1
|
Bae JK, Ghods S, Cho HH, Jang H, Kim SI, Lee JH, Yu HK. Unprecedented Hole Concentration of NiSe 2 Electrodes Leading to Hole Degeneration of Entire WSe 2 Channels. NANO LETTERS 2024; 24:13381-13387. [PMID: 39377650 DOI: 10.1021/acs.nanolett.4c03983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Semimetal electrodes for 2D semiconductors have been extensively studied; however, research on p-type semimetals has been limited due to the scarcity of materials that satisfy both high work functions and low resistances. In response, we investigated the behavior of NiSe2 as an electrode. Utilizing a novel co-evaporation method that suppresses oxidation and contamination, we synthesized NiSe2 demonstrating a high work function of 5.53 eV, a low resistance of 5.81 × 10-5 Ω cm, and a record hole concentration exceeding 1023 cm-3. We confirmed that when WSe2 comes into contact with NiSe2, the Fermi level of WSe2 falls below the work function of NiSe2, leading to complete hole degeneration of the channel. This unusual Fermi level alignment correlates with the high hole concentration in NiSe2 and the maximum energy level of its hole pockets. Our research provides new insights into how an electrode's hole concentration affects channel behavior.
Collapse
Affiliation(s)
- Ji Kwon Bae
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Soheil Ghods
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
- School of Semiconductor Science & Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyeon Ho Cho
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hochan Jang
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Seung-Il Kim
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Jae-Hyun Lee
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Hak Ki Yu
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
2
|
Samanta S, Park H, Lee C, Jeon S, Cui H, Yao YX, Hwang J, Choi KY, Kim HS. Emergence of flat bands and ferromagnetic fluctuations via orbital-selective electron correlations in Mn-based kagome metal. Nat Commun 2024; 15:5376. [PMID: 38918409 PMCID: PMC11199626 DOI: 10.1038/s41467-024-49674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Kagome lattice has been actively studied for the possible realization of frustration-induced two-dimensional flat bands and a number of correlation-induced phases. Currently, the search for kagome systems with a nearly dispersionless flat band close to the Fermi level is ongoing. Here, by combining theoretical and experimental tools, we present Sc3Mn3Al7Si5 as a novel realization of correlation-induced almost-flat bands in the kagome lattice in the vicinity of the Fermi level. Our magnetic susceptibility, 27Al nuclear magnetic resonance, transport, and optical conductivity measurements provide signatures of a correlated metallic phase with tantalizing ferromagnetic instability. Our dynamical mean-field calculations suggest that such ferromagnetic instability observed originates from the formation of nearly flat dispersions close to the Fermi level, where electron correlations induce strong orbital-selective renormalization and manifestation of the kagome-frustrated bands. In addition, a significant negative magnetoresistance signal is observed, which can be attributed to the suppression of flat-band-induced ferromagnetic fluctuation, which further supports the formation of flat bands in this compound. These findings broaden a new prospect to harness correlated topological phases via multiorbital correlations in 3d-based kagome systems.
Collapse
Affiliation(s)
- Subhasis Samanta
- Department of Semiconductor Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Center for Extreme Quantum Matter and Functionality, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hwiwoo Park
- Department of Physics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chanhyeon Lee
- Department of Physics, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sungmin Jeon
- Department of Physics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hengbo Cui
- Department of Physics and Astronomy and Institute of Applied Physics, Seoul National University, Seoul, 151-747, Republic of Korea
| | - Yong-Xin Yao
- Ames National Laboratory, U.S. Department of Energy, Ames, IA, 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA
| | - Jungseek Hwang
- Department of Physics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Kwang-Yong Choi
- Department of Physics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Heung-Sik Kim
- Department of Semiconductor Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
3
|
Semeniuk K, Chang H, Baglo J, Friedemann S, Tozer SW, Coniglio WA, Gamża MB, Reiss P, Alireza P, Leermakers I, McCollam A, Grockowiak AD, Grosche FM. Truncated mass divergence in a Mott metal. Proc Natl Acad Sci U S A 2023; 120:e2301456120. [PMID: 37695907 PMCID: PMC10515144 DOI: 10.1073/pnas.2301456120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/18/2023] [Indexed: 09/13/2023] Open
Abstract
The Mott metal-insulator transition represents one of the most fundamental phenomena in condensed matter physics. Yet, basic tenets of the canonical Brinkman-Rice picture of Mott localization remain to be tested experimentally by quantum oscillation measurements that directly probe the quasiparticle Fermi surface and effective mass. By extending this technique to high pressure, we have examined the metallic state on the threshold of Mott localization in clean, undoped crystals of NiS2. We find that i) on approaching Mott localization, the quasiparticle mass is strongly enhanced, whereas the Fermi surface remains essentially unchanged; ii) the quasiparticle mass closely follows the divergent form predicted theoretically, establishing charge carrier slowdown as the driver for the metal-insulator transition; iii) this mass divergence is truncated by the metal-insulator transition, placing the Mott critical point inside the insulating section of the phase diagram. The inaccessibility of the Mott critical point in NiS2 parallels findings at the threshold of ferromagnetism in clean metallic systems, in which criticality at low temperature is almost universally interrupted by first-order transitions or novel emergent phases such as incommensurate magnetic order or unconventional superconductivity.
Collapse
Affiliation(s)
- Konstantin Semeniuk
- Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
- Max Planck Institute for Chemical Physics of Solids, Dresden01187, Germany
| | - Hui Chang
- Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| | - Jordan Baglo
- Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
- Department of Physics, Université de Sherbrooke, SherbrookeJ1K 2R1, Canada
| | - Sven Friedemann
- H H Wills Laboratory, University of Bristol, BristolBS8 1TL, United Kingdom
| | | | | | - Monika B. Gamża
- Jeremiah Horrocks Institute for Mathematics, Physics and Astronomy, University of Central Lancashire, PrestonPR1 2HE, United Kingdom
| | - Pascal Reiss
- Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
- Max Planck Institute for Solid State Research, Stuttgart70569, Germany
| | - Patricia Alireza
- Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| | - Inge Leermakers
- High Field Magnet Laboratory, Radboud University, Nijmegen6525 ED, The Netherlands
| | - Alix McCollam
- High Field Magnet Laboratory, Radboud University, Nijmegen6525 ED, The Netherlands
| | - Audrey D. Grockowiak
- National High Magnetic Field Laboratory, Tallahassee, FL83810
- Leibniz Institute for Solid State and Materials Research, IFW Dresden, 01069Dresden, Germany
| | - F. Malte Grosche
- Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| |
Collapse
|
4
|
Jang BG, He Y, Shim JH, Mao HK, Kim DY. Oxygen-Driven Enhancement of the Electron Correlation in Hexagonal Iron at Earth's Inner Core Conditions. J Phys Chem Lett 2023; 14:3884-3890. [PMID: 37071052 PMCID: PMC10150722 DOI: 10.1021/acs.jpclett.3c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Earth's inner core (IC) consists of mainly iron with some light elements. Understanding its structure and related physical properties has been elusive as a result of its required extremely high pressure and temperature conditions. The phase of iron, elastic anisotropy, and density-velocity deficit at the IC have long been questions of great interest. Here, we find that the electron correlation effect is enhanced by oxygen and modifies several important features, including the stability of iron oxides. Oxygen atoms energetically stabilize hexagonal-structured iron at IC conditions and induce elastic anisotropy. Electrical resistivity is much enhanced in comparison to pure hexagonal close-packed (hcp) iron as a result of the enhanced electron correlation effect, supporting the conventional thermal convection model. Moreover, our calculated seismic velocity shows a quantitative match with geologically observed preliminary reference Earth model (PREM) data. We suggest that oxygen is the essential light element to understand and model Earth's IC.
Collapse
Affiliation(s)
- Bo Gyu Jang
- Center
for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People’s Republic of China
- Korea
Institute for Advanced Study, Seoul 02455, Korea
| | - Yu He
- Center
for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People’s Republic of China
- Key
Laboratory of High-Temperature and High-Pressure Study of the Earth’s
Interior, Institute of Geochemistry, Chinese
Academy of Sciences, Guiyang, Guizhou 550081, People’s Republic of China
| | - Ji Hoon Shim
- Department
of Chemistry, Pohang University of Science
and Technology, Pohang 37673, Korea
- Division
of Advanced Materials Science, Pohang University
of Science and Technology, Pohang 37673, Korea
| | - Ho-kwang Mao
- Center
for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People’s Republic of China
| | - Duck Young Kim
- Center
for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People’s Republic of China
- Shanghai
Key Laboratory of Material Frontiers Research in Extreme Environments
(MFree), Shanghai Advanced Research in Physical
Sciences (SHARPS), Pudong, Shanghai 201203, P.R. China
| |
Collapse
|