1
|
Liu W, Liao N, Lei Y, Liang W, Yang X, Yuan R, Yang C, Zhuo Y. Detachable DNA Assembly Module to Dissect Tumor Cells Heterogeneity via RNA Pinpoint Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401253. [PMID: 39422178 PMCID: PMC11633503 DOI: 10.1002/advs.202401253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/21/2024] [Indexed: 10/19/2024]
Abstract
Differential RNA expression is becoming increasingly valuable in evaluating tumor heterogeneity for a better understanding of malignant tumors and guiding personalized therapy. However, traditional techniques for analyzing cellular RNA are mainly focused on determining the absolute level of RNA, which may lead to inaccuracies in understanding tumor heterogeneity, primarily due to i) the subtle differences in certain RNA types that have similar total concentrations and ii) the existence of variations in RNA expression across different samples. Herein, a detachable DNA assembly module is proposed that is capable not only of quantifying the expression level of target RNA but also of innovatively evaluating its proportion within its RNA family population through a sequential assembly and disassembly route. Using the let-7 family as an experimental model, a significant difference is discovered in let-7a proportion between normal mammary epithelial cells and breast cancer cells, a characteristic that is often missed in bulk analysis of traditional techniques. By combining concentration and proportion information, the detachable DNA assembly module demonstrates markedly higher efficiency in discerning among various types of cells compared to traditional techniques. This innovative assembly module is expected to offer a new perspective to highlight tumor heterogeneity and guide personalized therapy.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| | - Ni Liao
- College of Biological and Chemical EngineeringPanzhihua UniversityPanzhihua617000P. R. China
| | - Yanmei Lei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
- Institute of Molecular MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Wenbin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| | - Chaoyong Yang
- Institute of Molecular MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
- The MOE Key Laboratory of Spectrochemical Analysis and InstrumentationDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| |
Collapse
|
2
|
Rodgers ML, O'Brien B, Woodson SA. Small RNAs and Hfq capture unfolded RNA target sites during transcription. Mol Cell 2023; 83:1489-1501.e5. [PMID: 37116495 PMCID: PMC10176597 DOI: 10.1016/j.molcel.2023.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/11/2023] [Accepted: 03/31/2023] [Indexed: 04/30/2023]
Abstract
Small ribonucleoproteins (sRNPs) target nascent precursor RNAs to guide folding, modification, and splicing during transcription. Yet, rapid co-transcriptional folding of the RNA can mask sRNP sites, impeding target recognition and regulation. To examine how sRNPs target nascent RNAs, we monitored binding of bacterial Hfq⋅DsrA sRNPs to rpoS transcripts using single-molecule co-localization co-transcriptional assembly (smCoCoA). We show that Hfq⋅DsrA recursively samples the mRNA before transcription of the target site to poise it for base pairing with DsrA. We adapted smCoCoA to precisely measure when the target site is synthesized and revealed that Hfq⋅DsrA often binds the mRNA during target site synthesis close to RNA polymerase (RNAP). We suggest that targeting transcripts near RNAP allows an sRNP to capture a site before the transcript folds, providing a kinetic advantage over post-transcriptional targeting. We propose that other sRNPs may also use RNAP-proximal targeting to hasten recognition and regulation.
Collapse
Affiliation(s)
- Margaret L Rodgers
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Brett O'Brien
- Chemical Biology Interface Program, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
3
|
Wang Y, Yin G, Weng H, Zhang L, Du G, Chen J, Kang Z. Gene knockdown by structure defined single-stem loop small non-coding RNAs with programmable regulatory activities. Synth Syst Biotechnol 2022; 8:86-96. [PMID: 36582457 PMCID: PMC9761848 DOI: 10.1016/j.synbio.2022.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Gene regulation by trans-acting small RNAs (sRNAs) has considerable advantages over other gene regulation strategies. However, synthetic sRNAs mainly take natural sRNAs (MicC or SgrS) as backbones and comprise three functional elements folding into two or more stem-loop structures: an mRNA base pairing region, an Hfq-binding structure, and a rho-independent terminator. Due to limited numbers of natural sRNAs and complicated backbone structures, synthetic sRNAs suffer from low activity programmability and poor structural modularity. Moreover, natural sRNA backbone sequences may increase the possibility of unwanted recombination. Here, we present a bottom-up approach for creating structure defined single-stem loop small non-coding RNAs (ssl-sRNAs), which contain a standardized scaffold of a 7 bp-stem-4 nt-loop-polyU-tail and a 24 nt basing pairing region covering the first eight codons. Particularly, ssl-sRNA requires no independent Hfq-binding structure, as the polyU tail fulfills the roles of binding Hfq. A thermodynamic-based scoring model and a web server sslRNAD (http://www.kangzlab.cn/) were developed for automated design of ssl-sRNAs with well-defined structures and programmable activities. ssl-sRNAs displayed weak polar effects when regulating polycistronic mRNAs. The ssl-sRNA designed by sslRNAD showed regulatory activities in both Escherichia coli and Bacillus subtilis. A streamlined workflow was developed for the construction of customized ssl-sRNA and ssl-sRNA libraries. As examples, the E. coli cell morphology was easily modified and new target genes of ergothioneine biosynthesis were quickly identified with ssl-sRNAs. ssl-sRNA and its designer sslRNAD enable researchers to rapidly design sRNAs for knocking down target genes.
Collapse
Affiliation(s)
- Yang Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Guobin Yin
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Huanjiao Weng
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Luyao Zhang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Zhen Kang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China,Corresponding author. The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
G6P-capturing molecules in the periplasm of Escherichia coli accelerate the shikimate pathway. Metab Eng 2022; 72:68-81. [DOI: 10.1016/j.ymben.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 11/21/2022]
|
5
|
Marklund E, Mao G, Yuan J, Zikrin S, Abdurakhmanov E, Deindl S, Elf J. Sequence specificity in DNA binding is mainly governed by association. Science 2022; 375:442-445. [PMID: 35084952 DOI: 10.1126/science.abg7427] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sequence-specific binding of proteins to DNA is essential for accessing genetic information. We derive a model that predicts an anticorrelation between the macroscopic association and dissociation rates of DNA binding proteins. We tested the model for thousands of different lac operator sequences with a protein binding microarray and by observing kinetics for individual lac repressor molecules in single-molecule experiments. We found that sequence specificity is mainly governed by the efficiency with which the protein recognizes different targets. The variation in probability of recognizing different targets is at least 1.7 times as large as the variation in microscopic dissociation rates. Modulating the rate of binding instead of the rate of dissociation effectively reduces the risk of the protein being retained on nontarget sequences while searching.
Collapse
Affiliation(s)
- Emil Marklund
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, 75124, Uppsala, Sweden
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, 75124, Uppsala, Sweden
| | - Jinwen Yuan
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, 75124, Uppsala, Sweden
| | - Spartak Zikrin
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, 75124, Uppsala, Sweden
| | - Eldar Abdurakhmanov
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Chemistry, BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, 75124, Uppsala, Sweden
| | - Johan Elf
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, 75124, Uppsala, Sweden
| |
Collapse
|
6
|
Desgranges E, Barrientos L, Herrgott L, Marzi S, Toledo-Arana A, Moreau K, Vandenesch F, Romby P, Caldelari I. The 3'UTR-derived sRNA RsaG coordinates redox homeostasis and metabolism adaptation in response to glucose-6-phosphate uptake in Staphylococcus aureus. Mol Microbiol 2021; 117:193-214. [PMID: 34783400 DOI: 10.1111/mmi.14845] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 01/28/2023]
Abstract
Staphylococcus aureus RsaG is a 3'-untranslated region (3'UTR) derived sRNA from the conserved uhpT gene encoding a glucose-6-phosphate (G6P) transporter expressed in response to extracellular G6P. The transcript uhpT-RsaG undergoes degradation from 5'- to 3'-end by the action of the exoribonucleases J1/J2, which are blocked by a stable hairpin structure at the 5'-end of RsaG, leading to its accumulation. RsaG together with uhpT is induced when bacteria are internalized into host cells or in the presence of mucus-secreting cells. Using MS2-affinity purification coupled with RNA sequencing, several RNAs were identified as targets including mRNAs encoding the transcriptional factors Rex, CcpA, SarA, and the sRNA RsaI. Our data suggested that RsaG contributes to the control of redox homeostasis and adjusts metabolism to changing environmental conditions. RsaG uses different molecular mechanisms to stabilize, degrade, or repress the translation of its mRNA targets. Although RsaG is conserved only in closely related species, the uhpT 3'UTR of the ape pathogen S. simiae harbors an sRNA, whose sequence is highly different, and which does not respond to G6P levels. Our results hypothesized that the 3'UTRs from UhpT transporter encoding mRNAs could have rapidly evolved to enable adaptation to host niches.
Collapse
Affiliation(s)
- Emma Desgranges
- Architecture et Réactivité de l'ARN, UPR9002, CNRS, Université de Strasbourg, Strasbourg, France
| | - Laura Barrientos
- Architecture et Réactivité de l'ARN, UPR9002, CNRS, Université de Strasbourg, Strasbourg, France
| | - Lucas Herrgott
- Architecture et Réactivité de l'ARN, UPR9002, CNRS, Université de Strasbourg, Strasbourg, France
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, UPR9002, CNRS, Université de Strasbourg, Strasbourg, France
| | | | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, Université de Lyon, Lyon, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, Université de Lyon, Lyon, France
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, UPR9002, CNRS, Université de Strasbourg, Strasbourg, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, UPR9002, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
7
|
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1696. [PMID: 34651439 DOI: 10.1002/wrna.1696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|