic pathways. Finally, we discuss possible therapeutic avenues emerging from the study of incompatible driver gene mutations.
Collapse
Affiliation(s)
- Geniver El Tekle
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, TI 6500, Switzerland
| | - Tiziano Bernasocchi
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, TI 6500, Switzerland
| | - Arun M Unni
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, TI 6500, Switzerland
| | - Davide Rossi
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, TI 6500, Switzerland; Oncology Institute of Southern Switzerland, Bellinzona, TI 6500, Switzerland
| | - Mark A Rubin
- Department for BioMedical Research, Precision Oncology Laboratory, University of Bern, Bern, Switzerland; Bern Center for Precision Medicine, University of Bern and Inselspital, Bern, Switzerland
| | - Jean-Philippe Theurillat
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, TI 6500, Switzerland.
| |
Collapse
|
28
|
Formaggio N, Rubin MA, Theurillat JP. Loss and revival of androgen receptor signaling in advanced prostate cancer. Oncogene 2021; 40:1205-1216. [PMID: 33420371 PMCID: PMC7892335 DOI: 10.1038/s41388-020-01598-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023]
Abstract
Targeting the androgen receptor (AR) signaling axis has been, over decades, the mainstay of prostate cancer therapy. More potent inhibitors of androgen synthesis and antiandrogens have emerged and have been successfully implemented in clinical practice. That said, the stronger inhibition of the AR signaling axis has led in recent years to an increase of prostate cancers that de-differentiate into AR-negative disease. Unfortunately, this process is intimately linked with a poor prognosis. Here, we review the molecular mechanisms that enable cancer cells to switch from an AR-positive to an AR-negative disease and efforts to prevent/revert this process and thereby maintain/restore AR-dependence.
Collapse
Affiliation(s)
- Nicolò Formaggio
- grid.29078.340000 0001 2203 2861Institute of Oncology Research, Università della Svizzera italiana, Lugano, Switzerland
| | - Mark A. Rubin
- grid.5734.50000 0001 0726 5157Department for BioMedical Research and Bern Center of Precision Medicine, University of Bern and Inselspital, Bern, Switzerland
| | - Jean-Philippe Theurillat
- grid.29078.340000 0001 2203 2861Institute of Oncology Research, Università della Svizzera italiana, Lugano, Switzerland
| |
Collapse
|