1
|
Salichon A, Salcedo A, Michel C, Loffreda D. Theoretical study of structure sensitivity on ceria-supported single platinum atoms and its influence on carbon monoxide adsorption. J Comput Chem 2024; 45:2167-2179. [PMID: 38795373 DOI: 10.1002/jcc.27393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/27/2024] [Accepted: 04/29/2024] [Indexed: 05/27/2024]
Abstract
Density functional theory (DFT) calculations explore the stability of a single platinum atom on various flat, stepped, and defective ceria surfaces, in the context of single-atom catalysts (SACs) for the water-gas shift (WGS) reaction. The adsorption properties and diffusion kinetics of the metal strongly depend on the support termination with large stability on metastable and stepped CeO2(100) and (210) surfaces where the diffusion of the platinum atom is hindered. At the opposite, the more stable CeO2(111) and (110) terminations weakly bind the platinum atom and can promote the growth of metallic clusters thanks to fast diffusion kinetics. The adsorption of carbon monoxide on the single platinum atom supported on the various ceria terminations is also sensitive to the surface structure. Carbon monoxide weakly binds to the single platinum atom supported on reduced CeO2(111) and (211) terminations. The desorption of the CO2 formed during the WGS reaction is thus facilitated on the latter terminations. A vibrational analysis underlines the significant changes in the calculated scaled anharmonic CO stretching frequency on these catalysts.
Collapse
Affiliation(s)
| | - Agustin Salcedo
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, Lyon Cedex, France
| | - Carine Michel
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, Lyon Cedex, France
| | - David Loffreda
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, Lyon Cedex, France
| |
Collapse
|
2
|
Yang J, Zheng J, Dun C, Falling LJ, Zheng Q, Chen JL, Zhang M, Jaegers NR, Asokan C, Guo J, Salmeron M, Prendergast D, Urban JJ, Somorjai GA, Guo Y, Su J. Unveiling Highly Sensitive Active Site in Atomically Dispersed Gold Catalysts for Enhanced Ethanol Dehydrogenation. Angew Chem Int Ed Engl 2024; 63:e202408894. [PMID: 38830120 DOI: 10.1002/anie.202408894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Developing a desirable ethanol dehydrogenation process necessitates a highly efficient and selective catalyst with low cost. Herein, we show that the "complex active site" consisting of atomically dispersed Au atoms with the neighboring oxygen vacancies (Vo) and undercoordinated cation on oxide supports can be prepared and display unique catalytic properties for ethanol dehydrogenation. The "complex active site" Au-Vo-Zr3+ on Au1/ZrO2 exhibits the highest H2 production rate, with above 37,964 mol H2 per mol Au per hour (385 g H2 g Au - 1 ${{\rm{g}}_{{\rm{Au}}}^{ - 1} }$ h-1) at 350 °C, which is 3.32, 2.94 and 15.0 times higher than Au1/CeO2, Au1/TiO2, and Au1/Al2O3, respectively. Combining experimental and theoretical studies, we demonstrate the structural sensitivity of these complex sites by assessing their selectivity and activity in ethanol dehydrogenation. Our study sheds new light on the design and development of cost-effective and highly efficient catalysts for ethanol dehydrogenation. Fundamentally, atomic-level catalyst design by colocalizing catalytically active metal atoms forming a structure-sensitive "complex site", is a crucial way to advance from heterogeneous catalysis to molecular catalysis. Our study advanced the understanding of the structure sensitivity of the active site in atomically dispersed catalysts.
Collapse
Affiliation(s)
- Ji Yang
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
- College of Chemistry, Central China Normal University, 430079, Wuhan, People's Republic of China
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| | - Juan Zheng
- College of Chemistry, Central China Normal University, 430079, Wuhan, People's Republic of China
| | - Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| | - Lorenz J Falling
- Advanced Light Source, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| | - Qi Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Science-Based Industrial Park, 30076, Hsinchu, Taiwan
| | - Miao Zhang
- College of Chemistry, University of California-Berkeley, 94720, Berkeley, California, United States
| | - Nicholas R Jaegers
- College of Chemistry, University of California-Berkeley, 94720, Berkeley, California, United States
| | - Chithra Asokan
- College of Chemistry, University of California-Berkeley, 94720, Berkeley, California, United States
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| | - Miquel Salmeron
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| | - David Prendergast
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| | - Jeffrey J Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| | - Gabor A Somorjai
- College of Chemistry, University of California-Berkeley, 94720, Berkeley, California, United States
| | - Yanbing Guo
- College of Chemistry, Central China Normal University, 430079, Wuhan, People's Republic of China
| | - Ji Su
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| |
Collapse
|
3
|
Shi Y, Liu Y. Qualitative and quantitative electrochemiluminescence evaluation of trace Pt single-atom in MXenes. Nat Commun 2024; 15:7086. [PMID: 39153982 PMCID: PMC11330474 DOI: 10.1038/s41467-024-51564-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
The analysis of trace Pt single-atom (SA) represents a significant challenge, given the crucial role of single-atom platinum (Pt) in energy storage and electrocatalysis. Here, we present an electrochemiluminescence (ECL) platform that enables the qualitative and quantitative analysis of trace Pt SA using luminol as the ECL luminophore. It is observed that different Pt species in Ti3-xC2Ty MXenes resulted in distinct reactive oxygen species (ROS) potentials for luminol cathodic electrochemiluminescence (ECL), achieved through distinctive oxygen reduction reaction (ORR) pathways, in which oxygen acts as the co-reactant. Furthermore, the cathodic luminol ECL intensity increases in proportion to the Pt atom content, thereby enabling quantitative analysis of trace Pt single atoms. The detection limit is 0.014 wt%, which is comparable to the current mainstream Pt SA quantification techniques. By utilizing this ECL method, it is possible to successfully evaluate both qualitatively and quantitatively the changes in Pt SA during the ORR processes. This ECL platform provides a valuable toolbox for the analysis of Pt SA catalysts and for the evaluation of the mechanisms involved in electrocatalysis applications.
Collapse
Affiliation(s)
- Yacheng Shi
- Department of Chemistry, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, 100084, Beijing, China
| | - Yang Liu
- Department of Chemistry, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
4
|
Wang H, Choi H, Shimogawa R, Li Y, Zhang L, Kim HY, Frenkel AI. Unravelling the origin of reaction-driven aggregation and fragmentation of atomically dispersed Pt catalyst on ceria support. NANOSCALE 2024; 16:14716-14721. [PMID: 38829119 DOI: 10.1039/d4nr01396d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Metal-support interaction plays a crucial role in governing the stability and activity of atomically dispersed platinum catalysts on ceria support. The migration and aggregation of platinum atoms during the catalytic reaction leads to the redistribution of active sites. In this study, by utilizing a multimodal characterization scheme, we observed the aggregation of platinum atoms at high temperatures under reverse water gas shift reaction conditions and the subsequent fragmentation of platinum clusters, forming "single atoms" upon cooling. Theoretical simulations of both effects uncovered the roles of carbon monoxide binding on perimeter Pt sites in the clusters and hydrogen coverage in the aggregation and fragmentation mechanisms. This study highlights the complex effects of adsorbate and supports interactions with metal sites in Pt/ceria catalysts that govern their structural transformations under in situ conditions.
Collapse
Affiliation(s)
- Haodong Wang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Hyuk Choi
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ryuichi Shimogawa
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
- Mitsubishi Chemical Corporation, Science and Innovation Center, Yokohama 227-8502, Japan
| | - Yuanyuan Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Hyun You Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
- Division of Chemistry, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
5
|
Eliasson H, Erni R. Localization and segmentation of atomic columns in supported nanoparticles for fast scanning transmission electron microscopy. NPJ COMPUTATIONAL MATERIALS 2024; 10:168. [PMID: 39104782 PMCID: PMC11297796 DOI: 10.1038/s41524-024-01360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
To accurately capture the dynamic behavior of small nanoparticles in scanning transmission electron microscopy, high-quality data and advanced data processing is needed. The fast scan rate required to observe structural dynamics inherently leads to very noisy data where machine learning tools are essential for unbiased analysis. In this study, we develop a workflow based on two U-Net architectures to automatically localize and classify atomic columns at particle-support interfaces. The model is trained on non-physical image simulations, achieves sub-pixel localization precision, high classification accuracy, and generalizes well to experimental data. We test our model on both in situ and ex situ experimental time series recorded at 5 frames per second of small Pt nanoparticles supported on CeO2(111). The processed movies show sub-second dynamics of the nanoparticles and reveal site-specific movement patterns of individual atomic columns.
Collapse
Affiliation(s)
- Henrik Eliasson
- Electron Microscopy Center, Empa – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
- Department of Materials, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
6
|
Sun Z, Wang J, Su L, Gu Z, Wu XP, Chen W, Ma W. Dynamic Evolution and Reversibility of a Single Au 25 Nanocluster for the Oxygen Reduction Reaction. J Am Chem Soc 2024; 146:20059-20068. [PMID: 38994646 DOI: 10.1021/jacs.4c03939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Ultrasmall metallic nanoclusters (NCs) protected by surface ligands represent the most promising catalytic materials; yet understanding the structure and catalytic activity of these NCs remains a challenge due to dynamic evolution of their active sites under reaction conditions. Herein, we employed a single-nanoparticle collision electrochemistry method for real-time monitoring of the dynamic electrocatalytic activity of a single fully ligand-protected Au25(PPh3)10(SC2H4Ph)5Cl22+ nanocluster (Au252+ NC) at a cavity carbon nanoelectrode toward the oxygen reduction reaction (ORR). Our experimental results and computational simulations indicated that the reversible depassivation and passivation of ligands on the surface of the Au252+ NC, combined with the dynamic conformation evolution of the Au259+ core, led to a characteristic current signal that involves "ON-OFF" switches and "ON" fluctuations during the ORR process of a single Au252+ NC. Our findings reinvent the new perception and comprehension of the structure-activity correlation of NCs at the atomic level.
Collapse
Affiliation(s)
- Zehui Sun
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jia Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Lei Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zhihao Gu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xin-Ping Wu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Wei Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| |
Collapse
|
7
|
Yoko A, Wang H, Furuya K, Takahashi D, Seong G, Tomai T, Frenkel AI, Saito M, Inoue K, Ikuhara Y, Adschiri T. Reduction of (100)-Faceted CeO 2 for Effective Pt Loading. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:5611-5620. [PMID: 38883434 PMCID: PMC11171262 DOI: 10.1021/acs.chemmater.4c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024]
Abstract
Although the function and stability of catalysts are known to significantly depend on their dispersion state and support interactions, the mechanism of catalyst loading has not yet been elucidated. To address this gap in knowledge, this study elucidates the mechanism of Pt loading based on a detailed investigation of the interaction between Pt species and localized polarons (Ce3+) associated with oxygen vacancies on CeO2(100) facets. Furthermore, an effective Pt loading method was proposed for achieving high catalytic activity while maintaining the stability. Enhanced dispersibility and stability of Pt were achieved by controlling the ionic interactions between dissolved Pt species and CeO2 surface charges via pH adjustment and reduction pretreatment of the CeO2 support surface. This process resulted in strong interactions between Pt and the CeO2 support. Consequently, the oxygen-carrier performance was improved for CH4 chemical looping reforming reactions. This simple interaction-based loading process enhanced the catalytic performance, allowing the efficient use of noble metals with high performance and small loading amounts.
Collapse
Affiliation(s)
- Akira Yoko
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-8572, Japan
| | - Haodong Wang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ko Furuya
- Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Daiki Takahashi
- Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Gimyeong Seong
- Department of Environmental & Energy Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea
| | - Takaaki Tomai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Mitsuhiro Saito
- Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kazutoshi Inoue
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yuichi Ikuhara
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656, Japan
| | - Tadafumi Adschiri
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
8
|
Wu S, Li X, Liu J, Wu H, Xu H, Bai W, Mao L, Shi X. Effective Photocatalytic Ethanol Reforming into High-Value-Added Multicarbon Compound Coupled with H 2 Production Over Pt-S 3 Sites at Pt SA-ZnIn 2S 4 Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307386. [PMID: 38084447 DOI: 10.1002/smll.202307386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/28/2023] [Indexed: 12/22/2023]
Abstract
Selective photocatalytic production of high-value acetaldehyde concurrently with H2 from bioethanol is an appealing approach to meet the urgent environment and energy issues. However, the difficult ethanol dehydrogenation and insufficient active sites for proton reduction within the catalysts, and the long spatial distance between these two sites always restrict their catalytic activity. Here, guided by the strong metal-substrate interaction effect, an atomic-level catalyst design strategy to construct Pt-S3 single atom on ZnIn2S4 nanosheets (PtSA-ZIS) is demonstrated. As active center with optimized H adsorption energy to facilitate H2 evolution reaction, the unique Pt single atom also donates electrons to its neighboring S atoms with electron-enriched sites formed to activate the O─H bond in *CH3CHOH and promote the desorption of *CH3CHO. Thus, the synergy between Pt single atom and ZIS together will reduce the energy barrier for the ethanol oxidization to acetaldehyde, and also narrow the spatial distance for proton mass transfer. These features enable PtSA-ZIS photocatalyst to produce acetaldehyde with a selectivity of ≈100%, which will spontaneously transform into 1,1-diethoxyethane via acetalization to avoid volatilization. Meanwhile, a remarkable H2 evolution rate (184.4 µmol h-1) is achieved with a high apparent quantum efficiency of 10.50% at 400 nm.
Collapse
Affiliation(s)
- Shiting Wu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Xiaohui Li
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Jiaqi Liu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Hanfeng Wu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Hanshuai Xu
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Wangfeng Bai
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Liang Mao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Xiaowei Shi
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| |
Collapse
|
9
|
Ziemba M, Weyel J, Zeller P, Welzenbach J, Efimenko A, Hävecker M, Hess C. Importance of Metal-Support Interactions for CO 2 Hydrogenation: An Operando Near-Ambient Pressure X-ray Photoelectron Spectroscopy Study on Gold-Loaded In 2O 3 and CeO 2 Catalysts. J Phys Chem Lett 2024:4928-4932. [PMID: 38686678 DOI: 10.1021/acs.jpclett.4c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Metal-support interactions, which are essential for the design of supported metal catalysts, used, e.g., for CO2 activation, are still only partially understood. In this study of gold-loaded In2O3 and CeO2 catalysts during CO2 hydrogenation using near-ambient pressure X-ray photoelectron spectroscopy, supported by near edge X-ray absorption fine structure, we demonstrate that the role of the noble metal strongly depends upon the choice of the support material. Temperature-dependent analyses of X-ray photoelectron spectra under reaction conditions reveal that gold is reduced on CeO2, enabling direct H2 activation, but oxidized on In2O3, leading to decreased activity of Au/In2O3 compared to bare In2O3. At elevated temperatures, the catalytic activity of the In2O3 catalysts strongly increases as a result of facilitated CO2 and (In2O3-based) H2 activation, while the catalytic activity of Au/CeO2 is limited by reoxidation by CO2. Our results underline the importance of operando studies for understanding metal-support interactions to enable a rational support selection in the future.
Collapse
Affiliation(s)
- Marc Ziemba
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany
| | - Jakob Weyel
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany
| | - Patrick Zeller
- BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Jan Welzenbach
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany
| | - Anna Efimenko
- Interface Design, BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Energy Materials In-Situ Laboratory Berlin (EMIL), BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Michael Hävecker
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Christian Hess
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|
10
|
Gao M, Ma J, Li Y, Lin X, Wu L, Zou Y, Deng Y. Bottom-Up Construction of Mesoporous Cerium-Doped Titania with Stably Dispersed Pt Nanocluster for Efficient Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17563-17573. [PMID: 38551503 DOI: 10.1021/acsami.4c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Hydrogen generation is one of the crucial technologies to realize sustainable energy development, and the design of advanced catalysts with efficient interfacial sites and fast mass transfer is significant for hydrogen evolution. Herein, an in situ coassembly strategy was proposed to engineer a cerium-doped ordered mesoporous titanium oxide (mpCe/TiO2), of which the abundant oxygen vacancies (Ov) and highly exposed active pore walls contribute to good stability of ultrasmall Pt nanoclusters (NCs, ∼ 1.0 nm in diameter) anchored in the uniform mesopores (ca. 20 nm). Consequently, the tailored mpCe/TiO2 with 0.5 mol % Ce-doping-supported Pt NCs (Pt-mpCe/TiO2-0.5) exhibits superior H2 evolution performance toward the water-gas shift reaction with a 0.73 molH2·s-1·molPt-1 H2 evolution rate at 200 °C, which is almost 6-fold higher than the Pt-mpTiO2 (0.13 molH2·s-1·molPt-1 H2). Density functional theory calculations confirm that the structure of Ce-doped TiO2 with Ce coordinated to six O atoms by substituting Ti atoms is thermodynamically favorable without the deformation of Ti-O bonds. The Ov generated by the six O atom-coordinated Ce doping is highly active for H2O dissociation with an energy barrier of 2.18 eV, which is obviously lower than the 2.37 eV for the control TiO2. In comparison with TiO2, the resultant Ce/TiO2 support acts as a superior electron acceptor for Pt NCs and causes electron deficiency at the Pt/support interface with a 0.17 eV downshift of the Pt d-band center, showing extremely obvious electronic metal-support interaction (EMSI). As a result, abundant and hyperactive Ti3+-Ov(-Ce3+)-Ptδ+ interfacial sites are formed to significantly promote the generation of CO2 and H2 evolution. In addition, the stronger EMSI between Pt NCs and mpCe/TiO2-0.5 than that between Pt and mpTiO2 contributes to the superior self-enhanced catalytic performance during the cyclic test, where the CO conversion at 200 °C increases from 72% for the fresh catalyst to 99% for the used one. These findings reveal the subtle relationship between the mesoporous metal oxide-metal composite catalysts with unique chemical microenvironments and their catalytic performance, which is expected to inspire the design of efficient heterogeneous catalysts.
Collapse
Affiliation(s)
- Meiqi Gao
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450000, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Junhao Ma
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Yanyan Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Ximao Lin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Limin Wu
- Institute of Energy and Materials Chemistry, Inner Mongolia University, 235 West University Street, Hohhot 010021, P. R. China
| | - Yidong Zou
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
11
|
Liang H, Zhang B, Hong M, Yang X, Zhu L, Liu X, Qi Y, Zhao S, Wang G, van Bavel AP, Wen X, Qin Y. Operando Mobile Catalysis for Reverse Water Gas Shift Reaction. Angew Chem Int Ed Engl 2024; 63:e202318747. [PMID: 38270973 DOI: 10.1002/anie.202318747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
Metal atoms on the support serve as active sites for many heterogeneous catalysts. However, the active metal sites on the support are conventionally described as static, and the intermediates adsorbed on the support far away from the active metal sites cannot be transformed. Herein, we report the first example of operando mobile catalysis to promote catalytic efficiency by enhancing the collision probability between active sites and reactants or reaction intermediates. Specifically, ligand-coordinated Pt single atoms (isolated MeCpPt- species) are bonded on CeO2 and transformed into mobile MeCpPt(H)CO complexes during the reverse water gas shift reaction for operando mobile catalysis. This strategy enables the conversion of inert carbonate intermediates on the CeO2 support. A turnover frequency (TOF) of 6358 mol CO2 molPt -1 ⋅ h-1 and 99 % CO selectivity at 300 °C is obtained for reverse water gas shift reaction, dramatically higher than those of Pt catalysts reported in the literature. Operando mobile catalysis presents a promising strategy for designing high-efficiency heterogeneous catalysts for various chemical reactions and applications.
Collapse
Affiliation(s)
- Haojie Liang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 030001, Taiyuan, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, 030024, Taiyuan, China
| | - Bin Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 030001, Taiyuan, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mei Hong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 030001, Taiyuan, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xinchun Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 030001, Taiyuan, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ling Zhu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 030001, Taiyuan, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 030001, Taiyuan, China
| | - Yuntao Qi
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 030001, Taiyuan, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shichao Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 030001, Taiyuan, China
| | - Guofu Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 030001, Taiyuan, China
| | - Alexander P van Bavel
- Shell Global Solutions International B. V., < postCode/>1031, Amsterdam, The Netherlands
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 030001, Taiyuan, China
| | - Yong Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 030001, Taiyuan, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
12
|
Jiang L, Li K, Porter WN, Wang H, Li G, Chen JG. Role of H 2O in Catalytic Conversion of C 1 Molecules. J Am Chem Soc 2024; 146:2857-2875. [PMID: 38266172 DOI: 10.1021/jacs.3c13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Due to their role in controlling global climate change, the selective conversion of C1 molecules such as CH4, CO, and CO2 has attracted widespread attention. Typically, H2O competes with the reactant molecules to adsorb on the active sites and therefore inhibits the reaction or causes catalyst deactivation. However, H2O can also participate in the catalytic conversion of C1 molecules as a reactant or a promoter. Herein, we provide a perspective on recent progress in the mechanistic studies of H2O-mediated conversion of C1 molecules. We aim to provide an in-depth and systematic understanding of H2O as a promoter, a proton-transfer agent, an oxidant, a direct source of hydrogen or oxygen, and its influence on the catalytic activity, selectivity, and stability. We also summarize strategies for modifying catalysts or catalytic microenvironments by chemical or physical means to optimize the positive effects and minimize the negative effects of H2O on the reactions of C1 molecules. Finally, we discuss challenges and opportunities in catalyst design, characterization techniques, and theoretical modeling of the H2O-mediated catalytic conversion of C1 molecules.
Collapse
Affiliation(s)
- Lei Jiang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Kongzhai Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Southwest United Graduate School, Kunming 650000, Yunnan, China
| | - William N Porter
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Hua Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Gengnan Li
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
13
|
Zhuang C, Chang Y, Li W, Li S, Xu P, Zhang H, Zhang Y, Zhang C, Gao J, Chen G, Zhang T, Kang Z, Han X. Light-Induced Variation of Lithium Coordination Environment in g-C 3N 4 Nanosheet for Highly Efficient Oxygen Reduction Reactions. ACS NANO 2024. [PMID: 38294412 DOI: 10.1021/acsnano.4c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The structure and electronic state of the active center in a single-atom catalyst undergo noticeable changes during a dynamic catalytic process. The metal atom active center is not well demonstrated in a dynamic manner. This study demonstrated that Li metal atoms, serving as active centers, can migrate on a C3N4 monolayer or between C3N4 monolayers when exposed to light irradiation. This migration alters the local coordination environment of Li in the C3N4 nanosheets, leading to a significant enhancement in photocatalytic activity. The photocatalytic H2O2 process could be maintained for 35 h with a 920 mmol/g record-high yield, corresponding to a 0.4% H2O2 concentration, which is far greater than the value (0.1%) of practical application for wastewater treatment. Density functional theory calculations indicated that dynamic Li-coordinated structures contributed to the superhigh photocatalytic activity.
Collapse
Affiliation(s)
- Chunqiang Zhuang
- Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yuan Chang
- Laboratory of Materials Modification by Laser Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, People's Republic of China
| | - Weiming Li
- Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Shijie Li
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, National Engineering Research Center for Marine Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, People's Republic of China
| | - Peng Xu
- National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Hang Zhang
- Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yihong Zhang
- Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Can Zhang
- Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Junfeng Gao
- Laboratory of Materials Modification by Laser Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, People's Republic of China
| | - Ge Chen
- Beijing Key Laboratory for Green Catalysis and Separation, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Tianyang Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, People's Republic of China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, People's Republic of China
| | - Xiaodong Han
- Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, People's Republic of China
| |
Collapse
|
14
|
Yu J, Qin X, Yang Y, Lv M, Yin P, Wang L, Ren Z, Song B, Li Q, Zheng L, Hong S, Xing X, Ma D, Wei M, Duan X. Highly Stable Pt/CeO 2 Catalyst with Embedding Structure toward Water-Gas Shift Reaction. J Am Chem Soc 2024; 146:1071-1080. [PMID: 38157430 DOI: 10.1021/jacs.3c12061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Strong metal-support interaction (SMSI) has been extensively studied in heterogeneous catalysis because of its significance in stabilizing active metals and tuning catalytic performance, but the origin of SMSI is not fully revealed. Herein, by using Pt/CeO2 as a model catalyst, we report an embedding structure at the interface between Pt and (110) plane of CeO2, where Pt clusters (∼1.6 nm) are embedded into the lattice of ceria within 3-4 atomic layers. In contrast, this phenomenon is absent in the CeO2(100) support. This unique geometric structure, as an effective motivator, triggers more significant electron transfer from Pt clusters to CeO2(110) support accompanied by the formation of interfacial structure (Ptδ+-Ov-Ce3+), which plays a crucial role in stabilizing Pt nanoclusters. A comprehensive investigation based on experimental studies and theoretical calculations substantiates that the interfacial sites serve as the intrinsic active center toward water-gas shift reaction (WGSR), featuring a moderate strength CO activation adsorption and largely decreased energy barrier of H2O dissociation, accounting for the prominent catalytic activity of Pt/CeO2(110) (a reaction rate of 15.76 molCO gPt-1 h-1 and a turnover frequency value of 2.19 s-1 at 250 °C). In addition, the Pt/CeO2(110) catalyst shows a prominent durability within a 120 h time-on-stream test, far outperforming the Pt/CeO2(100) one, which demonstrates the advantages of this embedding structure for improving catalyst stability.
Collapse
Affiliation(s)
- Jun Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| | - Xuetao Qin
- College of Chemistry and Molecular Engineering and College of Engineering, BIC-ESAT, Peking University, Beijing 100871, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| | - Mingxin Lv
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Pan Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| | - Zhen Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Boyu Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Song Hong
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Ding Ma
- College of Chemistry and Molecular Engineering and College of Engineering, BIC-ESAT, Peking University, Beijing 100871, P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China
| |
Collapse
|
15
|
Müller N, Banu R, Loxha A, Schrenk F, Lindenthal L, Rameshan C, Pittenauer E, Llorca J, Timoshenko J, Marini C, Barrabés N. Dynamic behaviour of platinum and copper dopants in gold nanoclusters supported on ceria catalysts. Commun Chem 2023; 6:277. [PMID: 38110481 PMCID: PMC10728199 DOI: 10.1038/s42004-023-01068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023] Open
Abstract
Understanding the behaviour of active catalyst sites at the atomic level is crucial for optimizing catalytic performance. Here, the evolution of Pt and Cu dopants in Au25 clusters on CeO2 supports is investigated in the water-gas shift (WGS) reaction, using operando XAFS and DRIFTS. Different behaviour is observed for the Cu and Pt dopants during the pretreatment and reaction. The Cu migrates and builds clusters on the support, whereas the Pt creates single-atom active sites on the surface of the cluster, leading to better performance. Doping with both metals induces strong interactions and pretreatment and reaction conditions lead to the growth of the Au clusters, thereby affecting their catalytic behaviour. This highlights importance of understanding the behaviour of atoms at different stages of catalyst evolution. These insights into the atomic dynamics at the different stages are crucial for the precise optimisation of catalysts, which ultimately enables improved catalytic performance.
Collapse
Affiliation(s)
- Nicole Müller
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060, Vienna, Austria
| | - Rareş Banu
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060, Vienna, Austria
| | - Adea Loxha
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060, Vienna, Austria
| | - Florian Schrenk
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060, Vienna, Austria
- Chair of Physical Chemistry, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700, Leoben, Austria
| | - Lorenz Lindenthal
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060, Vienna, Austria
- Chair of Physical Chemistry, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700, Leoben, Austria
| | - Christoph Rameshan
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060, Vienna, Austria
- Chair of Physical Chemistry, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700, Leoben, Austria
| | - Ernst Pittenauer
- Institute of Analytics, TU Wien, Getreidemarkt 9/165, 1060, Vienna, Austria
| | - Jordi Llorca
- Institute of Energy Technologies and Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain
| | - Janis Timoshenko
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Carlo Marini
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, 08290, Cerdanyola del Valles, Barcelona, Spain
| | - Noelia Barrabés
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060, Vienna, Austria.
| |
Collapse
|
16
|
Wang H, Shimogawa R, Zhang L, Ma L, Ehrlich SN, Marinkovic N, Li Y, Frenkel AI. Migration and aggregation of Pt atoms on metal oxide-supported ceria nanodomes control reverse water gas shift reaction activity. Commun Chem 2023; 6:264. [PMID: 38052925 DOI: 10.1038/s42004-023-01064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Single-atom catalysts (SACs) are particularly sensitive to external conditions, complicating the identification of catalytically active species and active sites under in situ or operando conditions. We developed a methodology for tracing the structural evolution of SACs to nanoparticles, identifying the active species and their link to the catalytic activity for the reverse water gas shift (RWGS) reaction. The new method is illustrated by studying structure-activity relationships in two materials containing Pt SACs on ceria nanodomes, supported on either ceria or titania. These materials exhibited distinctly different activities for CO production. Multimodal operando characterization attributed the enhanced activity of the titania-supported catalysts at temperatures below 320 ˚C to the formation of unique Pt sites at the ceria-titania interface capable of forming Pt nanoparticles, the active species for the RWGS reaction. Migration of Pt nanoparticles to titania support was found to be responsible for the deactivation of titania-supported catalysts at elevated temperatures. Tracking the migration of Pt atoms provides a new opportunity to investigate the activation and deactivation of Pt SACs for the RWGS reaction.
Collapse
Affiliation(s)
- Haodong Wang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Ryuichi Shimogawa
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
- Mitsubishi Chemical Corporation, Science & Innovation Center, 1000, Kamoshida-cho, Aoba-ku, Yokohama, 227-8502, Japan
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Steven N Ehrlich
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Nebojsa Marinkovic
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Yuanyuan Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| |
Collapse
|
17
|
Jenkinson K, Spadaro MC, Golovanova V, Andreu T, Morante JR, Arbiol J, Bals S. Direct Operando Visualization of Metal Support Interactions Induced by Hydrogen Spillover During CO 2 Hydrogenation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306447. [PMID: 37865834 DOI: 10.1002/adma.202306447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/18/2023] [Indexed: 10/23/2023]
Abstract
The understanding of catalyst active sites is a fundamental challenge for the future rational design of optimized and bespoke catalysts. For instance, the partial reduction of Ce4+ surface sites to Ce3+ and the formation of oxygen vacancies are critical for CO2 hydrogenation, CO oxidation, and the water gas shift reaction. Furthermore, metal nanoparticles, the reducible support, and metal support interactions are prone to evolve under reaction conditions; therefore a catalyst structure must be characterized under operando conditions to identify active states and deduce structure-activity relationships. In the present work, temperature-induced morphological and chemical changes in Ni nanoparticle-decorated mesoporous CeO2 by means of in situ quantitative multimode electron tomography and in situ heating electron energy loss spectroscopy, respectively, are investigated. Moreover, operando electron energy loss spectroscopy is employed using a windowed gas cell and reveals the role of Ni-induced hydrogen spillover on active Ce3+ site formation and enhancement of the overall catalytic performance.
Collapse
Affiliation(s)
- Kellie Jenkinson
- EMAT and NANOlab Center of Excellence, University of Antwerp, Antwerp, 2020, Belgium
| | - Maria Chiara Spadaro
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
| | - Viktoria Golovanova
- IREC, Jardins de les Dones de Negre 1, Sant Adrià del Besòs, Barcelona, 08930, Spain
| | - Teresa Andreu
- IREC, Jardins de les Dones de Negre 1, Sant Adrià del Besòs, Barcelona, 08930, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Martí i Franquès, 1-11, Barcelona, 08028, Spain
| | - Joan Ramon Morante
- IREC, Jardins de les Dones de Negre 1, Sant Adrià del Besòs, Barcelona, 08930, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Martí i Franquès, 1-11, Barcelona, 08028, Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Catalonia, 08010, Spain
| | - Sara Bals
- EMAT and NANOlab Center of Excellence, University of Antwerp, Antwerp, 2020, Belgium
| |
Collapse
|
18
|
Li Y, Wang H, Song H, Rui N, Kottwitz M, Senanayake SD, Nuzzo RG, Wu Z, Jiang DE, Frenkel AI. Active sites of atomically dispersed Pt supported on Gd-doped ceria with improved low temperature performance for CO oxidation. Chem Sci 2023; 14:12582-12588. [PMID: 38020390 PMCID: PMC10646890 DOI: 10.1039/d3sc03988a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
"Single - atom" catalysts (SACs) have been the focus of intense research, due to debates about their reactivity and challenges toward determining and designing "single - atom" (SA) sites. To address the challenge, in this work, we designed Pt SACs supported on Gd-doped ceria (Pt/CGO), which showed improved activity for CO oxidation compared to its counterpart, Pt/ceria. The enhanced activity of Pt/CGO was associated with a new Pt SA site which appeared only in the Pt/CGO catalyst under CO pretreatment at elevated temperatures. Combined X-ray and optical spectroscopies revealed that, at this site, Pt was found to be d-electron rich and bridged with Gd-induced defects via an oxygen vacancy. As explained by density functional theory calculations, this site opened a new path via a dicarbonyl intermediate for CO oxidation with a greatly reduced energy barrier. These results provide guidance for rationally improving the catalytic properties of SA sites for oxidation reactions.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Materials Science and Chemical Engineering, Stony Brook University Stony Brook NY 11794 USA
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Haodong Wang
- Department of Materials Science and Chemical Engineering, Stony Brook University Stony Brook NY 11794 USA
| | - Haohong Song
- Interdisciplinary Materials Science, Vanderbilt University Nashville TN 37235 USA
| | - Ning Rui
- Chemistry Division, Brookhaven National Laboratory Upton NY 11973 USA
| | - Matthew Kottwitz
- Department of Chemistry, University of Illinois Urbana IL 61801 USA
| | | | - Ralph G Nuzzo
- Department of Chemistry, University of Illinois Urbana IL 61801 USA
- Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology Drottning Kristinasväg 51 10044 Stockholm Sweden
| | - Zili Wu
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - De-En Jiang
- Interdisciplinary Materials Science, Vanderbilt University Nashville TN 37235 USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235 USA
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University Stony Brook NY 11794 USA
- Chemistry Division, Brookhaven National Laboratory Upton NY 11973 USA
| |
Collapse
|
19
|
Ren Q, He Y, Wang H, Sun Y, Dong F. Rapid Energy Exchange between In Situ Formed Bromine Vacancies and CO 2 Molecules Enhances CO 2 Photoreduction. RESEARCH (WASHINGTON, D.C.) 2023; 6:0244. [PMID: 37808179 PMCID: PMC10557117 DOI: 10.34133/research.0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023]
Abstract
Photocatalytic reduction of CO2 into fuels provides a prospective tactic for regulating the global carbon balance utilizing renewable solar energy. However, CO2 molecules are difficult to activate and reduce due to the thermodynamic stability and chemical inertness. In this work, we develop a novel strategy to promote the adsorption and activation of CO2 molecules via the rapid energy exchange between the photoinduced Br vacancies and CO2 molecules. Combining in situ continuous wave-electron paramagnetic resonance (cw-EPR) and pulsed EPR technologies, we observe that the spin-spin relaxation time (T2) of BiOBr is decreased by 198 ns during the CO2 photoreduction reaction, which is further confirmed by the broadened EPR linewidth. This result reveals that there is an energy exchange interaction between in situ formed Br vacancies and CO2 molecules, which promotes the formation of high-energy CO2 molecules to facilitate the subsequent reduction reaction. In addition, theoretical calculations indicate that the bended CO2 adsorption configuration on the surface of BiOBr with Br vacancies caused the decrease of the lowest unoccupied molecular orbital of the CO2 molecule, which makes it easier for CO2 molecules to acquire electrons and get activated. In situ diffuse reflectance infrared Fourier transform spectroscopy further shows that the activated CO2 molecules are favorably converted to key intermediates of COOH*, resulting in a CO generation rate of 9.1 μmol g-1 h-1 and a selectivity of 100%. This study elucidates the underlying mechanism of CO2 activation at active sites and deepens the understanding of CO2 photoreduction reaction.
Collapse
Affiliation(s)
- Qin Ren
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ye He
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hong Wang
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanjuan Sun
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
20
|
Xu Y, Gao L, Hou Q, Wu P, Zhou Y, Ding Z. Enhanced Oxygen Storage Capacity of Porous CeO 2 by Rare Earth Doping. Molecules 2023; 28:6005. [PMID: 37630256 PMCID: PMC10458135 DOI: 10.3390/molecules28166005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
CeO2 is an important rare earth (RE) oxide and has served as a typical oxygen storage material in practical applications. In the present study, the oxygen storage capacity (OSC) of CeO2 was enhanced by doping with other rare earth ions (RE, RE = Yb, Y, Sm and La). A series of Undoped and RE-doped CeO2 with different doping levels were synthesized using a solvothermal method following a subsequent calcination process, in which just Ce(NO3)3∙6H2O, RE(NO3)3∙nH2O, ethylene glycol and water were used as raw materials. Surprisingly, the Undoped CeO2 was proved to be a porous material with a multilayered special morphology without any additional templates in this work. The lattice parameters of CeO2 were refined by the least-squares method with highly pure NaCl as the internal standard for peak position calibrations, and the solubility limits of RE ions into CeO2 were determined; the amounts of reducible-reoxidizable Cen+ ions were estimated by fitting the Ce 3d core-levels XPS spectra; the non-stoichiometric oxygen vacancy (VO) defects of CeO2 were analyzed qualitatively and quantitatively by O 1s XPS fitting and Raman scattering; and the OSC was quantified by the amount of H2 consumption per gram of CeO2 based on hydrogen temperature programmed reduction (H2-TPR) measurements. The maximum [OSC] of CeO2 appeared at 5 mol.% Yb-, 4 mol.% Y-, 4 mol.% Sm- and 7 mol.% La-doping with the values of 0.444, 0.387, 0.352 and 0.380 mmol H2/g by an increase of 93.04, 68.26, 53.04 and 65.22%. Moreover, the dominant factor for promoting the OSC of RE-doped CeO2 was analyzed.
Collapse
Affiliation(s)
- Yaohui Xu
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China;
- Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan 614000, China
| | - Liangjuan Gao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China;
| | - Quanhui Hou
- School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
| | - Pingkeng Wu
- Department of Chemical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Yunxuan Zhou
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Zhao Ding
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| |
Collapse
|
21
|
Li Z, Wang M, Jia Y, Du R, Li T, Zheng Y, Chen M, Qiu Y, Yan K, Zhao WW, Wang P, Waterhouse GIN, Dai S, Zhao Y, Chen G. CeO 2/Cu 2O/Cu Tandem Interfaces for Efficient Water-Gas Shift Reaction Catalysis. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37339248 DOI: 10.1021/acsami.3c06386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Metal-oxide interfaces on Cu-based catalysts play very important roles in the low-temperature water-gas shift reaction (LT-WGSR). However, developing catalysts with abundant, active, and robust Cu-metal oxide interfaces under LT-WGSR conditions remains challenging. Herein, we report the successful development of an inverse copper-ceria catalyst (Cu@CeO2), which exhibited very high efficiency for the LT-WGSR. At a reaction temperature of 250 °C, the LT-WGSR activity of the Cu@CeO2 catalyst was about three times higher than that of a pristine Cu catalyst without CeO2. Comprehensive quasi-in situ structural characterizations indicated that the Cu@CeO2 catalyst was rich in CeO2/Cu2O/Cu tandem interfaces. Reaction kinetics studies and density functional theory (DFT) calculations revealed that the Cu+/Cu0 interfaces were the active sites for the LT-WGSR, while adjacent CeO2 nanoparticles play a key role in activating H2O and stabilizing the Cu+/Cu0 interfaces. Our study highlights the role of the CeO2/Cu2O/Cu tandem interface in regulating catalyst activity and stability, thus contributing to the development of improved Cu-based catalysts for the LT-WGSR.
Collapse
Affiliation(s)
- Zhengjian Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Mingzhi Wang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yanyan Jia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ruian Du
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Tan Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yanping Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Mingshu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Keyou Yan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Pei Wang
- College of Science, Huazhong Agricultural University, Wuhan 430074, PR China
| | | | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yun Zhao
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
22
|
Zhang D, Li Y, Wang P, Qu J, Li Y, Zhan S. Dynamic active-site induced by host-guest interactions boost the Fenton-like reaction for organic wastewater treatment. Nat Commun 2023; 14:3538. [PMID: 37322015 DOI: 10.1038/s41467-023-39228-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
In heterogeneous catalysis, uncovering the dynamic evolution of active sites in the working conditions is crucial to realizing increased activity and enhanced stability of catalyst in Fenton-like activation. Herein, we capture the dynamic changes in the unit cell of Co/La-SrTiO3 catalyst during the exemplary peroxymonosulfate activation process using X-ray absorption spectroscopy and in situ Raman spectroscopy, revealing the substrate tuned its structural evolution, which is the reversible stretching vibration of O-Sr-O and Co/Ti-O bonds in different orientations. This process effectively promotes the generation of key SO5* intermediates, which is beneficial to the formation of 1O2 and SO4•- from persulfate on the Co active site. Density functional theory and X-ray absorption spectroscopy show that the optimized structural distortion enhanced the metal-oxygen bond strength by tuning the eg orbitals and increased the number of transferred electrons to peroxymonosulfate by about 3-fold, achieving excellent efficiency and stability in removing organic pollutants.
Collapse
Affiliation(s)
- Dongpeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yanxiao Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Pengfei Wang
- Tianjin Key Lab Clean Energy & Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, 300130, Tianjin, China
| | - Jinyong Qu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China.
- Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, 350207, Fuzhou, China.
| | - Sihui Zhan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China.
| |
Collapse
|
23
|
Meng H, Yang Y, Shen T, Liu W, Wang L, Yin P, Ren Z, Niu Y, Zhang B, Zheng L, Yan H, Zhang J, Xiao FS, Wei M, Duan X. A strong bimetal-support interaction in ethanol steam reforming. Nat Commun 2023; 14:3189. [PMID: 37268617 DOI: 10.1038/s41467-023-38883-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
The metal-support interaction (MSI) in heterogeneous catalysts plays a crucial role in reforming reaction to produce renewable hydrogen, but conventional objects are limited to single metal and support. Herein, we report a type of RhNi/TiO2 catalysts with tunable RhNi-TiO2 strong bimetal-support interaction (SBMSI) derived from structure topological transformation of RhNiTi-layered double hydroxides (RhNiTi-LDHs) precursors. The resulting 0.5RhNi/TiO2 catalyst (with 0.5 wt.% Rh) exhibits extraordinary catalytic performance toward ethanol steam reforming (ESR) reaction with a H2 yield of 61.7%, a H2 production rate of 12.2 L h-1 gcat-1 and a high operational stability (300 h), which is preponderant to the state-of-the-art catalysts. By virtue of synergistic catalysis of multifunctional interface structure (Rh-Niδ--Ov-Ti3+; Ov denotes oxygen vacancy), the generation of formate intermediate (the rate-determining step in ESR reaction) from steam reforming of CO and CHx is significantly promoted on 0.5RhNi/TiO2 catalyst, accounting for its ultra-high H2 production.
Collapse
Affiliation(s)
- Hao Meng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Tianyao Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Pan Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhen Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hong Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jian Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng-Shou Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
24
|
Chang J, Hülsey MJ, Wang S, Li M, Ma X, Yan N. Electrothermal Water-Gas Shift Reaction at Room Temperature with a Silicomolybdate-Based Palladium Single-Atom Catalyst. Angew Chem Int Ed Engl 2023; 62:e202218265. [PMID: 36700387 DOI: 10.1002/anie.202218265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
The water-gas shift (WGS) reaction is often conducted at elevated temperature and requires energy-intensive separation of hydrogen (H2 ) from methane (CH4 ), carbon dioxide (CO2 ), and residual carbon monoxide (CO). Designing processes to decouple CO oxidation and H2 production provides an alternative strategy to obtain high-purity H2 streams. We report an electrothermal WGS process combining thermal oxidation of CO on a silicomolybdic acid (SMA)-supported Pd single-atom catalyst (Pd1 /CsSMA) and electrocatalytic H2 evolution. The two half-reactions are coupled through phosphomolybdic acid (PMA) as a redox mediator at a moderate anodic potential of 0.6 V (versus Ag/AgCl). Under optimized conditions, our catalyst exhibited a TOF of 1.2 s-1 with turnover numbers above 40 000 mol CO 2 ${{_{{\rm CO}{_{2}}}}}$ molPd -1 achieving stable H2 production with a purity consistently exceeding 99.99 %.
Collapse
Affiliation(s)
- Jinquan Chang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai, New City, Fuzhou, 350207, China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Max J Hülsey
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Sikai Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai, New City, Fuzhou, 350207, China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Maoshuai Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xinbin Ma
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai, New City, Fuzhou, 350207, China.,Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ning Yan
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai, New City, Fuzhou, 350207, China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
25
|
Lambie S, Steenbergen KG, Gaston N. Dynamic Activation of Ga Sites by Pt Dopant in Low-Temperature Liquid-Metal Catalysts. Angew Chem Int Ed Engl 2023; 62:e202219009. [PMID: 36807956 DOI: 10.1002/anie.202219009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Liquid GaPt catalysts with Pt concentrations as low as 1×10-4 atomic % have recently been identified as highly active for the oxidation of methanol and pyrogallol under mild reaction conditions. However, almost nothing is known about how liquid state catalysts support these significant improvements in activity. Here, ab initio molecular dynamics simulations are employed to examine GaPt catalysts in isolation and interacting with adsorbates. We find that persistent geometric features can exist in the liquid state, given the correct environment. We postulate that the Pt dopant may not be limited to direct involvement in catalysis of reactions, but rather that its presence can also enable Ga atoms to become catalytically active.
Collapse
Affiliation(s)
- Stephanie Lambie
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Krista G Steenbergen
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Nicola Gaston
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, University of Auckland, Private Bag, 92019, Auckland, New Zealand
| |
Collapse
|
26
|
Chen JJ, Liu QY, Wang SD, Li XN, He SG. Catalytic NO Reduction by NO Pre-Adsorbed RhCeO 2 NO - Clusters. Chemphyschem 2023; 24:e202200743. [PMID: 36308426 DOI: 10.1002/cphc.202200743] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 11/11/2022]
Abstract
A fundamental understanding on the dynamically structural evolution of catalysts induced by reactant gases under working conditions is challenging but pivotal in catalyst design. Herein, in combination with state-of-the-art mass spectrometry for cluster reactions, cryogenic photoelectron imaging spectroscopy, and quantum-chemical calculations, we identified that NO adsorption on rhodium-cerium bimetallic oxide cluster RhCeO2 - can create a Ce3+ ion in product RhCeO2 NO- that serves as the starting point to trigger the catalysis of NO reduction by CO. Theoretical calculations substantiated that the reduction of another two NO molecules into N2 O takes place exclusively on the Ce3+ ion while Rh behaves like a promoter to buffer electrons and cooperates with Ce3+ to drive NO reduction. Our finding demonstrates the importance of NO in regulating the catalytic behavior of Rh under reaction conditions and provides much-needed insights into the essence of NO reduction over Rh/CeO2 , one of the most efficient components in three-way catalysts for NOx removal.
Collapse
Affiliation(s)
- Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education, Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education, Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Si-Dun Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry and Chemical Engineering, South China University of Technology Tianhe District, Guangzhou, 510641, China.,Beijing, 100049, China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education, Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education, Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
27
|
Li XN, He SG. Gas-phase reactions driven by polarized metal-metal bonding in atomic clusters. Phys Chem Chem Phys 2023; 25:4444-4459. [PMID: 36723009 DOI: 10.1039/d2cp05148f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multimetallic catalysts exhibit great potential in the activation and catalytic transformation of small molecules. The polarized metal-metal bonds have been gradually recognized to account for the reactivity of multimetallic catalysts due to the synergistic effect of different metal centers. Gas-phase reactions on atomic clusters that compositionally resemble the active sites on related condensed-phase catalysts provide a widely accepted strategy to clarify the nature of polarized metal-metal bonds and the mechanistic details of elementary steps involved in the catalysis driven by this unique chemical bonding. This perspective review concerns the progress in the fundamental understanding of industrially and environmentally important reactions that are closely related to the polarized metal-metal bonds in clusters at a strictly molecular level. The following topics have been summarized and discussed: (1) catalytic CO oxidation with O2, H2O, and NO as oxidants (2) and the activation of other inert molecules (e.g., CH4, CO2, and N2) mediated with clusters featuring polarized metal-metal bonding. It turns out that the findings in the gas phase parallel the catalytic behaviors of condensed-phase catalysts and the knowledge can prove to be essential in inspiring future design of promising catalysts.
Collapse
Affiliation(s)
- Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
28
|
A review of in situ/Operando studies of heterogeneous catalytic hydrogenation of CO2 to methanol. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
29
|
Zhang J, Shen J, Li D, Long J, Gao X, Feng W, Zhang S, Zhang Z, Wang X, Yang W. Efficiently Light-Driven Nonoxidative Coupling of Methane on Ag/NaTaO 3: A Case for Molecular-Level Understanding of the Coupling Mechanism. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jiangjie Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
| | - Jinni Shen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
| | - Dongmiao Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
| | - Xiaochen Gao
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai201208, P. R. China
| | - Wenhui Feng
- Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha410022, P. R. China
| | - Shiying Zhang
- Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha410022, P. R. China
| | - Zizhong Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou362801, P. R. China
| | - Xuxu Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
| | - Weimin Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai201208, P. R. China
| |
Collapse
|
30
|
Sumaria V, Nguyen L, Tao FF, Sautet P. Atomic-Scale Mechanism of Platinum Catalyst Restructuring under a Pressure of Reactant Gas. J Am Chem Soc 2023; 145:392-401. [PMID: 36548635 DOI: 10.1021/jacs.2c10179] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heterogeneous catalysis is key for chemical transformations. Understanding how catalysts' active sites dynamically evolve at the atomic scale under reaction conditions is a prerequisite for accurately determining catalytic mechanisms and predictably developing catalysts. We combine in situ time-dependent scanning tunneling microscopy observations and machine-learning-accelerated first-principles atomistic simulations to uncover the mechanism of restructuring of Pt catalysts under a pressure of carbon monoxide (CO). We show that a high CO coverage at a Pt step edge triggers the formation of atomic protrusions of low-coordination Pt atoms, which then detach from the step edge to create sub-nano-islands on the terraces, where under-coordinated sites are stabilized by the CO adsorbates. The fast and accurate machine-learning potential is key to enabling the exploration of tens of thousands of configurations for the CO-covered restructuring catalyst. These studies open an avenue to achieve an atomic-scale understanding of the structural dynamics of more complex metal nanoparticle catalysts under reaction conditions.
Collapse
Affiliation(s)
- Vaidish Sumaria
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90094, United States
| | - Luan Nguyen
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Franklin Feng Tao
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90094, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90094, United States
| |
Collapse
|
31
|
Gao M, Yang Z, Zhang H, Ma J, Zou Y, Cheng X, Wu L, Zhao D, Deng Y. Ordered Mesopore Confined Pt Nanoclusters Enable Unusual Self-Enhancing Catalysis. ACS CENTRAL SCIENCE 2022; 8:1633-1645. [PMID: 36589882 PMCID: PMC9801509 DOI: 10.1021/acscentsci.2c01290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Indexed: 06/17/2023]
Abstract
As an important kind of emerging heterogeneous catalyst for sustainable chemical processes, supported metal cluster (SMC) catalysts have received great attention for their outstanding activity; however, the easy aggregation of metal clusters due to their migration along the substrate's surface usually deteriorates their activity and even causes catalyst failure during cycling. Herein, stable Pt nanoclusters (NCs, ∼1.06 nm) are homogeneously confined in the uniform spherical mesopores of mesoporous titania (mpTiO2) by the interaction between Pt NCs and metal oxide pore walls made of polycrystalline anatase TiO2. The obtained Pt-mpTiO2 exhibits excellent stability with well-retained CO conversion (∼95.0%) and Pt NCs (∼1.20 nm) in the long term water-gas shift (WGS) reaction. More importantly, the Pt-mpTiO2 displays an unusual increasing activity during the cyclic catalyzing WGS reaction, which was found to stem from the in situ generation of interfacial active sites (Ti3+-Ov-Ptδ+) by the reduction effect of spillover hydrogen generated at the stably supported Pt NCs. The Pt-mpTiO2 catalysts also show superior performance toward the selective hydrogenation of furfural to 2-methylfuran. This work discloses an efficient and robust Pt-mpTiO2 catalyst and systematically elucidates the mechanism underlying its unique catalytic activity, which helps to design stable SMC catalysts with self-enhancing interfacial activity in sustainable heterogeneous catalysis.
Collapse
Affiliation(s)
- Meiqi Gao
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Zhirong Yang
- State
Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Haijiao Zhang
- Institute
of Nanochemistry and Nanobiology, School of Environmental and Chemical
Engineering, Shanghai University, Shanghai200444, People’s Republic of China
| | - Junhao Ma
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Yidong Zou
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Xiaowei Cheng
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Limin Wu
- Institute
of Energy and Materials Chemistry, Inner
Mongolia University, Hohhot010021, China
| | - Dongyuan Zhao
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| | - Yonghui Deng
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
Collaborative Innovation Center of Chemistry for Energy Materials
(iChEM), Fudan University, Shanghai200433, China
| |
Collapse
|
32
|
Sulfur-Resistant CeO2-Supported Pt Catalyst for Waste-to-Hydrogen: Effect of Catalyst Synthesis Method. Catalysts 2022. [DOI: 10.3390/catal12121670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To improve the sulfur tolerance of CeO2-supported Pt catalysts for water gas shift (WGS) using waste-derived synthesis gas, we investigated the effect of synthesis methods on the physicochemical properties of the catalysts. The Pt catalysts using CeO2 as a support were synthesized in various pathways (i.e., incipient wetness impregnation, sol-gel, hydrothermal, and co-precipitation methods). The prepared samples were then evaluated in the WGS reaction with 500 ppm H2S. Among the prepared catalysts, the Pt-based catalyst prepared by incipient wetness impregnation showed the highest catalytic activity and sulfur tolerance due to the standout factors such as a high oxygen-storage capacity and active metal dispersion. The active metal dispersion and oxygen-storage capacity of the catalyst showed a correlation with the catalytic performance and the sulfur tolerance.
Collapse
|
33
|
Gorlova AM, Karmadonova IE, Derevshchikov VS, Rogozhnikov VN, Snytnikov PV, Potemkin DI. Sorption-Enhanced Water Gas Shift Reaction over a Mechanical Mixture of the Catalyst Pt/Ce0.75Zr0.25O2 and the Sorbent NaNO3/MgO. CATALYSIS IN INDUSTRY 2022. [DOI: 10.1134/s2070050422040031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Wang Y, Zhang F, Wang M, Mou X, Liu S, Jiang Z, Liu W, Lin R, Ding Y. Discerning the Contributions of Gold Species in Butadiene Hydrogenation: From Single Atoms to Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202214166. [DOI: 10.1002/anie.202214166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Yi Wang
- Hangzhou Institute of Advanced studies Zhejiang Normal University 1108 Gengwen Road Hangzhou 311231 China
| | - Fan Zhang
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Mengru Wang
- Hangzhou Institute of Advanced studies Zhejiang Normal University 1108 Gengwen Road Hangzhou 311231 China
| | - Xiaoling Mou
- Hangzhou Institute of Advanced studies Zhejiang Normal University 1108 Gengwen Road Hangzhou 311231 China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University 688 Yingbin Road Jinhua 321004 China
| | - Shuhui Liu
- Dalian Jiaotong University Dalian Liaoning, 116028 China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility Zhangjiang Lab Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 China
| | - Wei Liu
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Ronghe Lin
- Hangzhou Institute of Advanced studies Zhejiang Normal University 1108 Gengwen Road Hangzhou 311231 China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University 688 Yingbin Road Jinhua 321004 China
| | - Yunjie Ding
- Hangzhou Institute of Advanced studies Zhejiang Normal University 1108 Gengwen Road Hangzhou 311231 China
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- The State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
35
|
Pt-O-Cu Anchored on Fe2O3 Boosting Electrochemical Water-gas Shift Reaction for Highly Efficient H2 Generation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Ren Q, He Y, Wang H, Sun Y, Dong F. Photo-Switchable Oxygen Vacancy as the Dynamic Active Site in the Photocatalytic NO Oxidation Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qin Ren
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan611731, China
| | - Ye He
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, Sichuan611731, China
| | - Hong Wang
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan611731, China
| | - Yanjuan Sun
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, Sichuan611731, China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan611731, China
| |
Collapse
|
37
|
Rana R, Vila FD, Kulkarni AR, Bare SR. Bridging the Gap between the X-ray Absorption Spectroscopy and the Computational Catalysis Communities in Heterogeneous Catalysis: A Perspective on the Current and Future Research Directions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rachita Rana
- Department of Chemical Engineering, University of California, Davis, California95616, United States
| | - Fernando D. Vila
- Department of Physics, University of Washington, Seattle, Washington98195, United States
| | - Ambarish R. Kulkarni
- Department of Chemical Engineering, University of California, Davis, California95616, United States
| | - Simon R. Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
| |
Collapse
|
38
|
Liu HX, Li JY, Qin X, Ma C, Wang WW, Xu K, Yan H, Xiao D, Jia CJ, Fu Q, Ma D. Pt n-O v synergistic sites on MoO x/γ-Mo 2N heterostructure for low-temperature reverse water-gas shift reaction. Nat Commun 2022; 13:5800. [PMID: 36192383 PMCID: PMC9530113 DOI: 10.1038/s41467-022-33308-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
In heterogeneous catalysis, the interface between active metal and support plays a key role in catalyzing various reactions. Specially, the synergistic effect between active metals and oxygen vacancies on support can greatly promote catalytic efficiency. However, the construction of high-density metal-vacancy synergistic sites on catalyst surface is very challenging. In this work, isolated Pt atoms are first deposited onto a very thin-layer of MoO3 surface stabilized on γ-Mo2N. Subsequently, the Pt-MoOx/γ-Mo2N catalyst, containing abundant Pt cluster-oxygen vacancy (Ptn-Ov) sites, is in situ constructed. This catalyst exhibits an unmatched activity and excellent stability in the reverse water-gas shift (RWGS) reaction at low temperature (300 °C). Systematic in situ characterizations illustrate that the MoO3 structure on the γ-Mo2N surface can be easily reduced into MoOx (2 < x < 3), followed by the creation of sufficient oxygen vacancies. The Pt atoms are bonded with oxygen atoms of MoOx, and stable Pt clusters are formed. These high-density Ptn-Ov active sites greatly promote the catalytic activity. This strategy of constructing metal-vacancy synergistic sites provides valuable insights for developing efficient supported catalysts.
Collapse
Affiliation(s)
- Hao-Xin Liu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jin-Ying Li
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xuetao Qin
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Kai Xu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Han Yan
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, 06516, USA
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | - Qiang Fu
- School of Future Technology, University of Science and Technology of China, Hefei, 230026, China.
| | - Ding Ma
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
39
|
Li YC, Li XS, Zhu B, Zhu X, Lian HY, Zhu AM. A facile approach to direct preparation of Pt nanocatalysts from oxidative dechloridation of supported H2PtCl6 by oxygen plasma. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
40
|
Zhang S, Liu Y, Zhang M, Ma Y, Hu J, Qu Y. Sustainable production of hydrogen with high purity from methanol and water at low temperatures. Nat Commun 2022; 13:5527. [PMID: 36130943 PMCID: PMC9492729 DOI: 10.1038/s41467-022-33186-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022] Open
Abstract
Carbon neutrality initiative has stimulated the development of the sustainable methodologies for hydrogen generation and safe storage. Aqueous-phase reforming methanol and H2O (APRM) has attracted the particular interests for their high gravimetric density and easy availability. Thus, to efficiently release hydrogen and significantly suppress CO generation at low temperatures without any additives is the sustainable pursuit of APRM. Herein, we demonstrate that the dual-active sites of Pt single-atoms and frustrated Lewis pairs (FLPs) on porous nanorods of CeO2 enable the efficient additive-free H2 generation with a low CO (0.027%) through APRM at 120 °C. Mechanism investigations illustrate that the Pt single-atoms and Lewis acidic sites cooperatively promote the activation of methanol. With the help of a spontaneous water dissociation on FLPs, Pt single-atoms exhibit a significantly improved reforming of *CO to promote H2 production and suppress CO generation. This finding provides a promising path towards the flexible hydrogen utilizations.
Collapse
Affiliation(s)
- Sai Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, Shenzhen, China
| | - Yuxuan Liu
- Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xian Jiaotong University, 710049, Xian, China
| | - Mingkai Zhang
- Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xian Jiaotong University, 710049, Xian, China
| | - Yuanyuan Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, China
| | - Jun Hu
- School of Chemical Engineering, Northwest University, 710069, Xian, China.
| | - Yongquan Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, China.
| |
Collapse
|
41
|
Zhang R, Lin L, Wang D, Liu Y, Ling Y, Zhao S, Mu R, Fu Q. The Interplay between Hydroxyl Coverage and Reaction Selectivity of CO Conversion over the MnOH x/Pt Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rankun Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Le Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dongqing Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yijing Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yunjian Ling
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Siqin Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
42
|
Yan H, Qin X, Liu JC, Cai L, Xu P, Song JJ, Ma C, Wang WW, Jin Z, Jia CJ. Releasing the limited catalytic activity of CeO2-supported noble metal catalysts via UV-induced deep dechlorination. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Yang W, Yu H, Wang B, Wang X, Zhang H, Lei D, Lou LL, Yu K, Liu S. Leveraging Pt/Ce 1-xLa xO 2-δ To Elucidate Interfacial Oxygen Vacancy Active Sites for Aerobic Oxidation of 5-Hydroxymethylfurfural. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37667-37680. [PMID: 35968674 DOI: 10.1021/acsami.2c07065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interfacial oxygen-defective sites of oxide-supported metal catalysts are generally regarded as active centers in diverse redox reactions. Identification of their structure-property relationship at the atomic scale is of great importance but challenging. Herein, a series of La3+-doped three-dimensionally ordered macroporous CeO2 (3D-Ce1-xLaxO2-δ) were synthesized and applied as supports for Pt nanoparticles. The pieces of evidence from a suite of in-situ/ex-situ characterizations and theoretical calculations revealed that the La3+-mono-substituted La-□(-Ce)2 sites (where □ represents an oxygen vacancy) exhibited superior charge transfer ability, behaving as trapping centers for Pt nanoparticles. The resulting interfacial Ptδ+/La-□(-Ce)2 sites served as the reversible active species in the aerobic oxidation of 5-hydroxymethylfurfural to boost catalytic performance by simultaneously promoting oxygen activated capacity and the cleavage of O-H/C-H bonds of adsorbed hydroxymethyl groups. Consequently, the Pt/3D-Ce0.9La0.1O2-δ catalyst possessing the highest number of Ptδ+/La-□(-Ce)2 sites showed the best catalytic performance with 99.6% yield to 2,5-furandicarboxylic acid in 10 h. These results offer more insights into the promoting mechanism of interfacial oxygen-defective sites for the liquid-phase aerobic oxidation of aldehydes and alcohols.
Collapse
Affiliation(s)
- Weiping Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Transmedia Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Haochen Yu
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Beibei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Transmedia Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuemin Wang
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Hao Zhang
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Da Lei
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Lan-Lan Lou
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Kai Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Transmedia Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuangxi Liu
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|
44
|
Ou Y, Li S, Wang F, Duan X, Yuan W, Yang H, Zhang Z, Wang Y. Reversible transformation between terrace and step sites of Pt nanoparticles on titanium under CO and O2 environments. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
45
|
Wang D, Lin L, Zhang R, Mu R, Fu Q. Stabilizing Oxide Nanolayer via Interface Confinement and Surface Hydroxylation. J Phys Chem Lett 2022; 13:6566-6570. [PMID: 35833718 DOI: 10.1021/acs.jpclett.2c01732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface hydroxylation over oxide catalysts often occurs in many catalytic processes involving H2 and H2O, which is considered to play an important role in elementary steps of the reactions. Here, monolayer CoO and CoOHx nanoislands on Pt(111) are used as inverse model catalysts to study the effect of surface hydroxylation on the stability of Co oxide overlayers in O2. Surface science experiments indicate that hydroxyl groups formed on CoO nanoislands produced by deuterium-spillover can enhance oxidation resistance of the Co oxide nanostructures. Theoretical calculation shows that the interfacial adhesion between CoO and Pt is linearly strengthened with the increasing hydroxylation degree of CoO surface. Thus, the interface confinement effect between CoO and Pt can be enhanced by the surface hydroxylation due to the more reduced Co ions and stronger Co-Pt bonding at the CoOHx/Pt interface.
Collapse
Affiliation(s)
- Dongqing Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Le Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Rankun Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
46
|
Lavroff RH, Morgan HWT, Zhang Z, Poths P, Alexandrova AN. Ensemble representation of catalytic interfaces: soloists, orchestras, and everything in-between. Chem Sci 2022; 13:8003-8016. [PMID: 35919426 PMCID: PMC9278157 DOI: 10.1039/d2sc01367c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Catalytic systems are complex and dynamic, exploring vast chemical spaces on multiple timescales. In this perspective, we discuss the dynamic behavior of fluxional, heterogeneous thermal and electrocatalysts and the ensembles of many isomers which govern their behavior. We develop a new paradigm in catalysis theory in which highly fluxional systems, namely sub-nano clusters, isomerize on a much shorter timescale than that of the catalyzed reaction, so macroscopic properties arise from the thermal ensemble of isomers, not just the ground state. Accurate chemical predictions can only be reached through a many-structure picture of the catalyst, and we explain the breakdown of conventional methods such as linear scaling relations and size-selected prevention of sintering. We capitalize on the forward-looking discussion of the means of controlling the size of these dynamic ensembles. This control, such that the most effective or selective isomers can dominate the system, is essential for the fluxional catalyst to be practicable, and their targeted synthesis to be possible. It will also provide a fundamental lever of catalyst design. Finally, we discuss computational tools and experimental methods for probing ensembles and the role of specific isomers. We hope that catalyst optimization using chemically informed descriptors of ensemble nature and size will become a new norm in the field of catalysis and have broad impacts in sustainable energy, efficient chemical production, and more.
Collapse
Affiliation(s)
- Robert H Lavroff
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles California 90095-1569 USA
| | - Harry W T Morgan
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles California 90095-1569 USA
| | - Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles California 90095-1569 USA
| | - Patricia Poths
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles California 90095-1569 USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles California 90095-1569 USA
| |
Collapse
|
47
|
Muravev V, Simons JFM, Parastaev A, Verheijen MA, Struijs JJC, Kosinov N, Hensen EJM. Operando Spectroscopy Unveils the Catalytic Role of Different Palladium Oxidation States in CO Oxidation on Pd/CeO
2
Catalysts. Angew Chem Int Ed Engl 2022; 61:e202200434. [PMID: 35303388 PMCID: PMC9325467 DOI: 10.1002/anie.202200434] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 11/18/2022]
Abstract
Aiming at knowledge‐driven design of novel metal–ceria catalysts for automotive exhaust abatement, current efforts mostly pertain to the synthesis and understanding of well‐defined systems. In contrast, technical catalysts are often heterogeneous in their metal speciation. Here, we unveiled rich structural dynamics of a conventional impregnated Pd/CeO2 catalyst during CO oxidation. In situ X‐ray photoelectron spectroscopy and operando X‐ray absorption spectroscopy revealed the presence of metallic and oxidic Pd states during the reaction. Using transient operando infrared spectroscopy, we probed the nature and reactivity of the surface intermediates involved in CO oxidation. We found that while low‐temperature activity is associated with sub‐oxidized and interfacial Pd sites, the reaction at elevated temperatures involves metallic Pd. These results highlight the utility of the multi‐technique operando approach for establishing structure–activity relationships of technical catalysts.
Collapse
Affiliation(s)
- Valery Muravev
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Jérôme F. M. Simons
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Alexander Parastaev
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Marcel A. Verheijen
- Department of Applied Physics Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
- Eurofins Material Science Netherlands BV 5656AE Eindhoven The Netherlands
| | - Job J. C. Struijs
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
48
|
Frey H, Beck A, Huang X, van Bokhoven JA, Willinger MG. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 2022; 376:982-987. [PMID: 35617409 DOI: 10.1126/science.abm3371] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The dynamic interactions between noble metal particles and reducible metal-oxide supports can depend on redox reactions with ambient gases. Transmission electron microscopy revealed that the strong metal-support interaction (SMSI)-induced encapsulation of platinum particles on titania observed under reducing conditions is lost once the system is exposed to a redox-reactive environment containing oxygen and hydrogen at a total pressure of ~1 bar. Destabilization of the metal-oxide interface and redox-mediated reconstructions of titania lead to particle dynamics and directed particle migration that depend on nanoparticle orientation. A static encapsulated SMSI state was reestablished when switching back to purely oxidizing conditions. This work highlights the difference between reactive and nonreactive states and demonstrates that manifestations of the metal-support interaction strongly depend on the chemical environment.
Collapse
Affiliation(s)
- H Frey
- Scientific Center of Optical and Electron Microscopy (ScopeM), ETH Zürich, 8093 Zürich, Switzerland.,Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - A Beck
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.,Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - X Huang
- Scientific Center of Optical and Electron Microscopy (ScopeM), ETH Zürich, 8093 Zürich, Switzerland.,College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - J A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.,Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - M G Willinger
- Scientific Center of Optical and Electron Microscopy (ScopeM), ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
49
|
Abstract
Hydrogen (H2) has emerged as a sustainable energy carrier capable of replacing/complementing the global carbon-based energy matrix. Although studies in this area have often focused on the fundamental understanding of catalytic processes and the demonstration of their activities towards different strategies, much effort is still needed to develop high-performance technologies and advanced materials to accomplish widespread utilization. The main goal of this review is to discuss the recent contributions in the H2 production field by employing nanomaterials with well-defined and controllable physicochemical features. Nanoengineering approaches at the sub-nano or atomic scale are especially interesting, as they allow us to unravel how activity varies as a function of these parameters (shape, size, composition, structure, electronic, and support interaction) and obtain insights into structure–performance relationships in the field of H2 production, allowing not only the optimization of performances but also enabling the rational design of nanocatalysts with desired activities and selectivity for H2 production. Herein, we start with a brief description of preparing such materials, emphasizing the importance of accomplishing the physicochemical control of nanostructures. The review finally culminates in the leading technologies for H2 production, identifying the promising applications of controlled nanomaterials.
Collapse
|
50
|
Poths P, Alexandrova AN. Theoretical Perspective on Operando Spectroscopy of Fluxional Nanocatalysts. J Phys Chem Lett 2022; 13:4321-4334. [PMID: 35536346 DOI: 10.1021/acs.jpclett.2c00628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Improvements in operando spectroscopy have enabled the catalysis community to investigate the dynamic nature of catalysts under operating conditions with increasing detail. Still, the highly dynamic nature of some catalysts, such as fluxional supported subnano clusters, presents a formidable challenge even for the most state-of-the-art techniques. The reason is that such fluxional catalytic interfaces contain a variety of thermally accessible states. Operando spectroscopies used in catalysis generally fall into two categories: ensemble-based techniques, which provide spectra containing the signals of the entire ensemble of states of the catalyst and are not necessarily dominated by the most active species, and localized techniques, which provide atomistic-level information about the dynamics of active sites in a very small area, which might not include the most active species. Combining many different kinds of techniques can provide detailed insight; however, we propose that effective utilization of specific computational techniques and approaches within the fluxionality paradigm can fill the gap and enable atomistic characterization of the most relevant catalytic sites.
Collapse
Affiliation(s)
- Patricia Poths
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, Los Angeles, California 90095, United States
| |
Collapse
|