1
|
Matsumoto K, Akieda Y, Haraoka Y, Hirono N, Sasaki H, Ishitani T. Foxo3-mediated physiological cell competition ensures robust tissue patterning throughout vertebrate development. Nat Commun 2024; 15:10662. [PMID: 39690179 DOI: 10.1038/s41467-024-55108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/27/2024] [Indexed: 12/19/2024] Open
Abstract
Unfit cells with defective signalling or gene expression are eliminated through competition with neighbouring cells. However, physiological roles and mechanisms of cell competition in vertebrates remain unclear. In addition, universal mechanisms regulating diverse cell competition are unknown. Using zebrafish imaging, we reveal that cell competition ensures robust patterning of the spinal cord and muscle through elimination of cells with unfit sonic hedgehog activity, driven by cadherin-mediated communication between unfit and neighbouring fit cells and subsequent activation of the Smad-Foxo3-reactive oxygen species axis. We identify Foxo3 as a common marker of loser cells in various types of cell competition in zebrafish and mice. Foxo3-mediated physiological cell competition is required for eliminating various naturally generated unfit cells and for the consequent precise patterning during zebrafish embryogenesis and organogenesis. Given the implication of Foxo3 downregulation in age-related diseases, cell competition may be a defence system to prevent abnormalities throughout development and adult homeostasis.
Collapse
Affiliation(s)
- Kanako Matsumoto
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Suita, Osaka, Japan
| | - Yuki Akieda
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yukinari Haraoka
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Naoki Hirono
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Hiroshi Sasaki
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
- Department of Biological Sciences, Graduate School of Science, Osaka University, Suita, Osaka, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka, Japan.
| |
Collapse
|
2
|
Ansai S, Toyoda A, Yoshida K, Kitano J. Repositioning of centromere-associated repeats during karyotype evolution in Oryzias fishes. Mol Ecol 2024; 33:e17222. [PMID: 38014620 DOI: 10.1111/mec.17222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
The karyotype, which is the number and shape of chromosomes, is a fundamental characteristic of all eukaryotes. Karyotypic changes play an important role in many aspects of evolutionary processes, including speciation. In organisms with monocentric chromosomes, it was previously thought that chromosome number changes were mainly caused by centric fusions and fissions, whereas chromosome shape changes, that is, changes in arm numbers, were mainly due to pericentric inversions. However, recent genomic and cytogenetic studies have revealed examples of alternative cases, such as tandem fusions and centromere repositioning, found in the karyotypic changes within and between species. Here, we employed comparative genomic approaches to investigate whether centromere repositioning occurred during karyotype evolution in medaka fishes. In the medaka family (Adrianichthyidae), the three phylogenetic groups differed substantially in their karyotypes. The Oryzias latipes species group has larger numbers of chromosome arms than the other groups, with most chromosomes being metacentric. The O. javanicus species group has similar numbers of chromosomes to the O. latipes species group, but smaller arm numbers, with most chromosomes being acrocentric. The O. celebensis species group has fewer chromosomes than the other two groups and several large metacentric chromosomes that were likely formed by chromosomal fusions. By comparing the genome assemblies of O. latipes, O. javanicus, and O. celebensis, we found that repositioning of centromere-associated repeats might be more common than simple pericentric inversion. Our results demonstrated that centromere repositioning may play a more important role in karyotype evolution than previously appreciated.
Collapse
Affiliation(s)
- Satoshi Ansai
- Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Kohta Yoshida
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
3
|
Ansai S, Hiraki-Kajiyama T, Ueda R, Seki T, Yokoi S, Katsumura T, Takeuchi H. The Medaka approach to evolutionary social neuroscience. Neurosci Res 2024:S0168-0102(24)00125-1. [PMID: 39481546 DOI: 10.1016/j.neures.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Previously, the integration of comparative biological and neuroscientific approaches has led to significant advancements in social neuroscience. This review highlights the potential and future directions of evolutionary social neuroscience research utilizing medaka fishes (the family Adrianichthyidae) including Japanese medaka (Oryzias latipes). We focus on medaka social cognitive capabilities and mate choice behavior, particularly emphasizing mate preference using visual cues. Medaka fishes are also advantageous due to their abundant genetic resources, extensive genomic information, and the relative ease of laboratory breeding and genetic manipulation. Here we present some research examples of both the conventional neuroscience approach and evolutionary approach involving medaka fishes and other species. We also discuss the prospects of uncovering the molecular and cellular mechanisms underlying the diversity of visual mate preference among species. Especially, we introduce that the single-cell transcriptome technology, particularly in conjunction with 'Adaptive Circuitry Census', is an innovative tool that bridges comparative biological methods and neuroscientific approaches. Evolutionary social neuroscience research using medaka has the potential to unveil fundamental principles in neuroscience and elucidate the mechanisms responsible for generating diversity in mating strategies.
Collapse
Affiliation(s)
- Satoshi Ansai
- Ushimado Marine Institute, Okayama University, 701-4303, Japan.
| | | | - Ryutaro Ueda
- Graduate School of Life Sciences, Tohoku University, 980-8577, Japan
| | - Takahide Seki
- Graduate School of Life Sciences, Tohoku University, 980-8577, Japan
| | - Saori Yokoi
- School of Pharmaceutical Sciences, Hokkaido University, 060-0808, Japan
| | | | - Hideaki Takeuchi
- Graduate School of Life Sciences, Tohoku University, 980-8577, Japan.
| |
Collapse
|
4
|
Ueda R, Ansai S, Takeuchi H. Rapid body colouration changes in Oryzias celebensis as a social signal influenced by environmental background. Biol Lett 2024; 20:20240159. [PMID: 39044714 PMCID: PMC11267395 DOI: 10.1098/rsbl.2024.0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Rapid body colouration changes in some animals, such as chameleons and octopuses, serve dual functions: camouflage and intraspecific communication. It has been hypothesized that these colouration changes originally evolved to provide camouflage and subsequently were co-opted as social signals; however, experimental model systems that are suitable for studying such evolutionary processes are limited. Here, we investigated the relationship between rapid colouration changes of the blackened markings and aggressive behaviours in male Oryzias celebensis, an Indonesian medaka fish, under triadic relationships (two males and one female) or three males conditions with two different environmental backgrounds. In an algae-covered tank, mimicking the common laboratory rearing conditions, males with blackened markings exhibited more frequent attacks towards different conspecific individuals compared with non-blackened males and females. The blackened males were seldom attacked by non-blackened males and females. By contrast, neither aggressive behaviours nor black colouration changes were observed in the transparent background condition with a brighter environment. These indicated that the blackened markings in O. celebensis serve as a social signal depending on the environmental backgrounds. Considering that such colouration changes for camouflage are widely conserved among teleost fishes, the traits are likely to be co-opted for displaying social signals in O. celebensis.
Collapse
Affiliation(s)
- Ryutaro Ueda
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Kyoto 606-8507, Japan
| | - Hideaki Takeuchi
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
5
|
Minovic A, Nozawa M. Evolution of sex-biased genes in Drosophila species with neo-sex chromosomes: Potential contribution to reducing the sexual conflict. Ecol Evol 2024; 14:e11701. [PMID: 39050657 PMCID: PMC11266434 DOI: 10.1002/ece3.11701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
An advantage of sex chromosomes may be the potential to reduce sexual conflict because they provide a basis for selection to operate separately on females and males. However, evaluating the relationship between sex chromosomes and sexual conflict is challenging owing to the difficulty in measuring sexual conflict and substantial divergence between species with and without sex chromosomes. We therefore examined sex-biased gene expression as a proxy for sexual conflict in three sets of Drosophila species with and without young sex chromosomes, the so-called neo-sex chromosomes. In all sets, we detected more sex-biased genes in the species with neo-sex chromosomes than in the species without neo-sex chromosomes in larvae, pupae, and adult somatic tissues but not in gonads. In particular, many unbiased genes became either female- or male-biased after linkage to the neo-sex chromosomes in larvae, despite the low sexual dimorphism. For example, genes involved in metabolism, a key determinant for the rate of development in many animals, were enriched in the genes that acquired sex-biased expression on the neo-sex chromosomes at the larval stage. These genes may be targets of sexually antagonistic selection (i.e., large size and rapid development are selected for in females but selected against in males). These results indicate that acquiring neo-sex chromosomes may have contributed to a reduction in sexual conflict, particularly at the larval stage, in Drosophila..
Collapse
Affiliation(s)
- Anika Minovic
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiJapan
| | - Masafumi Nozawa
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiJapan
- Research Center for Genomics and BioinformaticsTokyo Metropolitan UniversityHachiojiJapan
| |
Collapse
|
6
|
Rossi M, Hausmann AE, Alcami P, Moest M, Roussou R, Van Belleghem SM, Wright DS, Kuo CY, Lozano-Urrego D, Maulana A, Melo-Flórez L, Rueda-Muñoz G, McMahon S, Linares M, Osman C, McMillan WO, Pardo-Diaz C, Salazar C, Merrill RM. Adaptive introgression of a visual preference gene. Science 2024; 383:1368-1373. [PMID: 38513020 PMCID: PMC7616200 DOI: 10.1126/science.adj9201] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024]
Abstract
Visual preferences are important drivers of mate choice and sexual selection, but little is known of how they evolve at the genetic level. In this study, we took advantage of the diversity of bright warning patterns displayed by Heliconius butterflies, which are also used during mate choice. Combining behavioral, population genomic, and expression analyses, we show that two Heliconius species have evolved the same preferences for red patterns by exchanging genetic material through hybridization. Neural expression of regucalcin1 correlates with visual preference across populations, and disruption of regucalcin1 with CRISPR-Cas9 impairs courtship toward conspecific females, providing a direct link between gene and behavior. Our results support a role for hybridization during behavioral evolution and show how visually guided behaviors contributing to adaptation and speciation are encoded within the genome.
Collapse
Affiliation(s)
- Matteo Rossi
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | | | - Pepe Alcami
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | - Markus Moest
- Department of Ecology and Research Department for Limnology, Mondsee; University of Innsbruck, Innsbruck, Austria
| | - Rodaria Roussou
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | | | | | - Chi-Yun Kuo
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Smithsonian Tropical Research Institute; Gamboa, Panama
| | - Daniela Lozano-Urrego
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Arif Maulana
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | - Lina Melo-Flórez
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Geraldine Rueda-Muñoz
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Saoirse McMahon
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | - Mauricio Linares
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Christof Osman
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | | | | | - Camilo Salazar
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Richard M. Merrill
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Smithsonian Tropical Research Institute; Gamboa, Panama
| |
Collapse
|
7
|
Ryu T, Okamoto K, Ansai S, Nakao M, Kumar A, Iguchi T, Ogino Y. Gene Duplication of Androgen Receptor As An Evolutionary Driving Force Underlying the Diversity of Sexual Characteristics in Teleost Fishes. Zoolog Sci 2024; 41:68-76. [PMID: 38587519 DOI: 10.2108/zs230098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/15/2024] [Indexed: 04/09/2024]
Abstract
Sexual dimorphism allows species to meet their fitness optima based on the physiological availability of each sex. Although intralocus sexual conflict appears to be a genetic constraint for the evolution of sex-specific traits, sex-linked genes and the regulation of sex steroid hormones contribute to resolving this conflict by allowing sex-specific developments. Androgens and their receptor, androgen receptor (Ar), regulate male-biased phenotypes. In teleost fish, ar ohnologs have emerged as a result of teleost-specific whole genome duplication (TSGD). Recent studies have highlighted the evolutionary differentiation of ar ohnologs responsible for the development of sexual characteristics, which sheds light on the need for comparative studies on androgen regulation among different species. In this review, we discuss the importance of ar signaling as a regulator of male-specific traits in teleost species because teleost species are suitable experimental models for comparative studies owing to their great diversity in male-biased morphological and physiological traits. To date, both in vivo and in vitro studies on teleost ar ohnologs have shown a substantial influence of ars as a regulator of male-specific reproductive traits such as fin elongation, courtship behavior, and nuptial coloration. In addition to these sexual characteristics, ar substantially influences immunity, inducing a sex-biased immune response. This review aims to provide a comprehensive understanding of the current state of teleost ar studies and emphasizes the potential of teleost fishes, given their availability, to find molecular evidence about what gives rise to the spectacular diversity among fish species.
Collapse
Affiliation(s)
- Tsukasa Ryu
- Laboratory of Marine Biochemistry, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Keigo Okamoto
- Laboratory of Aquatic Molecular Developmental Biology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Satoshi Ansai
- Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Kyoto 606-8507, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Anu Kumar
- Commonwealth Scientific and Industrial Research Organization, CSIRO Environment, PMB2, Glen Osmond, 5064 South Australia, Australia
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan,
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Mirchandani CD, Shultz AJ, Thomas GWC, Smith SJ, Baylis M, Arnold B, Corbett-Detig R, Enbody E, Sackton TB. A Fast, Reproducible, High-throughput Variant Calling Workflow for Population Genomics. Mol Biol Evol 2024; 41:msad270. [PMID: 38069903 PMCID: PMC10764099 DOI: 10.1093/molbev/msad270] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
The increasing availability of genomic resequencing data sets and high-quality reference genomes across the tree of life present exciting opportunities for comparative population genomic studies. However, substantial challenges prevent the simple reuse of data across different studies and species, arising from variability in variant calling pipelines, data quality, and the need for computationally intensive reanalysis. Here, we present snpArcher, a flexible and highly efficient workflow designed for the analysis of genomic resequencing data in nonmodel organisms. snpArcher provides a standardized variant calling pipeline and includes modules for variant quality control, data visualization, variant filtering, and other downstream analyses. Implemented in Snakemake, snpArcher is user-friendly, reproducible, and designed to be compatible with high-performance computing clusters and cloud environments. To demonstrate the flexibility of this pipeline, we applied snpArcher to 26 public resequencing data sets from nonmammalian vertebrates. These variant data sets are hosted publicly to enable future comparative population genomic analyses. With its extensibility and the availability of public data sets, snpArcher will contribute to a broader understanding of genetic variation across species by facilitating the rapid use and reuse of large genomic data sets.
Collapse
Affiliation(s)
- Cade D Mirchandani
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Allison J Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| | | | - Sara J Smith
- Informatics Group, Harvard University, Cambridge, MA, USA
- Biology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Mara Baylis
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Brian Arnold
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, USA
| | - Russ Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Erik Enbody
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
9
|
Robinson CD, Hale MD, Wittman TN, Cox CL, John-Alder HB, Cox RM. Species differences in hormonally mediated gene expression underlie the evolutionary loss of sexually dimorphic coloration in Sceloporus lizards. J Hered 2023; 114:637-653. [PMID: 37498153 DOI: 10.1093/jhered/esad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Phenotypic sexual dimorphism often involves the hormonal regulation of sex-biased expression for underlying genes. However, it is generally unknown whether the evolution of hormonally mediated sexual dimorphism occurs through upstream changes in tissue sensitivity to hormone signals, downstream changes in responsiveness of target genes, or both. Here, we use comparative transcriptomics to explore these possibilities in 2 species of Sceloporus lizards exhibiting different patterns of sexual dichromatism. Sexually dimorphic S. undulatus develops blue and black ventral coloration in response to testosterone, while sexually monomorphic S. virgatus does not, despite exhibiting similar sex differences in circulating testosterone levels. We administered testosterone implants to juveniles of each species and used RNAseq to quantify gene expression in ventral skin. Transcriptome-wide responses to testosterone were stronger in S. undulatus than in S. virgatus, suggesting species differences in tissue sensitivity to this hormone signal. Species differences in the expression of genes for androgen metabolism and sex hormone-binding globulin were consistent with this idea, but expression of the androgen receptor gene was higher in S. virgatus, complicating this interpretation. Downstream of androgen signaling, we found clear species differences in hormonal responsiveness of genes related to melanin synthesis, which were upregulated by testosterone in S. undulatus, but not in S. virgatus. Collectively, our results indicate that hormonal regulation of melanin synthesis pathways contributes to the development of sexual dimorphism in S. undulatus, and that changes in the hormonal responsiveness of these genes in S. virgatus contribute to the evolutionary loss of ventral coloration.
Collapse
Affiliation(s)
| | - Matthew D Hale
- University of Virginia, Department of Biology, Charlottesville, VA, United States
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, United States
| | - Tyler N Wittman
- University of Virginia, Department of Biology, Charlottesville, VA, United States
| | - Christian L Cox
- Florida International University, Department of Biological Sciences and Institute of Environment, Miami, FL, United States
| | - Henry B John-Alder
- Rutgers University, Department of Ecology, Evolution, and Natural Resources, New Brunswick, NJ, United States
| | - Robert M Cox
- University of Virginia, Department of Biology, Charlottesville, VA, United States
| |
Collapse
|
10
|
Yamahira K, Kobayashi H, Kakioka R, Montenegro J, Masengi KWA, Okuda N, Nagano AJ, Tanaka R, Naruse K, Tatsumoto S, Go Y, Ansai S, Kusumi J. Ghost introgression in ricefishes of the genus Adrianichthys in an ancient Wallacean lake. J Evol Biol 2023; 36:1484-1493. [PMID: 37737547 DOI: 10.1111/jeb.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/06/2023] [Accepted: 08/01/2023] [Indexed: 09/23/2023]
Abstract
Because speciation might have been promoted by ancient introgression from an extinct lineage, it is important to detect the existence of 'ghost introgression' in focal taxa and examine its contribution to their diversification. In this study, we examined possible ghost introgression and its contributions to the diversification of ricefishes of the genus Adrianichthys in Lake Poso, an ancient lake on Sulawesi Island, in which some extinctions are known to have occurred. Population-genomic analysis revealed that two extant Adrianichthys species, A. oophorus and A. poptae are reproductively isolated from each other. Comparisons of demographic models demonstrated that introgression from a ghost population, which diverged from the common ancestor of A. oophorus and A. poptae, is essential for reconstructing the demographic history of Adrianichthys. The best model estimated that the divergence of the ghost population greatly predated the divergence between A. oophorus and A. poptae, and that the ghost population secondarily contacted the two extant species within Lake Poso more recently. Genome scans and simulations detected a greatly divergent locus, which cannot be explained without ghost introgression. This locus was also completely segregated between A. oophorus and A. poptae. These findings suggest that variants that came from a ghost population have contributed to the divergence between A. oophorus and A. poptae, but the large time-lag between their divergence and ghost introgression indicates that the contribution of introgression may be restricted.
Collapse
Affiliation(s)
- Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Hirozumi Kobayashi
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Ryo Kakioka
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Javier Montenegro
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | | | - Noboru Okuda
- Research Center for Inland Seas, Kobe University, Kobe, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Rieko Tanaka
- World Medaka Aquarium, Nagoya Higashiyama Zoo and Botanical Gardens, Nagoya, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Japan
| | - Shoji Tatsumoto
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
- Department of System Neuroscience, Division of Behavioral Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Satoshi Ansai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Junko Kusumi
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Flury JM, Meusemann K, Martin S, Hilgers L, Spanke T, Böhne A, Herder F, Mokodongan DF, Altmüller J, Wowor D, Misof B, Nolte AW, Schwarzer J. Potential Contribution of Ancient Introgression to the Evolution of a Derived Reproductive Strategy in Ricefishes. Genome Biol Evol 2023; 15:evad138. [PMID: 37493080 PMCID: PMC10465105 DOI: 10.1093/gbe/evad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023] Open
Abstract
Transitions from no parental care to extensive care are costly and involve major changes in life history, behavior, and morphology. Nevertheless, in Sulawesi ricefishes, pelvic brooding evolved from transfer brooding in two distantly related lineages within the genera Adrianichthys and Oryzias, respectively. Females of pelvic brooding species carry their eggs attached to their belly until the fry hatches. Despite their phylogenetic distance, both pelvic brooding lineages share a set of external morphological traits. A recent study found no direct gene flow between pelvic brooding lineages, suggesting independent evolution of the derived reproductive strategy. Convergent evolution can, however, also rely on repeated sorting of preexisting variation of an admixed ancestral population, especially when subjected to similar external selection pressures. We thus used a multispecies coalescent model and D-statistics to identify gene-tree-species-tree incongruencies, to evaluate the evolution of pelvic brooding with respect to interspecific gene flow not only between pelvic brooding lineages but also between pelvic brooding lineages and other Sulawesi ricefish lineages. We found a general network-like evolution in Sulawesi ricefishes, and as previously reported, we detected no gene flow between the pelvic brooding lineages. Instead, we found hybridization between the ancestor of pelvic brooding Oryzias and the common ancestor of the Oryzias species from the Lake Poso area. We further detected signs of introgression within the confidence interval of a quantitative trait locus associated with pelvic brooding in O. eversi. Our results hint toward a contribution of ancient standing genetic variation to the evolution of pelvic brooding in Oryzias.
Collapse
Affiliation(s)
- Jana M Flury
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Karen Meusemann
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Sebastian Martin
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Leon Hilgers
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Tobias Spanke
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Astrid Böhne
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Fabian Herder
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Daniel F Mokodongan
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Cologne University, Cologne, Germany
| | - Daisy Wowor
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
| | - Bernhard Misof
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Arne W Nolte
- Department of Ecological Genomics, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Julia Schwarzer
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| |
Collapse
|
12
|
Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1250-1277. [PMID: 37017088 DOI: 10.1111/brv.12952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.
Collapse
Affiliation(s)
- Joel Elkin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC, 20052, USA
| | | | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
13
|
Mandagi IF, K A Sumarto B, Nuryadi H, Mokodongan DF, Lawelle SA, W A Masengi K, Nagano AJ, Kakioka R, Kitano J, Ansai S, Kusumi J, Yamahira K. Multiple colonizations and hybridization of a freshwater fish group on a satellite island of Sulawesi. Mol Phylogenet Evol 2023; 184:107804. [PMID: 37120113 DOI: 10.1016/j.ympev.2023.107804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Repeated colonizations and resultant hybridization may increase lineage diversity on an island if introgression occurs only in a portion of the indigenous island lineage. Therefore, to precisely understand how island biodiversity was shaped, it is essential to reconstruct the history of secondary colonization and resultant hybridization both in time and space. In this study, we reconstructed the history of multiple colonizations of the Oryzias woworae species group, a freshwater fish group of the family Adrianichthyidae, from Sulawesi Island to its southeast satellite island, Muna Island. Phylogenetic and species tree analyses using genome-wide single-nucleotide polymorphisms revealed that all local populations on Muna Island were monophyletic, but that there were several genetically distinct lineages within the island. Population structure and phylogenetic network analyses demonstrated that colonization of this island occurred more than once, and that secondary colonization and resultant introgressive hybridization occurred only in one local population on the island. The spatially heterogeneous introgression induced by the multiple colonizations were also supported by differential admixture analyses. In addition, the differential admixture analyses detected reverse colonization from Muna Island to the Sulawesi mainland. Coalescence-based demographic inference estimated that these mutual colonizations occurred during the middle to late Quaternary period, during which sea level repeatedly declined; this indicates that the colonizations occurred via land bridges. We conclude that these mutual colonizations between Muna Island and the Sulawesi mainland, and the resultant spatially heterogeneous introgression shaped the current biodiversity of this species group in this area.
Collapse
Affiliation(s)
- Ixchel F Mandagi
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado 95115, Indonesia.
| | - Bayu K A Sumarto
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Handung Nuryadi
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Daniel F Mokodongan
- Museum Zoologicum Bogoriense, Research Center for Biology, National Research and Innovation Agency, Cibinong 16911, Indonesia.
| | - Sjamsu A Lawelle
- Faculty of Fisheries and Marine Science, Halu Oleo University, Kendari 93232, Indonesia.
| | - Kawilarang W A Masengi
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado 95115, Indonesia.
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.
| | - Ryo Kakioka
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan.
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan.
| | - Junko Kusumi
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka 819-0395, Japan.
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan.
| |
Collapse
|
14
|
Evolutionary differentiation of androgen receptor is responsible for sexual characteristic development in a teleost fish. Nat Commun 2023; 14:1428. [PMID: 36918573 PMCID: PMC10014959 DOI: 10.1038/s41467-023-37026-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Teleost fishes exhibit complex sexual characteristics in response to androgens, such as fin enlargement and courtship display. However, the molecular mechanisms underlying their evolutionary acquisition remain largely unknown. To address this question, we analyse medaka (Oryzias latipes) mutants deficient in teleost-specific androgen receptor ohnologs (ara and arb). We discovered that neither ar ohnolog was required for spermatogenesis, whilst they appear to be functionally redundant for the courtship display in males. However, both were required for reproductive success: ara for tooth enlargement and the reproductive behaviour eliciting female receptivity, arb for male-specific fin morphogenesis and sexual motivation. We further showed that differences between the two ar ohnologs in their transcription, cellular localisation of their encoded proteins, and their downstream genetic programmes could be responsible for the phenotypic diversity between the ara and arb mutants. These findings suggest that the ar ohnologs have diverged in two ways: first, through the loss of their roles in spermatogenesis and second, through gene duplication followed by functional differentiation that has likely resolved the pleiotropic roles derived from their ancestral gene. Thus, our results provide insights into how genome duplication impacts the massive diversification of sexual characteristics in the teleost lineage.
Collapse
|
15
|
Ferdous MA, Islam SI, Habib N, Almehmadi M, Allahyani M, Alsaiari AA, Shafie A. CRISPR-Cas Genome Editing Technique for Fish Disease Management: Current Study and Future Perspective. Microorganisms 2022; 10:2012. [PMID: 36296288 PMCID: PMC9610719 DOI: 10.3390/microorganisms10102012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Scientists have discovered many ways to treat bacteria, viruses, and parasites in aquaculture; however, there is still an impossibility in finding a permanent solution for all types of diseases. In that case, the CRISPR-Cas genome-editing technique can be the potential solution to preventing diseases for aquaculture sustainability. CRISPR-Cas is cheaper, easier, and more precise than the other existing genome-editing technologies and can be used as a new disease treatment tool to solve the far-reaching challenges in aquaculture. This technique may now be employed in novel ways, such as modifying a single nucleotide base or tagging a location in the DNA with a fluorescent protein. This review paper provides an informative discussion on adopting CRISPR technology in aquaculture disease management. Starting with the basic knowledge of CRISPR technology and phages, this study highlights the development of RNA-guided immunity to combat the Chilodonella protozoan group and nervous necrosis virus (NNV) in marine finfish. Additionally, we highlight the immunological application of CRISPR-Cas against bacterial diseases in channel catfish and the white spot syndrome virus (WSSV) in shrimp. In addition, the review summarizes a synthesis of bioinformatics tools used for CRISPR-Cas sgRNA design, and acceptable solutions are discussed, considering the limitations.
Collapse
Affiliation(s)
- Md. Akib Ferdous
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Sk Injamamul Islam
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- The International Graduate Program of Veterinary Science and Technology (VST), Department of Veterinary Microbiology, Faculty of Veterinary Science and Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nasim Habib
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
16
|
Ansai S, Kitano J. Speciation and adaptation research meets genome editing. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200516. [PMID: 35634923 PMCID: PMC9149800 DOI: 10.1098/rstb.2020.0516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/07/2022] [Indexed: 07/20/2023] Open
Abstract
Understanding the genetic basis of reproductive isolation and adaptive traits in natural populations is one of the fundamental goals in evolutionary biology. Genome editing technologies based on CRISPR-Cas systems and site-specific recombinases have enabled us to modify a targeted genomic region as desired and thus to conduct functional analyses of target loci, genes and mutations even in non-conventional model organisms. Here, we review the technical properties of genome editing techniques by classifying them into the following applications: targeted gene knock-out for investigating causative gene functions, targeted gene knock-in of marker genes for visualizing expression patterns and protein functions, precise gene replacement for identifying causative alleles and mutations, and targeted chromosomal rearrangement for investigating the functional roles of chromosomal structural variations. We describe examples of their application to demonstrate functional analysis of naturally occurring genetic variations and discuss how these technologies can be applied to speciation and adaptation research. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.
Collapse
Affiliation(s)
- Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
17
|
Yin H, Tao J, Peng Y, Xiong Y, Li B, Li S, Yang H. MSPJ: Discovering potential biomarkers in small gene expression datasets via ensemble learning. Comput Struct Biotechnol J 2022; 20:3783-3795. [PMID: 35891786 PMCID: PMC9304602 DOI: 10.1016/j.csbj.2022.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
In transcriptomics, differentially expressed genes (DEGs) provide fine-grained phenotypic resolution for comparisons between groups and insights into molecular mechanisms underlying the pathogenesis of complex diseases or phenotypes. The robust detection of DEGs from large datasets is well-established. However, owing to various limitations (e.g., the low availability of samples for some diseases or limited research funding), small sample size is frequently used in experiments. Therefore, methods to screen reliable and stable features are urgently needed for analyses with limited sample size. In this study, MSPJ, a new machine learning approach for identifying DEGs was proposed to mitigate the reduced power and improve the stability of DEG identification in small gene expression datasets. This ensemble learning-based method consists of three algorithms: an improved multiple random sampling with meta-analysis, SVM-RFE (support vector machines-recursive feature elimination), and permutation test. MSPJ was compared with ten classical methods by 94 simulated datasets and large-scale benchmarking with 165 real datasets. The results showed that, among these methods MSPJ had the best performance in most small gene expression datasets, especially those with sample size below 30. In summary, the MSPJ method enables effective feature selection for robust DEG identification in small transcriptome datasets and is expected to expand research on the molecular mechanisms underlying complex diseases or phenotypes.
Collapse
Key Words
- AUC, area under the ROC curve (AUC)
- DEGs, differentially expressed genes
- Differentially expressed genes
- FDR, false positive rate
- Feature selection
- GA, genetic algorithm
- GEO, Gene Expression Omnibus
- GO, gene ontology
- MSPJ, the Joint method of Meta-analysis, SVM-RFE, and Permutation test
- Machine learning
- RF, random forest
- ROC, receiver operating characteristic
- Random sampling
- SAM, significance analysis of microarrays
- SMDs, standardized mean differences
- SNR, signal noise ratio
- SVM-RFE, support vector machines-recursive feature elimination
- Small sample size
- mRMR, minimum-redundancy-maximum-relevance
Collapse
Affiliation(s)
- HuaChun Yin
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing 400037, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, The Army Medical University, Chongqing 400038, China
| | - JingXin Tao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yuyang Peng
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing 400037, China
| | - Ying Xiong
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, The Army Medical University, Chongqing 400038, China
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing 400037, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, The Army Medical University, Chongqing 400037, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
| |
Collapse
|
18
|
Oginuma M, Nishida M, Ohmura-Adachi T, Abe K, Ogamino S, Mogi C, Matsui H, Ishitani T. Rapid reverse genetics systems for Nothobranchius furzeri, a suitable model organism to study vertebrate aging. Sci Rep 2022; 12:11628. [PMID: 35804091 PMCID: PMC9270483 DOI: 10.1038/s41598-022-15972-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
The African turquoise killifish Nothobranchius furzeri (N. furzeri) is a useful model organism for studying aging, age-related diseases, and embryonic diapause. CRISPR/Cas9-mediated gene knockout and Tol2 transposon-mediated transgenesis in N. furzeri have been reported previously. However, these methods take time to generate knockout and transgenic fish. In addition, knock-in technology that inserts large DNA fragments as fluorescent reporter constructs into the target gene in N. furzeri has not yet been established. Here, we show that triple-target CRISPR-mediated single gene disruption efficiently produces whole-body biallelic knockout and enables the examination of gene function in the F0 generation. In addition, we developed a method for creating the knock-in reporter N. furzeri without crossing by optimizing the CRISPR/Cas9 system. These methods drastically reduce the duration of experiments, and we think that these advances will accelerate aging and developmental studies using N. furzeri.
Collapse
Affiliation(s)
- Masayuki Oginuma
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Moana Nishida
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomomi Ohmura-Adachi
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kota Abe
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shohei Ogamino
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.,Institute for Molecular and Cellular Regulation, Gunma University, Gunma, 371-8512, Japan
| | - Chihiro Mogi
- Institute for Molecular and Cellular Regulation, Gunma University, Gunma, 371-8512, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan. .,Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
19
|
Kitano J, Ishikawa A, Ravinet M, Courtier-Orgogozo V. Genetic basis of speciation and adaptation: from loci to causative mutations. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200503. [PMID: 35634921 PMCID: PMC9149796 DOI: 10.1098/rstb.2020.0503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Does evolution proceed in small steps or large leaps? How repeatable is evolution? How constrained is the evolutionary process? Answering these long-standing questions in evolutionary biology is indispensable for both understanding how extant biodiversity has evolved and predicting how organisms and ecosystems will respond to changing environments in the future. Understanding the genetic basis of phenotypic diversification and speciation in natural populations is key to properly answering these questions. The leap forward in genome sequencing technologies has made it increasingly easier to not only investigate the genetic architecture but also identify the variant sites underlying adaptation and speciation in natural populations. Furthermore, recent advances in genome editing technologies are making it possible to investigate the functions of each candidate gene in organisms from natural populations. In this article, we discuss how these recent technological advances enable the analysis of causative genes and mutations and how such analysis can help answer long-standing evolutionary biology questions. This article is part of the theme issue ‘Genetic basis of adaptation and speciation: from loci to causative mutations’.
Collapse
Affiliation(s)
- Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
- Laboratory of Molecular Ecological Genetics, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Chiba 277-8562, Japan
| | - Mark Ravinet
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
20
|
Flury JM, Hilgers L, Herder F, Spanke T, Misof B, Wowor D, Boneka F, Wantania LL, Mokodongan DF, Mayer C, Nolte AW, Schwarzer J. The genetic basis of a novel reproductive strategy in Sulawesi ricefishes: How modularity and a low number of loci shape pelvic brooding. Evolution 2022; 76:1033-1051. [PMID: 35334114 DOI: 10.1111/evo.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 01/21/2023]
Abstract
The evolution of complex phenotypes like reproductive strategies is challenging to understand, as they often depend on multiple adaptations that only jointly result in a specific functionality. Sulawesi ricefishes (Adrianichthyidae) evolved a reproductive strategy termed as pelvic brooding. In contrast to the more common transfer brooding, female pelvic brooders carry an egg bundle connected to their body for weeks until the fry hatches. To examine the genetic architecture of pelvic brooding, we crossed the pelvic brooding Oryzias eversi and the transfer brooding Oryzias nigrimas (species divergence time: ∼3.6 my). We hypothesize, that a low number of loci and modularity have facilitated the rapid evolution of pelvic brooding. Traits associated to pelvic brooding, like rib length, pelvic fin length, and morphology of the genital papilla, were correlated in the parental species but correlations were reduced or lost in their F1 and F2 hybrids. Using the Castle-Wright estimator, we found that generally few loci underlie the studied traits. Further, both parental species showed modularity in their body plans. In conclusion, morphological traits related to pelvic brooding were based on a few loci and the mid-body region likely could evolve independently from the remaining body parts. Both factors presumably facilitated the evolution of pelvic brooding.
Collapse
Affiliation(s)
- Jana M Flury
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Leon Hilgers
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany.,LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Fabian Herder
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Tobias Spanke
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Bernhard Misof
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Daisy Wowor
- Museum Zoologicum Bogoriense, Research Center for Biosystematic and Evolution, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
| | - Farnis Boneka
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado, Indonesia
| | - Letha Louisiana Wantania
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany.,Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado, Indonesia
| | - Daniel F Mokodongan
- Museum Zoologicum Bogoriense, Research Center for Biosystematic and Evolution, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
| | - Christoph Mayer
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Arne W Nolte
- Carl von Ossietzky Universität, Oldenburg, Germany
| | - Julia Schwarzer
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany
| |
Collapse
|
21
|
Deeply divergent freshwater fish species within a single river system in central Sulawesi. Mol Phylogenet Evol 2022; 173:107519. [DOI: 10.1016/j.ympev.2022.107519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 01/02/2023]
|
22
|
Luo M, Wang J, Dong Z, Wang C, Lu G. CRISPR-Cas9 sgRNA design and outcome assessment: Bioinformatics tools and aquaculture applications. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Evaluation of Age-Dependent Changes in the Coloration of Male Killifish Nothobranchius Guentheri Using New Photoprocessing Methods. BIOLOGY 2022; 11:biology11020205. [PMID: 35205071 PMCID: PMC8869725 DOI: 10.3390/biology11020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary This paper proposes a new methodology for evaluating fish coloration, which allows us to identify differences in the intensity of coloration of specific areas of the body. Changes in fish coloration occur during growth and under the influence of environmental factors. Male fish belonging to the family Nothobranchius are characterized by extremely diverse coloration, depending on the age of the fish, environmental factors, and social hierarchical status. As the lifespan of this genus of fish is very short (12–14 months), studies on age-dependent changes are possible. In this study, we demonstrate correlations between the coloration of particular body zones of male Nothobranchius guentheri and age using new photofixation methods and image processing software. This methodology can be applied to other fish with unique coloration patterns, for example, family Cichlidae and order Cyprinodontiformes. Abstract Fish as model objects have found wide applications in biology and fundamental medicine and allow studies of behavioral and physiological responses to various environmental factors. Representatives of the genus Nothobranchius are one of the most convenient objects for such studies. Male fish belonging to the family Nothobranchiidae are characterized by extremely diverse coloration, which constantly changes, depending on the age of the fish, environmental factors, and social hierarchical status. These fish species are characterized by a short life cycle, which allows changes in coloration, an indicator of the ontogenesis stage, to be estimated. Existing methods of fish color assessments do not allow the intensity of coloration of particular body zones to be clearly differentiated. In the present study, we suggest a method of two-factor assessment of specific fish body zones using modified methods of photofixation and image processing software. We describe the protocol of the method and the results of its application to different-aged groups of male Nothobranchius guentheri. The coloration of selected areas (i.e., red spot on the gill cover (RSGC), black border on the caudal fin (BBCF), and white border on the dorsal fin (WBDF)) differed significantly according to the size and age of the fish (p < 0.05). The data obtained suggest that N. guentheri can be a model for studying aging by the intensity of body coloration in males.
Collapse
|
24
|
Seleit A, Ansai S, Yamahira K, Masengi KWA, Naruse K, Centanin L. Diversity of lateral line patterns and neuromast numbers in the genus Oryzias. J Exp Biol 2021; 224:273715. [PMID: 34897518 DOI: 10.1242/jeb.242490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022]
Abstract
A remarkable diversity of lateral line patterns exists in adult teleost fishes, the basis of which is largely unknown. By analysing the lateral line patterns and organ numbers in 29 Oryzias species and strains we report a rapid diversification of the lateral line system within this genus. We show a strong dependence of lateral line elaboration (number of neuromasts per cluster, number of parallel lateral lines) on adult species body size irrespective of phylogenetic relationships. In addition, we report that the degree of elaboration of the anterior lateral line, posterior lateral line and caudal neuromast clusters is tightly linked within species, arguing for a globally coordinated mechanism controlling lateral line organ numbers and patterns. We provide evidence for a polygenic control over neuromast numbers and positioning in the genus Oryzias. Our data also indicate that the diversity in lateral lines can arise as a result of differences in patterning both during embryonic development and post-embryonically, where simpler embryonic patterns generate less complex adult patterns and organ numbers, arguing for a linkage between the two processes.
Collapse
Affiliation(s)
- Ali Seleit
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg Universität, 69120 Heidelberg, Germany.,The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, 69120Heidelberg, Germany
| | - Satoshi Ansai
- Laboratory of Bioresources, National Institute for Basic Biology Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Kawilarang W A Masengi
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, 95115 Manado, Indonesia
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Lázaro Centanin
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg Universität, 69120 Heidelberg, Germany
| |
Collapse
|
25
|
Genetic basis of orange spot formation in the guppy (Poecilia reticulata). BMC Ecol Evol 2021; 21:211. [PMID: 34823475 PMCID: PMC8613973 DOI: 10.1186/s12862-021-01942-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background To understand the evolutionary significance of female mate choice for colorful male ornamentation, the underlying regulatory mechanisms of such ornamentation must be understood for examining how the ornaments are associated with “male qualities” that increase the fitness or sexual attractiveness of offspring. In the guppy (Poecilia reticulata), an established model system for research on sexual selection, females prefer males possessing larger and more highly saturated orange spots as potential mates. Although previous studies have identified some chromosome regions and genes associated with orange spot formation, the regulation and involvement of these genetic elements in orange spot formation have not been elucidated. In this study, the expression patterns of genes specific to orange spots and certain color developmental stages were investigated using RNA-seq to reveal the genetic basis of orange spot formation. Results Comparing the gene expression levels of male guppy skin with orange spots (orange skin) with those without any color spots (dull skin) from the same individuals identified 1102 differentially expressed genes (DEGs), including 630 upregulated genes and 472 downregulated genes in the orange skin. Additionally, the gene expression levels of the whole trunk skin were compared among the three developmental stages and 2247 genes were identified as DEGs according to color development. These analyses indicated that secondary differentiation of xanthophores may affect orange spot formation. Conclusions The results suggested that orange spots might be formed by secondary differentiation, rather than de novo generation, of xanthophores, which is induced by Csf1 and thyroid hormone signaling pathways. Furthermore, we suggested candidate genes associated with the areas and saturation levels of orange spots, which are both believed to be important for female mate choice and independently regulated. This study provides insights into the genetic and cellular regulatory mechanisms underlying orange spot formation, which would help to elucidate how these processes are evolutionarily maintained as ornamental traits relevant to sexual selection. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01942-2.
Collapse
|
26
|
Mandagi IF, Kakioka R, Montenegro J, Kobayashi H, Masengi KWA, Inomata N, Nagano AJ, Toyoda A, Ansai S, Matsunami M, Kimura R, Kitano J, Kusumi J, Yamahira K. Species divergence and repeated ancient hybridization in a Sulawesian lake system. J Evol Biol 2021; 34:1767-1780. [PMID: 34532915 DOI: 10.1111/jeb.13932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/09/2021] [Indexed: 01/02/2023]
Abstract
An increasing volume of empirical studies demonstrated that hybridization between distant lineages may have promoted speciation in various taxa. However, the timing, extent and direction of introgressive hybridization remain unknown in many cases. Here, we report a possible case in which repeated hybridization promoted divergence of Oryzias ricefishes (Adrianichthyidae) on Sulawesi, an island of Wallacea. Four Oryzias species are endemic to the Malili Lake system in central Sulawesi, which is composed of five tectonic lakes; of these, one lake is inhabited by two species. Morphological and population genomic analyses of genome-wide single-nucleotide polymorphisms revealed that these two sympatric species are phylogenetically sister to but substantially reproductively isolated from each other. Analyses of admixture and comparison of demographic models revealed that the two sympatric species experienced several substantial introgressions from outgroup populations that probably occurred soon after they had secondary contact with each other in the lake. However, the ratio of migrants from the outgroups was estimated to be different between the two species, which is consistent with the hypothesis that these introgressions aided their divergence or prevented them from forming a hybrid swarm. Repeated lake fragmentations and fusions may have promoted diversification of this freshwater fish species complex that is endemic to this ancient lake system.
Collapse
Affiliation(s)
- Ixchel F Mandagi
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado, Indonesia
| | - Ryo Kakioka
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Javier Montenegro
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Hirozumi Kobayashi
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | | | - Nobuyuki Inomata
- Department of Environmental Science, Fukuoka Women's University, Fukuoka, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Ryosuke Kimura
- Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Junko Kusumi
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
27
|
Huang D, Lewis VM, Foster TN, Toomey MB, Corbo JC, Parichy DM. Development and genetics of red coloration in the zebrafish relative Danio albolineatus. eLife 2021; 10:70253. [PMID: 34435950 PMCID: PMC8416024 DOI: 10.7554/elife.70253] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Animal pigment patterns play important roles in behavior and, in many species, red coloration serves as an honest signal of individual quality in mate choice. Among Danio fishes, some species develop erythrophores, pigment cells that contain red ketocarotenoids, whereas other species, like zebrafish (D. rerio) only have yellow xanthophores. Here, we use pearl danio (D. albolineatus) to assess the developmental origin of erythrophores and their mechanisms of differentiation. We show that erythrophores in the fin of D. albolineatus share a common progenitor with xanthophores and maintain plasticity in cell fate even after differentiation. We further identify the predominant ketocarotenoids that confer red coloration to erythrophores and use reverse genetics to pinpoint genes required for the differentiation and maintenance of these cells. Our analyses are a first step toward defining the mechanisms underlying the development of erythrophore-mediated red coloration in Danio and reveal striking parallels with the mechanism of red coloration in birds.
Collapse
Affiliation(s)
- Delai Huang
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Victor M Lewis
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Tarah N Foster
- Department of Biological Science, University of Tulsa, Tulsa, United States
| | - Matthew B Toomey
- Department of Biological Science, University of Tulsa, Tulsa, United States.,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, United States.,Department of Cell Biology, University of Virginia, Charlottesville, United States
| |
Collapse
|
28
|
Kakioka R, Sutra N, Kobayashi H, Ansai S, Masengi KWA, Nagano AJ, Okuda N, Tanaka R, Sato M, Yamahira K. Resource partitioning is not coupled with assortative mating in sympatrically divergent ricefish in a Wallacean ancient lake. J Evol Biol 2021; 34:1133-1143. [PMID: 34077583 DOI: 10.1111/jeb.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/07/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022]
Abstract
Sympatric speciation is considered to be difficult without the coupling between ecological traits that allow resource partitioning and reproductive traits that allow assortative mating. Such "magic traits" are known to be involved in most of the compelling examples of sympatric speciation. In this study, we report a possible case of sympatric speciation without magic traits. Three species of ricefish (genus Oryzias) are suggested to have diverged sympatrically within Lake Poso, an ancient lake in Sulawesi. An analysis of genome-wide single-nucleotide polymorphisms showed that these three species are reproductively isolated from each other throughout the lake. Stable isotope analyses revealed that the three species use different food resources, which reflect differences in their feeding morphologies (gill rakers and digestive tracts) and feeding sites. Field and laboratory observations showed that O. nebulosus and O. orthognathus share a mating habitat of cobbles, where they scatter fertilized eggs, whereas this site is never used by O. nigrimas, indicating that assortative mating is partly achieved by spatial isolation. The small, less-adhesive eggs of O. nebulosus and O. orthognathus probably reflect their adaptation to spawning on cobble beaches. Laboratory mating experiments showed strong prezygotic isolation between O. nebulosus and O. orthognathus, which is achieved by strong species recognition presumably by both sexes based on species-specific mating dances and nuptial coloration. In summary, the assortative mating of O. nebulosus and O. orthognathus is probably not coupled to resource partitioning. We discussed how sympatric speciation among these species might have been achieved even without magic traits.
Collapse
Affiliation(s)
- Ryo Kakioka
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Nobu Sutra
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Hirozumi Kobayashi
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | - Noboru Okuda
- Center for Ecological Research, Kyoto University, Shiga, Japan
| | - Rieko Tanaka
- World Medaka Aquarium, Nagoya Higashiyama Zoo and Botanical Gardens, Nagoya, Japan
| | - Masahiro Sato
- World Medaka Aquarium, Nagoya Higashiyama Zoo and Botanical Gardens, Nagoya, Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
29
|
Horoiwa M, Mandagi IF, Sutra N, Montenegro J, Tantu FY, Masengi KWA, Nagano AJ, Kusumi J, Yasuda N, Yamahira K. Mitochondrial introgression by ancient admixture between two distant lacustrine fishes in Sulawesi Island. PLoS One 2021; 16:e0245316. [PMID: 34111145 PMCID: PMC8192020 DOI: 10.1371/journal.pone.0245316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Sulawesi, an island located in a biogeographical transition zone between Indomalaya and Australasia, is famous for its high levels of endemism. Ricefishes (family Adrianichthyidae) are an example of taxa that have uniquely diversified on this island. It was demonstrated that habitat fragmentation due to the Pliocene juxtaposition among tectonic subdivisions of this island was the primary factor that promoted their divergence; however, it is also equally probable that habitat fusions and resultant admixtures between phylogenetically distant species may have frequently occurred. Previous studies revealed that some individuals of Oryzias sarasinorum endemic to a tectonic lake in central Sulawesi have mitochondrial haplotypes that are similar to the haplotypes of O. eversi, which is a phylogenetically related but geologically distant (ca. 190 km apart) adrianichthyid endemic to a small fountain. In this study, we tested if this reflects ancient admixture of O. eversi and O. sarasinorum. Population genomic analyses of genome-wide single-nucleotide polymorphisms revealed that O. eversi and O. sarasinorum are substantially reproductively isolated from each other. Comparison of demographic models revealed that the models assuming ancient admixture from O. eversi to O. sarasinorum was more supported than the models assuming no admixture; this supported the idea that the O. eversi-like mitochondrial haplotype in O. sarasinorum was introgressed from O. eversi. This study is the first to demonstrate ancient admixture of lacustrine or pond organisms in Sulawesi beyond 100 km. The complex geological history of this island enabled such island-wide admixture of lacustrine organisms, which usually experience limited migration.
Collapse
Affiliation(s)
- Mizuki Horoiwa
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Ixchel F. Mandagi
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado, Indonesia
| | - Nobu Sutra
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
- Graduate School of Hasanuddin University, Makassar, Indonesia
| | - Javier Montenegro
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Fadly Y. Tantu
- Faculty of Animal Husbandry and Fisheries, Tadulako University, Palu, Indonesia
| | | | | | - Junko Kusumi
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Nina Yasuda
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
30
|
Audira G, Siregar P, Chen KHC, Roldan MJM, Huang JC, Lai HT, Hsiao CD. Interspecies Behavioral Variability of Medaka Fish Assessed by Comparative Phenomics. Int J Mol Sci 2021; 22:ijms22115686. [PMID: 34073632 PMCID: PMC8197923 DOI: 10.3390/ijms22115686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, medaka has been used as a model organism in various research fields. However, even though it possesses several advantages over zebrafish, fewer studies were done in medaka compared to zebrafish, especially with regard to its behavior. Thus, to provide more information regarding its behavior and to demonstrate the behavioral differences between several species of medaka, we compared the behavioral performance and biomarker expression in the brain between four medaka fishes, Oryzias latipes, Oryzias dancena, Oryzias woworae, and Oryzias sinensis. We found that each medaka species explicitly exhibited different behaviors to each other, which might be related to the different basal levels of several biomarkers. Furthermore, by phenomics and genomic-based clustering, the differences between these medaka fishes were further investigated. Here, the phenomic-based clustering was based on the behavior results, while the genomic-based clustering was based on the sequence of the nd2 gene. As we expected, both clusterings showed some resemblances to each other in terms of the interspecies relationship between medaka and zebrafish. However, this similarity was not displayed by both clusterings in the medaka interspecies comparisons. Therefore, these results suggest a re-interpretation of several prior studies in comparative biology. We hope that these results contribute to the growing database of medaka fish phenotypes and provide one of the foundations for future phenomics studies of medaka fish.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Petrus Siregar
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Kelvin H.-C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
| | - Marri Jmelou M. Roldan
- Faculty of Pharmacy and The Graduate School, University of Santo Tomas, Manila 1008, Philippines;
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
- Correspondence: (J.-C.H.); (H.-T.L.); (C.-D.H.)
| | - Hong-Thih Lai
- Department of Aquatic Biosciences, National Chiayi University, 300 University Rd., Chiayi 600, Taiwan
- Correspondence: (J.-C.H.); (H.-T.L.); (C.-D.H.)
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Correspondence: (J.-C.H.); (H.-T.L.); (C.-D.H.)
| |
Collapse
|