1
|
Lou J, Xiong X, Wang J, Guo M, Gao Y, Li D, Song F. Fusarium oxysporum NAD + hydrolase FonNADase1 is essential for pathogenicity and inhibits plant immune responses. Microbiol Res 2025; 294:128088. [PMID: 39955986 DOI: 10.1016/j.micres.2025.128088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
Plants use nicotinamide adenine dinucleotide (NAD+) as a key signaling molecule to activate immune responses. However, whether pathogens secrete specific NAD+ hydrolases (NADases) to affect plant NAD+ levels for infection remains unclear. Here, we report the function and possible mechanism of fungal NADases in watermelon Fusarium wilt fungus Fusarium oxysporum f. sp. niveum (Fon) pathogenicity. Fon secretes two NADases, FonNADase1 and FonNADase2, both of which harbor a secretory signal peptide and an NADase-active tuberculosis necrotizing toxin (TNT) domain. FonNADase1 and FonNADase2 are not involved in the growth, development, or stress responses of Fon. Moreover, only FonNADase1 is essential for Fon pathogenicity, and FonNADase1 deletion results in decreased invasive growth and spread within watermelon plants. FonNADase1 and FonNADase2 are functional NADases capable of decreasing plant NAD+ levels and FonNADase1 inhibits INF1- and BAX-induced cell death and chitin-triggered immune responses in Nicotiana benthamiana leaves in an NADase activity-dependent manner. Furthermore, FonNADase1 inhibited INF1- and BAX-induced expression of defense genes, such as NbPR1a, NbPR2, NbLOX, NbERF1, NbHIN1, and NbHSR203J, in N. benthamiana leaves and affected the expression of a set of immunity-associated genes in watermelon plants. These findings suggest that FonNADase1 plays a key role in Fon pathogenicity by affecting fungal invasive growth and spread within plants as well as modulating host immune responses, thus highlighting the critical role of fungal NADases in pathogenicity.
Collapse
Affiliation(s)
- Jiajun Lou
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Xiong
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiajing Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mengmeng Guo
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Gao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Dayong Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fengming Song
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Fatima M, Anjum Bhat H, Rebekah N, Murugasamy S, Makandar R. Genome-wide search and gene expression studies reveal candidate effectors with a role in pathogenicity and virulence in Fusarium graminearum. Mycologia 2024; 116:708-728. [PMID: 39110876 DOI: 10.1080/00275514.2024.2373665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/18/2024] [Indexed: 09/05/2024]
Abstract
Fusarium graminearum causes Fusarium head blight (FHB) disease in wheat worldwide. Although F. graminearum is reported to secrete several effectors, their role in virulence and pathogenicity is unknown. The study aimed at identifying candidate genes with a role in pathogenicity and virulence using two different host systems, Arabidopsis thaliana and wheat, challenged with F. graminearum TN01. Detached leaf assay and histological studies revealed the virulent nature of TN01. A genome-wide in silico search revealed several candidate genes, of which 23 genes were selected based on reproducibility. Gene expression studies by reverse transcriptase-polymerase chain reaction (RT-PCR) in leaf tissues of Arabidopsis and the two wheat genotypes, the susceptible (Sonalika) and the resistant (Nobeoka Bozu/Nobeoka), compared with mock-treated controls in a time-course study using fungal- and plant-specific genes as internal controls revealed that these genes were differentially regulated. Further, expression of these candidates in F. graminearum-inoculated Sonalika and Nobeoka spikes compared with mock-treated controls revealed their role in pathogenicity and virulence. Gene ontology studies revealed that some of these secretory proteins possessed a role in apoptosis and ceratoplatanin and KP4 killer toxin syntheses. A three-dimensional protein configuration was performed by homology modeling using trRosetta. Further, real-time quantitative PCR (RT-qPCR) studies in F. graminearum-inoculated Arabidopsis and wheat at early time points of inoculation revealed an increased expression of the majority of these genes in Sonalika, suggesting their possible role in pathogenicity, whereas low mRNA abundance was observed for 11 of these genes in the resistant genotype, Nobeoka, compared with Sonalika, indicating their role in virulence of F. graminearum.
Collapse
Affiliation(s)
- Massarat Fatima
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Professor C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Hanan Anjum Bhat
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Professor C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Nisha Rebekah
- Indian Agricultural Research Institute, Regional Station, Wellington, The Nilgiris, Tamil Nadu 643231, India
| | - Sivaswamy Murugasamy
- Indian Agricultural Research Institute, Regional Station, Wellington, The Nilgiris, Tamil Nadu 643231, India
| | - Ragiba Makandar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Professor C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
3
|
Zhen X, Xu X, Ye L, Xie S, Huang Z, Yang S, Wang Y, Li J, Long F, Ouyang S. Structural basis of antiphage immunity generated by a prokaryotic Argonaute-associated SPARSA system. Nat Commun 2024; 15:450. [PMID: 38200015 PMCID: PMC10781750 DOI: 10.1038/s41467-023-44660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Argonaute (Ago) proteins are ubiquitous across all kingdoms of life. Eukaryotic Agos (eAgos) use small RNAs to recognize transcripts for RNA silencing in eukaryotes. In contrast, the functions of prokaryotic counterparts (pAgo) are less well known. Recently, short pAgos in conjunction with the associated TIR or Sir2 (SPARTA or SPARSA) were found to serve as antiviral systems to combat phage infections. Herein, we present the cryo-EM structures of nicotinamide adenine dinucleotide (NAD+)-bound SPARSA with and without nucleic acids at resolutions of 3.1 Å and 3.6 Å, respectively. Our results reveal that the APAZ (Analogue of PAZ) domain and the short pAgo form a featured architecture similar to the long pAgo to accommodate nucleic acids. We further identified the key residues for NAD+ binding and elucidated the structural basis for guide RNA and target DNA recognition. Using structural comparisons, molecular dynamics simulations, and biochemical experiments, we proposed a putative mechanism for NAD+ hydrolysis in which an H186 loop mediates nucleophilic attack by catalytic water molecules. Overall, our study provides mechanistic insight into the antiphage role of the SPARSA system.
Collapse
Affiliation(s)
- Xiangkai Zhen
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Xiaolong Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China Wuhan University, Wuhan, 430071, China
| | - Le Ye
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Song Xie
- College of Chemistry, Fuzhou University, 350116, Fuzhou, China
| | - Zhijie Huang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Sheng Yang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yanhui Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China Wuhan University, Wuhan, 430071, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, 350116, Fuzhou, China.
| | - Feng Long
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China Wuhan University, Wuhan, 430071, China.
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
4
|
Ferrario E, Kallio JP, Strømland Ø, Ziegler M. Novel Calcium-Binding Motif Stabilizes and Increases the Activity of Aspergillus fumigatus Ecto-NADase. Biochemistry 2023; 62:3293-3302. [PMID: 37934975 PMCID: PMC10666276 DOI: 10.1021/acs.biochem.3c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential molecule in all kingdoms of life, mediating energy metabolism and cellular signaling. Recently, a new class of highly active fungal surface NADases was discovered. The enzyme from the opportunistic human pathogen Aspergillus fumigatus was thoroughly characterized. It harbors a catalytic domain that resembles that of the tuberculosis necrotizing toxin from Mycobacterium tuberculosis, which efficiently cleaves NAD+ to nicotinamide and ADP-ribose, thereby depleting the dinucleotide pool. Of note, the A. fumigatus NADase has an additional Ca2+-binding motif at the C-terminus of the protein. Despite the presence of NADases in several fungal divisions, the Ca2+-binding motif is uniquely found in the Eurotiales order, which contains species that have immense health and economic impacts on humans. To identify the potential roles of the metal ion-binding site in catalysis or protein stability, we generated and characterized A. fumigatus NADase variants lacking the ability to bind calcium. X-ray crystallographic analyses revealed that the mutation causes a drastic and dynamic structural rearrangement of the homodimer, resulting in decreased thermal stability. Even though the calcium-binding site is at a long distance from the catalytic center, the structural reorganization upon the loss of calcium binding allosterically alters the active site, thereby negatively affecting NAD-glycohydrolase activity. Together, these findings reveal that this unique calcium-binding site affects the protein fold, stabilizing the dimeric structure, but also mediates long-range effects resulting in an increased catalytic rate.
Collapse
Affiliation(s)
- Eugenio Ferrario
- Department
of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen 5009, Norway
| | - Juha P. Kallio
- Department
of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen 5009, Norway
| | - Øyvind Strømland
- Department
of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen 5009, Norway
| | - Mathias Ziegler
- Department
of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen 5009, Norway
- Leibniz
Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbargstraße 11A, Jena 07745, Germany
| |
Collapse
|
5
|
Hagan M, Pankov G, Gallegos-Monterrosa R, Williams DJ, Earl C, Buchanan G, Hunter WN, Coulthurst SJ. Rhs NADase effectors and their immunity proteins are exchangeable mediators of inter-bacterial competition in Serratia. Nat Commun 2023; 14:6061. [PMID: 37770429 PMCID: PMC10539506 DOI: 10.1038/s41467-023-41751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
Many bacterial species use Type VI secretion systems (T6SSs) to deliver anti-bacterial effector proteins into neighbouring bacterial cells, representing an important mechanism of inter-bacterial competition. Specific immunity proteins protect bacteria from the toxic action of their own effectors, whilst orphan immunity proteins without a cognate effector may provide protection against incoming effectors from non-self competitors. T6SS-dependent Rhs effectors contain a variable C-terminal toxin domain (CT), with the cognate immunity protein encoded immediately downstream of the effector. Here, we demonstrate that Rhs1 effectors from two strains of Serratia marcescens, the model strain Db10 and clinical isolate SJC1036, possess distinct CTs which both display NAD(P)+ glycohydrolase activity but belong to different subgroups of NADase from each other and other T6SS-associated NADases. Comparative structural analysis identifies conserved functions required for NADase activity and reveals that unrelated NADase immunity proteins utilise a common mechanism of effector inhibition. By replicating a natural recombination event, we show successful functional exchange of CTs and demonstrate that Db10 encodes an orphan immunity protein which provides protection against T6SS-delivered SJC1036 NADase. Our findings highlight the flexible use of Rhs effectors and orphan immunity proteins during inter-strain competition and the repeated adoption of NADase toxins as weapons against bacterial cells.
Collapse
Affiliation(s)
- Martin Hagan
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Genady Pankov
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | | | - David J Williams
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Christopher Earl
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Grant Buchanan
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - William N Hunter
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | - Sarah J Coulthurst
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
6
|
Abstract
Investigation of fungal biology has been frequently motivated by the fact that many fungal species are important plant and animal pathogens. Such efforts have contributed significantly toward our understanding of fungal pathogenic lifestyles (virulence factors and strategies) and the interplay with host immune systems. In parallel, work on fungal allorecognition systems leading to the characterization of fungal regulated cell death determinants and pathways, has been instrumental for the emergent concept of fungal immunity. The uncovered evolutionary trans-kingdom parallels between fungal regulated cell death pathways and innate immune systems incite us to reflect further on the concept of a fungal immune system. Here, I briefly review key findings that have shaped the fungal immunity paradigm, providing a perspective on what I consider its most glaring knowledge gaps. Undertaking to fill such gaps would establish firmly the fungal immune system inside the broader field of comparative immunology.
Collapse
Affiliation(s)
- Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| |
Collapse
|
7
|
Schwarz C, Eschenhagen P, Schmidt H, Hohnstein T, Iwert C, Grehn C, Roehmel J, Steinke E, Stahl M, Lozza L, Tikhonova E, Rosati E, Stervbo U, Babel N, Mainz JG, Wisplinghoff H, Ebel F, Jia LJ, Blango MG, Hortschansky P, Brunke S, Hube B, Brakhage AA, Kniemeyer O, Scheffold A, Bacher P. Antigen specificity and cross-reactivity drive functionally diverse anti-Aspergillus fumigatus T cell responses in cystic fibrosis. J Clin Invest 2023; 133:161593. [PMID: 36701198 PMCID: PMC9974102 DOI: 10.1172/jci161593] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUNDThe fungus Aspergillus fumigatus causes a variety of clinical phenotypes in patients with cystic fibrosis (pwCF). Th cells orchestrate immune responses against fungi, but the types of A. fumigatus-specific Th cells in pwCF and their contribution to protective immunity or inflammation remain poorly characterized.METHODSWe used antigen-reactive T cell enrichment (ARTE) to investigate fungus-reactive Th cells in peripheral blood of pwCF and healthy controls.RESULTSWe show that clonally expanded, high-avidity A. fumigatus-specific effector Th cells, which were absent in healthy donors, developed in pwCF. Individual patients were characterized by distinct Th1-, Th2-, or Th17-dominated responses that remained stable over several years. These different Th subsets target different A. fumigatus proteins, indicating that differential antigen uptake and presentation directs Th cell subset development. Patients with allergic bronchopulmonary aspergillosis (ABPA) are characterized by high frequencies of Th2 cells that cross-recognize various filamentous fungi.CONCLUSIONOur data highlight the development of heterogenous Th responses targeting different protein fractions of a single fungal pathogen and identify the development of multispecies cross-reactive Th2 cells as a potential risk factor for ABPA.FUNDINGGerman Research Foundation (DFG), under Germany's Excellence Strategy (EXC 2167-390884018 "Precision Medicine in Chronic Inflammation" and EXC 2051-390713860 "Balance of the Microverse"); Oskar Helene Heim Stiftung; Christiane Herzog Stiftung; Mukoviszidose Institut gGmb; German Cystic Fibrosis Association Mukoviszidose e.V; German Federal Ministry of Education and Science (BMBF) InfectControl 2020 Projects AnDiPath (BMBF 03ZZ0838A+B).
Collapse
Affiliation(s)
- Carsten Schwarz
- Klinikum Westbrandenburg, Campus Potsdam, Cystic Fibrosis Section, Potsdam, Germany
| | - Patience Eschenhagen
- Klinikum Westbrandenburg, Campus Potsdam, Cystic Fibrosis Section, Potsdam, Germany
| | - Henrijette Schmidt
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel, Germany.,Institute of Immunology, Christian-Albrecht University of Kiel and UKSH Schleswig-Holstein, Kiel, Germany
| | - Thordis Hohnstein
- Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Christina Iwert
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Translational Immunology, Berlin, Germany
| | - Claudia Grehn
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Roehmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt – Universität zu Berlin, Berlin, Germany
| | - Eva Steinke
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany.,Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt – Universität zu Berlin, Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Mirjam Stahl
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany.,Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt – Universität zu Berlin, Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Laura Lozza
- Cell Biology Laboratory, Precision for Medicine GmbH, Berlin, Germany
| | - Ekaterina Tikhonova
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel, Germany.,Institute of Immunology, Christian-Albrecht University of Kiel and UKSH Schleswig-Holstein, Kiel, Germany
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel, Germany.,Institute of Immunology, Christian-Albrecht University of Kiel and UKSH Schleswig-Holstein, Kiel, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Herne, Germany
| | - Nina Babel
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany.,Center for Translational Medicine and Immune Diagnostics Laboratory, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Herne, Germany
| | - Jochen G. Mainz
- Brandenburg Medical School/Medizinische Hochschule Brandenburg (MHB), University, Pediatric Pulmonology/Cystic Fibrosis, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Hilmar Wisplinghoff
- Labor Dr. Wisplinghoff, Cologne, Germany.,Institute for Virology and Microbiology, Witten/Herdecke University, Witten, Germany
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, LMU, Munich, Germany
| | - Lei-Jie Jia
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Matthew G. Blango
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrecht University of Kiel and UKSH Schleswig-Holstein, Kiel, Germany
| | - Petra Bacher
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel, Germany.,Institute of Immunology, Christian-Albrecht University of Kiel and UKSH Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
8
|
Enzymatic and Chemical Syntheses of Vacor Analogs of Nicotinamide Riboside, NMN and NAD. Biomolecules 2021; 11:biom11071044. [PMID: 34356669 PMCID: PMC8301822 DOI: 10.3390/biom11071044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/15/2023] Open
Abstract
It has recently been demonstrated that the rat poison vacor interferes with mammalian NAD metabolism, because it acts as a nicotinamide analog and is converted by enzymes of the NAD salvage pathway. Thereby, vacor is transformed into the NAD analog vacor adenine dinucleotide (VAD), a molecule that causes cell toxicity. Therefore, vacor may potentially be exploited to kill cancer cells. In this study, we have developed efficient enzymatic and chemical procedures to produce vacor analogs of NAD and nicotinamide riboside (NR). VAD was readily generated by a base-exchange reaction, replacing the nicotinamide moiety of NAD by vacor, catalyzed by Aplysia californica ADP ribosyl cyclase. Additionally, we present the chemical synthesis of the nucleoside version of vacor, vacor riboside (VR). Similar to the physiological NAD precursor, NR, VR was converted to the corresponding mononucleotide (VMN) by nicotinamide riboside kinases (NRKs). This conversion is quantitative and very efficient. Consequently, phosphorylation of VR by NRKs represents a valuable alternative to produce the vacor analog of NMN, compared to its generation from vacor by nicotinamide phosphoribosyltransferase (NamPT).
Collapse
|