1
|
Fischer F, Schliehe-Diecks J, Tu JW, Gangnus T, Ho YL, Hebeis M, Alves Avelar LA, Scharov K, Watrin T, Kemkes M, Stachura P, Daugs K, Biermann L, Kremeyer J, Horstick N, Span I, Pandyra AA, Borkhardt A, Gohlke H, Kassack MU, Burckhardt BB, Bhatia S, Kurz T. Deciphering the Therapeutic Potential of Novel Pentyloxyamide-Based Class I, IIb HDAC Inhibitors against Therapy-Resistant Leukemia. J Med Chem 2024; 67:21223-21250. [PMID: 39602240 DOI: 10.1021/acs.jmedchem.4c02024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Histone deacetylase inhibitors (HDACi) are established anticancer drugs, especially in hematological cancers. This study aimed to design, synthesize, and evaluate a set of HDACi featuring a pentyloxyamide connecting unit linker region and substituted phenylthiazole cap groups. A structural optimization program yielded HDACi with nanomolar inhibitory activity against histone deacetylase class I/IIb enzymes. The novel inhibitors (4d and 4m) showed superior antileukemic activity compared to several approved HDACi. Furthermore, 4d and 4m displayed synergistic activity when combined with chemotherapeutics, decitabine, and clofarabine. In vitro pharmacokinetic studies showed the most promising profile for 4d with intermediate microsomal stability, excellent plasma stability, and concentration-independent plasma protein binding. Additionally, 4d demonstrated comparable in vivo pharmacokinetics to vorinostat. When administered in vivo, 4d effectively inhibited the proliferation of leukemia cells without causing toxicity. Furthermore, the binding modes of 4d and 4m to the catalytic domain 2 of HDAC6 from Danio rerio were determined by X-ray crystallography.
Collapse
Affiliation(s)
- Fabian Fischer
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jia-Wey Tu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Tanja Gangnus
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, 48149 Münster, Germany
| | - Yu Lin Ho
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Mara Hebeis
- Bioinorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Leandro A Alves Avelar
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Katerina Scharov
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Titus Watrin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Marie Kemkes
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Pawel Stachura
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Katharina Daugs
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lukas Biermann
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Josefa Kremeyer
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nadine Horstick
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ingrid Span
- Bioinorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Aleksandra A Pandyra
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Bjoern B Burckhardt
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, 48149 Münster, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Ankill J, Zhao Z, Tekpli X, Kure EH, Kristensen VN, Mathelier A, Fleischer T. Integrative pan-cancer analysis reveals a common architecture of dysregulated transcriptional networks characterized by loss of enhancer methylation. PLoS Comput Biol 2024; 20:e1012565. [PMID: 39556603 DOI: 10.1371/journal.pcbi.1012565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Aberrant DNA methylation contributes to gene expression deregulation in cancer. However, these alterations' precise regulatory role and clinical implications are still not fully understood. In this study, we performed expression-methylation Quantitative Trait Loci (emQTL) analysis to identify deregulated cancer-driving transcriptional networks linked to CpG demethylation pan-cancer. By analyzing 33 cancer types from The Cancer Genome Atlas, we identified and confirmed significant correlations between CpG methylation and gene expression (emQTL) in cis and trans, both across and within cancer types. Bipartite network analysis of the emQTL revealed groups of CpGs and genes related to important biological processes involved in carcinogenesis including proliferation, metabolism and hormone-signaling. These bipartite communities were characterized by loss of enhancer methylation in specific transcription factor binding regions (TFBRs) and the CpGs were topologically linked to upregulated genes through chromatin loops. Penalized Cox regression analysis showed a significant prognostic impact of the pan-cancer emQTL in many cancer types. Taken together, our integrative pan-cancer analysis reveals a common architecture where hallmark cancer-driving functions are affected by the loss of enhancer methylation and may be epigenetically regulated.
Collapse
Affiliation(s)
- Jørgen Ankill
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Zhi Zhao
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xavier Tekpli
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Elin H Kure
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Anthony Mathelier
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Norway, Oslo, Norway
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Kobayashi Y, Bustos MA, Hayashi Y, Yu Q, Hoon D. Interferon-induced factor 16 is essential in metastatic melanoma to maintain STING levels and the immune responses upon IFN-γ response pathway activation. J Immunother Cancer 2024; 12:e009590. [PMID: 39424359 PMCID: PMC11492949 DOI: 10.1136/jitc-2024-009590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitor (ICIs)-based therapies are the standard of care treatment for patients with metastatic melanoma (MM). The stimulator of interferon genes (STING) signaling pathway is critical in controlling immune responses to ICIs. Interferon (IFN)-γ-inducible protein 16 (IFI16) is a cytosolic DNA sensor that activates the STING signaling pathway. The link between IFI16 and STING signaling pathway on IFN-γ stimulation and the connection to ICIs response remains not completely understood. METHODS Deconvolution analyses were performed using the TCGA-SKCM, GSE91061, and PRJEB23709 public RNA sequencing (RNA-seq) data sets that contained RNA-seq for patients with MM. Functional assays combined with cytokine arrays were performed using MM cell lines to validate in silico data. Multiplex immunofluorescence was performed on untreated or pretreatment tumor samples from patients with MM. RESULTS Deconvolution analysis showed that high-IFI16 levels in melanoma cells were associated with a good prognosis in patients with MM and positively correlated with M1-macrophage infiltration. Functional assays using MM cell lines demonstrated that IFI16 is a key molecule to sense cytosolic DNA and activate STING and nuclear factor kappa B (NF-κB) signaling pathways, independent of cyclic GMP-AMP synthase or absent in melanoma 2, on IFN-γ stimulation. IFI16 knockdown significantly decreased CXCL10 and ICAM1 secretion. EZH2 inhibitor reversed the repressive epigenetic control on IFI16 to promote STING and NF-κB signaling pathways on IFN-γ stimulation. Increased IFI16, ICAM1, and CXCL10 levels in tumor samples from patients with MM were positively correlated with M1-macrophage infiltration and a significantly better response to ICIs. CONCLUSIONS This study identifies IFI16 as a key sensor during IFN-γ stimulation associated with ICI response, and it proposes the epigenetic EZH2 inhibitor as an alternative treatment strategy to overcome ICI resistance in patients with MM.
Collapse
Affiliation(s)
- Yuta Kobayashi
- Dept. of Translational Molecular Medicine, Saint John's Cancer Institute, Santa Monica, California, USA
| | - Matias A Bustos
- Dept. of Translational Molecular Medicine, Saint John's Cancer Institute, Santa Monica, California, USA
| | - Yoshinori Hayashi
- Dept. of Translational Molecular Medicine, Saint John's Cancer Institute, Santa Monica, California, USA
| | - Qiang Yu
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore
| | - Dave Hoon
- Dept. of Translational Molecular Medicine, Saint John's Cancer Institute, Santa Monica, California, USA
| |
Collapse
|
4
|
Tae IH, Lee J, Kang Y, Lee JM, Park K, Yang H, Kim HW, Ko JH, Park DS, Kim DS, Son MY, Cho HS. Induction of Cell Death by Bifidobacterium infantis DS1685 in Colorectal and Breast Cancers via SMAD4/TGF-Beta Activation. J Microbiol Biotechnol 2024; 34:1698-1704. [PMID: 39113194 PMCID: PMC11380517 DOI: 10.4014/jmb.2404.04055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 08/29/2024]
Abstract
Therapeutic advancements in treatments for cancer, a leading cause of mortality worldwide, have lagged behind the increasing incidence of this disease. There is a growing interest in multifaceted approaches for cancer treatment, such as chemotherapy, targeted therapy, and immunotherapy, but due to their low efficacy and severe side effects, there is a need for the development of new cancer therapies. Recently, the human microbiome, which is comprised of various microorganisms, has emerged as an important research field due to its potential impact on cancer treatment. Among these microorganisms, Bifidobacterium infantis has been shown to significantly improve the efficacy of various anticancer drugs. However, research on the role of B. infantis in cancer treatment remains insufficient. Thus, in this study, we explored the anticancer effect of treatment with B. infantis DS1685 supernatant (BI sup) in colorectal and breast cancer cell lines. Treatment with BI sup induced SMAD4 expression to suppress cell growth in colon and breast cancer cells. Furthermore, a decrease in tumor cohesion was observed through the disruption of the regulation of EMT-related genes by BI sup in 3D spheroid models. Based on these findings, we anticipate that BI sup could play an adjunctive role in cancer therapy, and future cotreatment of BI sup with various anticancer drugs may lead to synergistic effects in cancer treatment.
Collapse
Affiliation(s)
- In Hwan Tae
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jinkwon Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Korea University of Science and Technology, Daejeon 34316, Republic of Korea
| | - Yunsang Kang
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Korea University of Science and Technology, Daejeon 34316, Republic of Korea
| | - Jeong Min Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Korea University of Science and Technology, Daejeon 34316, Republic of Korea
| | - Kunhyang Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Haneol Yang
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hee-Won Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Korea University of Science and Technology, Daejeon 34316, Republic of Korea
| | - Jeong Heon Ko
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Korea University of Science and Technology, Daejeon 34316, Republic of Korea
| | - Doo-Sang Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Korea University of Science and Technology, Daejeon 34316, Republic of Korea
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Korea University of Science and Technology, Daejeon 34316, Republic of Korea
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Korea University of Science and Technology, Daejeon 34316, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Korea University of Science and Technology, Daejeon 34316, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Li J, Huang K, McBride F, Sadagopan A, Gallant DS, Thakur M, Khanna P, Li B, Ge M, Weiss CN, Achom M, Xu Q, Huang K, Ryback BA, Gui M, Bar-Peled L, Viswanathan SR. TFE3 fusions direct an oncogenic transcriptional program that drives OXPHOS and unveils vulnerabilities in translocation renal cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607311. [PMID: 39149323 PMCID: PMC11326252 DOI: 10.1101/2024.08.09.607311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Translocation renal cell carcinoma (tRCC) is an aggressive subtype of kidney cancer driven by TFE3 gene fusions, which act via poorly characterized downstream mechanisms. Here we report that TFE3 fusions transcriptionally rewire tRCCs toward oxidative phosphorylation (OXPHOS), contrasting with the highly glycolytic metabolism of most other renal cancers. This TFE3 fusion-driven OXPHOS program, together with heightened glutathione levels found in renal cancers, renders tRCCs sensitive to reductive stress - a metabolic stress state induced by an imbalance of reducing equivalents. Genome-scale CRISPR screening identifies tRCC-selective vulnerabilities linked to this metabolic state, including EGLN1, which hydroxylates HIF-1α and targets it for proteolysis. Inhibition of EGLN1 compromises tRCC cell growth by stabilizing HIF-1a and promoting metabolic reprogramming away from OXPHOS, thus representing a vulnerability to OXPHOS-dependent tRCC cells. Our study defines a distinctive tRCC-essential metabolic program driven by TFE3 fusions and nominates EGLN1 inhibition as a therapeutic strategy to counteract fusion-induced metabolic rewiring.
Collapse
Affiliation(s)
- Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Kaimeng Huang
- Department of Medicine, Harvard Medical School; Boston, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fiona McBride
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Daniel. S Gallant
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Meha Thakur
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Prateek Khanna
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Bingchen Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Maolin Ge
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Cary N. Weiss
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mingkee Achom
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Qingru Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Kun Huang
- Molecular Imaging Core and Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Birgitta A. Ryback
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Miao Gui
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, Zhejiang, China; Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Liron Bar-Peled
- Department of Medicine, Harvard Medical School; Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Srinivas R. Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA, USA
| |
Collapse
|
6
|
Kiri S, Ryba T. Cancer, metastasis, and the epigenome. Mol Cancer 2024; 23:154. [PMID: 39095874 PMCID: PMC11295362 DOI: 10.1186/s12943-024-02069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Cancer is the second leading cause of death worldwide and disease burden is expected to increase globally throughout the next several decades, with the majority of cancer-related deaths occurring in metastatic disease. Cancers exhibit known hallmarks that endow them with increased survival and proliferative capacities, frequently as a result of de-stabilizing mutations. However, the genomic features that resolve metastatic clones from primary tumors are not yet well-characterized, as no mutational landscape has been identified as predictive of metastasis. Further, many cancers exhibit no known mutation signature. This suggests a larger role for non-mutational genome re-organization in promoting cancer evolution and dissemination. In this review, we highlight current critical needs for understanding cell state transitions and clonal selection advantages for metastatic cancer cells. We examine links between epigenetic states, genome structure, and misregulation of tumor suppressors and oncogenes, and discuss how recent technologies for understanding domain-scale regulation have been leveraged for a more complete picture of oncogenic and metastatic potential.
Collapse
Affiliation(s)
- Saurav Kiri
- College of Medicine, University of Central Florida, 6850 Lake Nona Blvd., Orlando, 32827, Florida, USA.
| | - Tyrone Ryba
- Department of Natural Sciences, New College of Florida, 5800 Bay Shore Rd., Sarasota, 34243, Florida, USA.
| |
Collapse
|
7
|
Wang G, Zou X, Chen Q, Nong W, Miao W, Luo H, Qu S. The relationship and clinical significance of lactylation modification in digestive system tumors. Cancer Cell Int 2024; 24:246. [PMID: 39010066 PMCID: PMC11251390 DOI: 10.1186/s12935-024-03429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
Lactylation, an emerging post-translational modification, plays a pivotal role in the initiation and progression of digestive system tumors. This study presents a comprehensive review of lactylation in digestive system tumors, underscoring its critical involvement in tumor development and progression. By focusing on metabolic reprogramming, modulation of the tumor microenvironment, and the molecular mechanisms regulating tumor progression, the potential of targeting lactylation as a therapeutic strategy is highlighted. The research reveals that lactylation participates in gene expression regulation and cell signaling by affecting the post-translational states of histones and non-histone proteins, thereby influencing metabolic pathways and immune evasion mechanisms in tumor cells. Furthermore, this study assesses the feasibility of lactylation as a therapeutic target, providing insights for clinical treatment of gastrointestinal cancers. Future research should concentrate on elucidating the mechanisms of lactylation, developing efficient lactylation inhibitors, and validating their therapeutic efficacy in clinical trials, which could transform current cancer treatment and immunotherapy approaches. In summary, this review emphasizes the crucial role of lactylation in tumorigenesis and progression through a detailed analysis of its molecular mechanisms and clinical significance.
Collapse
Affiliation(s)
- Gang Wang
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Xiaosu Zou
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Qicong Chen
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Wenqian Nong
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Weiwei Miao
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Honglin Luo
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China.
| | - Shenhong Qu
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China.
- Department of Otolaryngology & Head and Neck, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| |
Collapse
|
8
|
Li F, Xu B, Lu Z, Chen J, Fu Y, Huang J, Wang Y, Li X. Hollow CoFe Nanozymes Integrated with Oncolytic Peptides Designed via Machine-Learning for Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311101. [PMID: 38234132 DOI: 10.1002/smll.202311101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Indexed: 01/19/2024]
Abstract
Developing novel substances to synergize with nanozymes is a challenging yet indispensable task to enable the nanozyme-based therapeutics to tackle individual variations in tumor physicochemical properties. The advancement of machine learning (ML) has provided a useful tool to enhance the accuracy and efficiency in developing synergistic substances. In this study, ML models to mine low-cytotoxicity oncolytic peptides are applied. The filtering Pipeline is constructed using a traversal design and the Autogluon framework. Through the Pipeline, 37 novel peptides with high oncolytic activity against cancer cells and low cytotoxicity to normal cells are identified from a library of 25,740 sequences. Combining dataset testing with cytotoxicity experiments, an 80% accuracy rate is achieved, verifying the reliability of ML predictions. Peptide C2 is proven to possess membranolytic functions specifically for tumor cells as targeted by Pipeline. Then Peptide C2 with CoFe hollow hydroxide nanozyme (H-CF) to form the peptide/H-CF composite is integrated. The new composite exhibited acid-triggered membranolytic function and potent peroxidase-like (POD-like) activity, which induce ferroptosis to tumor cells and inhibits tumor growth. The study suggests that this novel ML-assisted design approach can offer an accurate and efficient paradigm for developing both oncolytic peptides and synergistic peptides for catalytic materials.
Collapse
Affiliation(s)
- Feiyu Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Bocheng Xu
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Zijie Lu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jiafei Chen
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, 310000, China
| | - Yike Fu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jie Huang
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Yizhen Wang
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiang Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 311215, China
| |
Collapse
|
9
|
Kidder BL. Decoding the universal human chromatin landscape through teratoma-based profiling. Nucleic Acids Res 2024; 52:3589-3606. [PMID: 38281248 PMCID: PMC11039989 DOI: 10.1093/nar/gkae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Teratoma formation is key for evaluating differentiation of human pluripotent stem cells into embryonic germ layers and serves as a model for understanding stem cell differentiation and developmental processes. Its potential for insights into epigenome and transcriptome profiling is significant. This study integrates the analysis of the epigenome and transcriptome of hESC-generated teratomas, comparing transcriptomes between hESCs and teratomas. It employs cell type-specific expression patterns from single-cell data to deconvolve RNA-Seq data and identify cell types within teratomas. Our results provide a catalog of activating and repressive histone modifications, while also elucidating distinctive features of chromatin states. Construction of an epigenetic signature matrix enabled the quantification of diverse cell populations in teratomas and enhanced the ability to unravel the epigenetic landscape in heterogeneous tissue contexts. This study also includes a single cell multiome atlas of expression (scRNA-Seq) and chromatin accessibility (scATAC-Seq) of human teratomas, further revealing the complexity of these tissues. A histology-based digital staining tool further complemented the annotation of cell types in teratomas, enhancing our understanding of their cellular composition. This research is a valuable resource for examining teratoma epigenomic and transcriptomic landscapes and serves as a model for epigenetic data comparison.
Collapse
Affiliation(s)
- Benjamin L Kidder
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
10
|
Wang Y, Calvert AE, Cardenas H, Rink JS, Nahotko D, Qiang W, Ndukwe CE, Chen F, Keathley R, Zhang Y, Cheng J, Thaxton CS, Matei D. Nanoparticle Targeting in Chemo-Resistant Ovarian Cancer Reveals Dual Axis of Therapeutic Vulnerability Involving Cholesterol Uptake and Cell Redox Balance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305212. [PMID: 38263873 PMCID: PMC10987123 DOI: 10.1002/advs.202305212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/18/2023] [Indexed: 01/25/2024]
Abstract
Platinum (Pt)-based chemotherapy is the main treatment for ovarian cancer (OC); however, most patients develop Pt resistance (Pt-R). This work shows that Pt-R OC cells increase intracellular cholesterol through uptake via the HDL receptor, scavenger receptor type B-1 (SR-B1). SR-B1 blockade using synthetic cholesterol-poor HDL-like nanoparticles (HDL NPs) diminished cholesterol uptake leading to cell death and inhibition of tumor growth. Reduced cholesterol accumulation in cancer cells induces lipid oxidative stress through the reduction of glutathione peroxidase 4 (GPx4) leading to ferroptosis. In turn, GPx4 depletion induces decreased cholesterol uptake through SR-B1 and re-sensitizes OC cells to Pt. Mechanistically, GPx4 knockdown causes lower expression of the histone acetyltransferase EP300, leading to reduced deposition of histone H3 lysine 27 acetylation (H3K27Ac) on the sterol regulatory element binding transcription factor 2 (SREBF2) promoter and suppressing expression of this key transcription factor involved in the regulation of cholesterol metabolism. SREBF2 downregulation leads to decreased SR-B1 expression and diminished cholesterol uptake. Thus, chemoresistance and cancer cell survival under high ROS burden obligates high GPx4 and SR-B1 expression through SREBF2. Targeting SR-B1 to modulate cholesterol uptake inhibits this axis and causes ferroptosis in vitro and in vivo in Pt-R OC.
Collapse
Affiliation(s)
- Yinu Wang
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Andrea E. Calvert
- Simpson Querrey Institute for BioNanotechnologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Horacio Cardenas
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Jonathon S. Rink
- Division of Hematology/ OncologyDepartment of MedicineFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Dominik Nahotko
- Division of Hematology/ OncologyDepartment of MedicineFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Wenan Qiang
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Center for Developmental Therapeutics,Feinberg School of MedicineNorthwestern UniversityEvanstonIL60208USA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityChicagoIL60611USA
| | - C. Estelle Ndukwe
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Fukai Chen
- Department of PhysicsBoston UniversityBostonMA02215USA
| | - Russell Keathley
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Yaqi Zhang
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Ji‐Xin Cheng
- Department of PhysicsBoston UniversityBostonMA02215USA
| | - C. Shad Thaxton
- Simpson Querrey Institute for BioNanotechnologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityChicagoIL60611USA
- Department of UrologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Daniela Matei
- Department of Obstetrics and GynecologyFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityChicagoIL60611USA
- Jesse Brown Veteran Affairs Medical CenterChicagoIL60612USA
| |
Collapse
|
11
|
Wang Y, Situ X, Cardenas H, Siu E, Alhunayan SA, Keathley R, Tanner E, Wei JJ, Tan Y, Dessai CVP, Cheng JX, Matei D. Preclinical Evaluation of NTX-301, a Novel DNA Hypomethylating Agent in Ovarian Cancer. Clin Cancer Res 2024; 30:1175-1188. [PMID: 38231483 PMCID: PMC10947827 DOI: 10.1158/1078-0432.ccr-23-2368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/27/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
PURPOSE DNA methylation causes silencing of tumor-suppressor and differentiation-associated genes, being linked to chemoresistance. Previous studies demonstrated that hypomethylating agents (HMA) resensitize ovarian cancer to chemotherapy. NTX-301 is a highly potent and orally bioavailable HMA, in early clinical development. EXPERIMENTAL DESIGN The antitumor effects of NTX-301 were studied in ovarian cancer models by using cell viability, stemness and ferroptosis assays, RNA sequencing, lipidomic analyses, and stimulated Raman spectroscopy. RESULTS Ovarian cancer cells (SKOV3, IC50 = 5.08 nmol/L; OVCAR5 IC50 = 3.66 nmol/L) were highly sensitive to NTX-301 compared with fallopian tube epithelial cells. NTX-301 downregulated expression of DNA methyltransferases 1-3 and induced transcriptomic reprogramming with 15,000 differentially expressed genes (DEG, P < 0.05). Among them, Gene Ontology enrichment analysis identified regulation of fatty acid biosynthesis and molecular functions related to aldehyde dehydrogenase (ALDH) and oxidoreductase, known features of cancer stem cells. Low-dose NTX-301 reduced the ALDH(+) cell population and expression of stemness-associated transcription factors. Stearoyl-coenzyme A desaturase 1 (SCD), which regulates production of unsaturated fatty acids (UFA), was among the top DEG downregulated by NTX-301. NTX-301 treatment decreased levels of UFA and increased oxidized lipids, and this was blunted by deferoxamine, indicating cell death via ferroptosis. NTX-301-induced ferroptosis was rescued by oleic acid. In vivo, monotherapy with NTX-301 significantly inhibited ovarian cancer and patient-derived xenograft growth (P < 0.05). Decreased SCD levels and increased oxidized lipids were detected in NTX-301-treated xenografts. CONCLUSIONS NTX-301 is active in ovarian cancer models. Our findings point to a new mechanism by which epigenetic blockade disrupts lipid homeostasis and promotes cancer cell death.
Collapse
Affiliation(s)
- Yinu Wang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Xiaolei Situ
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Horacio Cardenas
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ellie Siu
- Department of Biological Sciences, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL
| | | | - Russell Keathley
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, IL
| | - Edward Tanner
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jian-Jun Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Yuying Tan
- Department of Physics, Boston University, Boston, MA
| | | | - Ji-Xin Cheng
- Department of Physics, Boston University, Boston, MA
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Jesse Brown Veteran Affairs Medical Center, Chicago, IL
| |
Collapse
|
12
|
Cocuz IG, Popelea MC, Niculescu R, Manea A, Sabău AH, Tinca AC, Szoke AR, Budin CE, Stoian A, Morariu SH, Cotoi TC, Cocuz ME, Cotoi OS. Pathophysiology, Histopathology, and Differential Diagnostics of Basal Cell Carcinoma and Cutaneous Squamous Cell Carcinoma-An Update from the Pathologist's Point of View. Int J Mol Sci 2024; 25:2220. [PMID: 38396897 PMCID: PMC10888641 DOI: 10.3390/ijms25042220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) are the most frequently occurring non-melanocytic skin cancers. The objective of our study is to present the pathophysiology of BCC and cSCC and its direct relationship with the histopathological diagnostics and the differential diagnostics of these types of cancer, based on the morphological characteristics, immunohistochemical profile, and genetic alterations. The qualitative study was based on emphasizing the morphological characteristics and immunohistochemistry profiles of BCC and cSCC and the differential diagnostics based on the tissue samples from the Clinical Pathology Department of Mures Clinical County Hospital between 2020 and 2022. We analyzed the histopathological appearances and immunohistochemical profiles of BCC and cSCC in comparison with those of Bowen disease, keratoacanthoma, hyperkeratotic squamous papilloma, metatypical carcinoma, pilomatricoma, trichoblastoma, Merkel cell carcinoma, pleomorphic dermal sarcoma (PDS), and melanoma. Our study showed the importance of the correct histopathological diagnosis, which has a direct impact on the appropriate treatment and outcome for each patient. The study highlighted the histopathological and morphological characteristics of NMSCs and the precursor lesions in HE and the immunohistochemical profile for lesions that may make the differential diagnosis difficult to establish.
Collapse
Affiliation(s)
- Iuliu Gabriel Cocuz
- Pathophysiology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.G.C.); (R.N.); (A.-H.S.); (A.-C.T.); (A.R.S.); (C.E.B.); (A.S.); (O.S.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | | | - Raluca Niculescu
- Pathophysiology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.G.C.); (R.N.); (A.-H.S.); (A.-C.T.); (A.R.S.); (C.E.B.); (A.S.); (O.S.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Andrei Manea
- Faculty of Medicine, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Adrian-Horațiu Sabău
- Pathophysiology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.G.C.); (R.N.); (A.-H.S.); (A.-C.T.); (A.R.S.); (C.E.B.); (A.S.); (O.S.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Andreea-Cătălina Tinca
- Pathophysiology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.G.C.); (R.N.); (A.-H.S.); (A.-C.T.); (A.R.S.); (C.E.B.); (A.S.); (O.S.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Andreea Raluca Szoke
- Pathophysiology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.G.C.); (R.N.); (A.-H.S.); (A.-C.T.); (A.R.S.); (C.E.B.); (A.S.); (O.S.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Corina Eugenia Budin
- Pathophysiology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.G.C.); (R.N.); (A.-H.S.); (A.-C.T.); (A.R.S.); (C.E.B.); (A.S.); (O.S.C.)
- Pneumology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Adina Stoian
- Pathophysiology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.G.C.); (R.N.); (A.-H.S.); (A.-C.T.); (A.R.S.); (C.E.B.); (A.S.); (O.S.C.)
- Neurology I Clinic, Targu Mures Emergency County Hospital, 540136 Targu Mures, Romania
| | - Silviu Horia Morariu
- Dermatology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Dermatology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Titiana Cornelia Cotoi
- Pharmaceutical Technique Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Pharmacy No. 2, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Maria-Elena Cocuz
- Fundamental Prophylactic and Clinical Disciplines Department, Faculty of Medicine, Transilvania University of Brasov, 500003 Brașov, Romania;
- Clinical Pneumology and Infectious Diseases Hospital of Brasov, 500174 Brasov, Romania
| | - Ovidiu Simion Cotoi
- Pathophysiology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.G.C.); (R.N.); (A.-H.S.); (A.-C.T.); (A.R.S.); (C.E.B.); (A.S.); (O.S.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| |
Collapse
|
13
|
Liu X, Gillis N, Jiang C, McCofie A, Shaw TI, Tan AC, Zhao B, Wan L, Duckett DR, Teng M. An Epigenomic fingerprint of human cancers by landscape interrogation of super enhancers at the constituent level. PLoS Comput Biol 2024; 20:e1011873. [PMID: 38335222 PMCID: PMC10883583 DOI: 10.1371/journal.pcbi.1011873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/22/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Super enhancers (SE), large genomic elements that activate transcription and drive cell identity, have been found with cancer-specific gene regulation in human cancers. Recent studies reported the importance of understanding the cooperation and function of SE internal components, i.e., the constituent enhancers (CE). However, there are no pan-cancer studies to identify cancer-specific SE signatures at the constituent level. Here, by revisiting pan-cancer SE activities with H3K27Ac ChIP-seq datasets, we report fingerprint SE signatures for 28 cancer types in the NCI-60 cell panel. We implement a mixture model to discriminate active CEs from inactive CEs by taking into consideration ChIP-seq variabilities between cancer samples and across CEs. We demonstrate that the model-based estimation of CE states provides improved functional interpretation of SE-associated regulation. We identify cancer-specific CEs by balancing their active prevalence with their capability of encoding cancer type identities. We further demonstrate that cancer-specific CEs have the strongest per-base enhancer activities in independent enhancer sequencing assays, suggesting their importance in understanding critical SE signatures. We summarize fingerprint SEs based on the cancer-specific statuses of their component CEs and build an easy-to-use R package to facilitate the query, exploration, and visualization of fingerprint SEs across cancers.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Nancy Gillis
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Chang Jiang
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Anthony McCofie
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Aik-Choon Tan
- Department of Oncological Sciences, Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah, United States of America
| | - Bo Zhao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lixin Wan
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Derek R Duckett
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| |
Collapse
|
14
|
Xu Q, del Mundo IMA, Zewail-Foote M, Luke BT, Vasquez KM, Kowalski J. MoCoLo: a testing framework for motif co-localization. Brief Bioinform 2024; 25:bbae019. [PMID: 38521050 PMCID: PMC10960634 DOI: 10.1093/bib/bbae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/25/2024] Open
Abstract
Sequence-level data offers insights into biological processes through the interaction of two or more genomic features from the same or different molecular data types. Within motifs, this interaction is often explored via the co-occurrence of feature genomic tracks using fixed-segments or analytical tests that respectively require window size determination and risk of false positives from over-simplified models. Moreover, methods for robustly examining the co-localization of genomic features, and thereby understanding their spatial interaction, have been elusive. We present a new analytical method for examining feature interaction by introducing the notion of reciprocal co-occurrence, define statistics to estimate it and hypotheses to test for it. Our approach leverages conditional motif co-occurrence events between features to infer their co-localization. Using reverse conditional probabilities and introducing a novel simulation approach that retains motif properties (e.g. length, guanine-content), our method further accounts for potential confounders in testing. As a proof-of-concept, motif co-localization (MoCoLo) confirmed the co-occurrence of histone markers in a breast cancer cell line. As a novel analysis, MoCoLo identified significant co-localization of oxidative DNA damage within non-B DNA-forming regions that significantly differed between non-B DNA structures. Altogether, these findings demonstrate the potential utility of MoCoLo for testing spatial interactions between genomic features via their co-localization.
Collapse
Affiliation(s)
- Qi Xu
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Imee M A del Mundo
- Dell Pediatric Research Institute, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, 78723, USA
| | - Maha Zewail-Foote
- Department of Chemistry and Biochemistry, Southwestern University, Georgetown, TX, 78626, USA
| | - Brian T Luke
- Bioinformatics and Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21701, USA
| | - Karen M Vasquez
- Dell Pediatric Research Institute, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, 78723, USA
| | - Jeanne Kowalski
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
15
|
Zhang Z, Shi J, Wu Q, Zhang Z, Liu X, Ren A, Zhao G, Dong G, Wu H, Zhao J, Zhao Y, Hu J, Li H, Zhang T, Zhou F, Zhu H. JUN mediates glucocorticoid resistance by stabilizing HIF1a in T cell acute lymphoblastic leukemia. iScience 2023; 26:108242. [PMID: 38026210 PMCID: PMC10661119 DOI: 10.1016/j.isci.2023.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Dexamethasone (Dex) plays a critical role in T-ALL treatment, but the mechanisms of Dex resistance are poorly understood. Here, we demonstrated that the expression of JUN was regulated in Dex-resistant T-ALL cell lines and patient samples. JUN knockdown increased the sensitivity to Dex. Moreover, the survival data showed that high expression of JUN related to poor prognosis of T-ALL patients. Then, we generated dexamethasone-resistant clones and conducted RNA-seq and ATAC-seq. We demonstrated that the upregulation of JUN was most significant and regulated by JNK pathway in Dex-resistant cells. High-throughput screening showed that HIF1α inhibitors synergized with Dex could enhance Dex resistance cells death in vitro and in vivo. Additionally, JUN combined and stabilized HIF1α in Dex resistance cells. These results reveal a new mechanism of Dex resistance in T-ALL and provide experimental evidence for the potential therapeutic benefit of targeting the JNK-JUN-HIF1α axis for T-ALL treatment.
Collapse
Affiliation(s)
- Zhijie Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiangzhou Shi
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qifang Wu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zijian Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Anqi Ren
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Guanlin Zhao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Ge Dong
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Han Wu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiaxuan Zhao
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuan Zhao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jia Hu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hui Li
- Tianyou Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430064, China
| | - Tongcun Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education & Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Haichuan Zhu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
16
|
Cheng MW, Mitra M, Coller HA. Pan-cancer landscape of epigenetic factor expression predicts tumor outcome. Commun Biol 2023; 6:1138. [PMID: 37973839 PMCID: PMC10654613 DOI: 10.1038/s42003-023-05459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023] Open
Abstract
Oncogenic pathways that drive cancer progression reflect both genetic changes and epigenetic regulation. Here we stratified primary tumors from each of 24 TCGA adult cancer types based on the gene expression patterns of epigenetic factors (epifactors). The tumors for five cancer types (ACC, KIRC, LGG, LIHC, and LUAD) separated into two robust clusters that were better than grade or epithelial-to-mesenchymal transition in predicting clinical outcomes. The majority of epifactors that drove the clustering were also individually prognostic. A pan-cancer machine learning model deploying epifactor expression data for these five cancer types successfully separated the patients into poor and better outcome groups. Single-cell analysis of adult and pediatric tumors revealed that expression patterns associated with poor or worse outcomes were present in individual cells within tumors. Our study provides an epigenetic map of cancer types and lays a foundation for discovering pan-cancer targetable epifactors.
Collapse
Affiliation(s)
- Michael W Cheng
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Mithun Mitra
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hilary A Coller
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Wang Z, Luo M, Liang Q, Zhao K, Hu Y, Wang W, Feng X, Hu B, Teng J, You T, Li R, Bao Z, Pan W, Yang T, Zhang C, Li T, Dong X, Yi X, Liu B, Zhao L, Li M, Chen K, Song W, Yang J, Li MJ. Landscape of enhancer disruption and functional screen in melanoma cells. Genome Biol 2023; 24:248. [PMID: 37904237 PMCID: PMC10614365 DOI: 10.1186/s13059-023-03087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/12/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The high mutation rate throughout the entire melanoma genome presents a major challenge in stratifying true driver events from the background mutations. Numerous recurrent non-coding alterations, such as those in enhancers, can shape tumor evolution, thereby emphasizing the importance in systematically deciphering enhancer disruptions in melanoma. RESULTS Here, we leveraged 297 melanoma whole-genome sequencing samples to prioritize highly recurrent regions. By performing a genome-scale CRISPR interference (CRISPRi) screen on highly recurrent region-associated enhancers in melanoma cells, we identified 66 significant hits which could have tumor-suppressive roles. These functional enhancers show unique mutational patterns independent of classical significantly mutated genes in melanoma. Target gene analysis for the essential enhancers reveal many known and hidden mechanisms underlying melanoma growth. Utilizing extensive functional validation experiments, we demonstrate that a super enhancer element could modulate melanoma cell proliferation by targeting MEF2A, and another distal enhancer is able to sustain PTEN tumor-suppressive potential via long-range interactions. CONCLUSIONS Our study establishes a catalogue of crucial enhancers and their target genes in melanoma growth and progression, and illuminates the identification of novel mechanisms of dysregulation for melanoma driver genes and new therapeutic targeting strategies.
Collapse
Affiliation(s)
- Zhao Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Menghan Luo
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian Liang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
- Scientific Research Center, Wenzhou Medical University, Wenzhou, China
| | - Ke Zhao
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuelin Hu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangling Feng
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bolang Hu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jianjin Teng
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tianyi You
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ran Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhengkai Bao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wenhao Pan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tielong Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Chao Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ting Li
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaobao Dong
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xianfu Yi
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ben Liu
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Li Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Miaoxin Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Jilong Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Mulin Jun Li
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
18
|
Abatti LE, Lado-Fernández P, Huynh L, Collado M, Hoffman M, Mitchell J. Epigenetic reprogramming of a distal developmental enhancer cluster drives SOX2 overexpression in breast and lung adenocarcinoma. Nucleic Acids Res 2023; 51:10109-10131. [PMID: 37738673 PMCID: PMC10602899 DOI: 10.1093/nar/gkad734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023] Open
Abstract
Enhancer reprogramming has been proposed as a key source of transcriptional dysregulation during tumorigenesis, but the molecular mechanisms underlying this process remain unclear. Here, we identify an enhancer cluster required for normal development that is aberrantly activated in breast and lung adenocarcinoma. Deletion of the SRR124-134 cluster disrupts expression of the SOX2 oncogene, dysregulates genome-wide transcription and chromatin accessibility and reduces the ability of cancer cells to form colonies in vitro. Analysis of primary tumors reveals a correlation between chromatin accessibility at this cluster and SOX2 overexpression in breast and lung cancer patients. We demonstrate that FOXA1 is an activator and NFIB is a repressor of SRR124-134 activity and SOX2 transcription in cancer cells, revealing a co-opting of the regulatory mechanisms involved in early development. Notably, we show that the conserved SRR124 and SRR134 regions are essential during mouse development, where homozygous deletion results in the lethal failure of esophageal-tracheal separation. These findings provide insights into how developmental enhancers can be reprogrammed during tumorigenesis and underscore the importance of understanding enhancer dynamics during development and disease.
Collapse
Affiliation(s)
- Luis E Abatti
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patricia Lado-Fernández
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
- Department of Physiology and Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Linh Huynh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Manuel Collado
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Michael M Hoffman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Ying P, Chen C, Lu Z, Chen S, Zhang M, Cai Y, Zhang F, Huang J, Fan L, Ning C, Li Y, Wang W, Geng H, Liu Y, Tian W, Yang Z, Liu J, Huang C, Yang X, Xu B, Li H, Zhu X, Li N, Li B, Wei Y, Zhu Y, Tian J, Miao X. Genome-wide enhancer-gene regulatory maps link causal variants to target genes underlying human cancer risk. Nat Commun 2023; 14:5958. [PMID: 37749132 PMCID: PMC10520073 DOI: 10.1038/s41467-023-41690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
Genome-wide association studies have identified numerous variants associated with human complex traits, most of which reside in the non-coding regions, but biological mechanisms remain unclear. However, assigning function to the non-coding elements is still challenging. Here we apply Activity-by-Contact (ABC) model to evaluate enhancer-gene regulation effect by integrating multi-omics data and identified 544,849 connections across 20 cancer types. ABC model outperforms previous approaches in linking regulatory variants to target genes. Furthermore, we identify over 30,000 enhancer-gene connections in colorectal cancer (CRC) tissues. By integrating large-scale population cohorts (23,813 cases and 29,973 controls) and multipronged functional assays, we demonstrate an ABC regulatory variant rs4810856 associated with CRC risk (Odds Ratio = 1.11, 95%CI = 1.05-1.16, P = 4.02 × 10-5) by acting as an allele-specific enhancer to distally facilitate PREX1, CSE1L and STAU1 expression, which synergistically activate p-AKT signaling. Our study provides comprehensive regulation maps and illuminates a single variant regulating multiple genes, providing insights into cancer etiology.
Collapse
Grants
- Distinguished Young Scholars of China (NSFC-81925032), Key Program of National Natural Science Foundation of China (NSFC-82130098), the Fundamental Research Funds for the Central Universities (2042022rc0026, 2042023kf1005),Knowledge Innovation Program of Wuhan (2023020201010060).
- Youth Program of National Natural Science Foundation of China (NSFC-82003547), Program of Health Commission of Hubei Province (WJ2023M045) and Fundamental Research Funds for the Central Universities (WHU: 2042022kf1031).
- The National Science Fund for Excellent Young Scholars (NSFC-82322058), Program of National Natural Science Foundation of China (NSFC-82103929, NSFC-82273713), Young Elite Scientists Sponsorship Program by cst(2022QNRC001), National Science Fund for Distinguished Young Scholars of Hubei Province of China (2023AFA046), Fundamental Research Funds for the Central Universities (WHU:2042022kf1205) and Knowledge Innovation Program of Wuhan (whkxjsj011, 2023020201010073).
Collapse
Affiliation(s)
- Pingting Ying
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Can Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuoni Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Fuwei Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Jinyu Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Linyun Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Caibo Ning
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yanmin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Wenzhuo Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Hui Geng
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yizhuo Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Wen Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiuyang Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Chaoqun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Heng Li
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Zhu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Ni Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yongchang Wei
- Department of Gastrointestinal Oncology, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China.
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China.
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China.
| |
Collapse
|
20
|
Hook PW, Timp W. Beyond assembly: the increasing flexibility of single-molecule sequencing technology. Nat Rev Genet 2023; 24:627-641. [PMID: 37161088 PMCID: PMC10169143 DOI: 10.1038/s41576-023-00600-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/11/2023]
Abstract
The maturation of high-throughput short-read sequencing technology over the past two decades has shaped the way genomes are studied. Recently, single-molecule, long-read sequencing has emerged as an essential tool in deciphering genome structure and function, including filling gaps in the human reference genome, measuring the epigenome and characterizing splicing variants in the transcriptome. With recent technological developments, these single-molecule technologies have moved beyond genome assembly and are being used in a variety of ways, including to selectively sequence specific loci with long reads, measure chromatin state and protein-DNA binding in order to investigate the dynamics of gene regulation, and rapidly determine copy number variation. These increasingly flexible uses of single-molecule technologies highlight a young and fast-moving part of the field that is leading to a more accessible era of nucleic acid sequencing.
Collapse
Affiliation(s)
- Paul W Hook
- Department of Biomedical Engineering, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Winston Timp
- Department of Biomedical Engineering, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
21
|
Abstract
H4K20me1 (histone H4 monomethylated at lysine 20) generally has a broad distribution along genes and has been reported to be associated with expressed and repressed genes. In contrast, H3K4me3 (histone H3 trimethylated at lysine 4) is positioned as a narrow peak at the 5' end of most expressed genes in vertebrate cells. A small population of genes involved in cell identity has H3K4me3 distributed throughout the gene body. In this report, we show that H4K20me1 is associated with expressed genes in estrogen receptor-positive breast cancer MCF7 cells and erythroleukemic K562 cells. Further, we identified the genes with the broadest H4K20me1 domains in these two cell types. The broad H4K20me1 domain marked gene bodies of expressed genes, but not the promoter or enhancer regions. The most significant GO term (biological processes) of these genes was cytoplasmic translation. There was little overlap between the genes marked with the broad H4K20me1 domain and those marked with H3K4me3. H4K20me1 and H3K79me2 distributions along expressed gene bodies were similar, suggesting a relationship between the enzymes catalyzing these histone modifications.
Collapse
Affiliation(s)
- Narges Fatemiyan
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, Canada
| |
Collapse
|
22
|
Sharma A, Mistriel-Zerbib S, Najar RA, Engal E, Bentata M, Taqatqa N, Dahan S, Cohen K, Jaffe-Herman S, Geminder O, Baker M, Nevo Y, Plaschkes I, Kay G, Drier Y, Berger M, Salton M. Isoforms of the TAL1 transcription factor have different roles in hematopoiesis and cell growth. PLoS Biol 2023; 21:e3002175. [PMID: 37379322 DOI: 10.1371/journal.pbio.3002175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) protein 1 (TAL1) is a central transcription factor in hematopoiesis. The timing and level of TAL1 expression orchestrate the differentiation to specialized blood cells and its overexpression is a common cause of T-ALL. Here, we studied the 2 protein isoforms of TAL1, short and long, which are generated by the use of alternative promoters as well as by alternative splicing. We analyzed the expression of each isoform by deleting an enhancer or insulator, or by opening chromatin at the enhancer location. Our results show that each enhancer promotes expression from a specific TAL1 promoter. Expression from a specific promoter gives rise to a unique 5' UTR with differential regulation of translation. Moreover, our study suggests that the enhancers regulate TAL1 exon 3 alternative splicing by inducing changes in the chromatin at the splice site, which we demonstrate is mediated by KMT2B. Furthermore, our results indicate that TAL1-short binds more strongly to TAL1 E-protein partners and functions as a stronger transcription factor than TAL1-long. Specifically TAL1-short has a unique transcription signature promoting apoptosis. Finally, when we expressed both isoforms in mice bone marrow, we found that while overexpression of both isoforms prevents lymphoid differentiation, expression of TAL-short alone leads to hematopoietic stem cell exhaustion. Furthermore, we found that TAL1-short promoted erythropoiesis and reduced cell survival in the CML cell line K562. While TAL1 and its partners are considered promising therapeutic targets in the treatment of T-ALL, our results show that TAL1-short could act as a tumor suppressor and suggest that altering TAL1 isoform's ratio could be a preferred therapeutic approach.
Collapse
Affiliation(s)
- Aveksha Sharma
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shani Mistriel-Zerbib
- Faculty of Medicine, The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rauf Ahmad Najar
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eden Engal
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mercedes Bentata
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nadeen Taqatqa
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sara Dahan
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Klil Cohen
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shiri Jaffe-Herman
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ophir Geminder
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mai Baker
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gillian Kay
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yotam Drier
- Faculty of Medicine, The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Berger
- Faculty of Medicine, The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maayan Salton
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
23
|
Reinhold WC, Wilson K, Elloumi F, Bradwell KR, Ceribelli M, Varma S, Wang Y, Duveau D, Menon N, Trepel J, Zhang X, Klumpp-Thomas C, Micheal S, Shinn P, Luna A, Thomas C, Pommier Y. CellMinerCDB: NCATS Is a Web-Based Portal Integrating Public Cancer Cell Line Databases for Pharmacogenomic Explorations. Cancer Res 2023; 83:1941-1952. [PMID: 37140427 PMCID: PMC10330642 DOI: 10.1158/0008-5472.can-22-2996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Major advances have been made in the field of precision medicine for treating cancer. However, many open questions remain that need to be answered to realize the goal of matching every patient with cancer to the most efficacious therapy. To facilitate these efforts, we have developed CellMinerCDB: National Center for Advancing Translational Sciences (NCATS; https://discover.nci.nih.gov/rsconnect/cellminercdb_ncats/), which makes available activity information for 2,675 drugs and compounds, including multiple nononcology drugs and 1,866 drugs and compounds unique to the NCATS. CellMinerCDB: NCATS comprises 183 cancer cell lines, with 72 unique to NCATS, including some from previously understudied tissues of origin. Multiple forms of data from different institutes are integrated, including single and combination drug activity, DNA copy number, methylation and mutation, transcriptome, protein levels, histone acetylation and methylation, metabolites, CRISPR, and miscellaneous signatures. Curation of cell lines and drug names enables cross-database (CDB) analyses. Comparison of the datasets is made possible by the overlap between cell lines and drugs across databases. Multiple univariate and multivariate analysis tools are built-in, including linear regression and LASSO. Examples have been presented here for the clinical topoisomerase I (TOP1) inhibitors topotecan and irinotecan/SN-38. This web application provides both substantial new data and significant pharmacogenomic integration, allowing exploration of interrelationships. SIGNIFICANCE CellMinerCDB: NCATS provides activity information for 2,675 drugs in 183 cancer cell lines and analysis tools to facilitate pharmacogenomic research and to identify determinants of response.
Collapse
Affiliation(s)
- William C. Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Kelli Wilson
- National Center for Advancing Translational Sciences, NIH Bethesda, MD 20892, USA
| | - Fathi Elloumi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Michele Ceribelli
- National Center for Advancing Translational Sciences, NIH Bethesda, MD 20892, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- HiThru Analytics LLC, Princeton, NJ 08540, USA
| | - Yanghsin Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- ICF International Inc., Fairfax, VA 22031, USA
| | - Damien Duveau
- National Center for Advancing Translational Sciences, NIH Bethesda, MD 20892, USA
| | - Nikhil Menon
- National Center for Advancing Translational Sciences, NIH Bethesda, MD 20892, USA
| | - Jane Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Xiaohu Zhang
- National Center for Advancing Translational Sciences, NIH Bethesda, MD 20892, USA
| | | | - Samuel Micheal
- National Center for Advancing Translational Sciences, NIH Bethesda, MD 20892, USA
| | - Paul Shinn
- National Center for Advancing Translational Sciences, NIH Bethesda, MD 20892, USA
| | - Augustin Luna
- cBio Center, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Craig Thomas
- National Center for Advancing Translational Sciences, NIH Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Jeon AJ, Anene-Nzelu CG, Teo YY, Chong SL, Sekar K, Wu L, Chew SC, Chen J, Kendarsari RI, Lai H, Ling WH, Kaya NA, Lim JQ, Chung AYF, Cheow PC, Kam JH, Madhavan K, Kow A, Ganpathi IS, Lim TKH, Leow WQ, Loong S, Loh TJ, Wan WK, Soon GST, Pang YH, Yoong BK, Bee-Lan Ong D, Lim J, de Villa VH, dela Cruz RD, Chanwat R, Thammasiri J, Bonney GK, Goh BK, Foo RSY, Chow PKH. A genomic enhancer signature associates with hepatocellular carcinoma prognosis. JHEP Rep 2023; 5:100715. [PMID: 37168287 PMCID: PMC10165154 DOI: 10.1016/j.jhepr.2023.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 05/13/2023] Open
Abstract
Background & Aims Lifestyle and environmental-related exposures are important risk factors for hepatocellular carcinoma (HCC), suggesting that epigenetic dysregulation significantly underpins HCC. We profiled 30 surgically resected tumours and the matched adjacent normal tissues to understand the aberrant epigenetic events associated with HCC. Methods We identified tumour differential enhancers and the associated genes by analysing H3K27 acetylation (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) and Hi-C/HiChIP data from the resected tumour samples of 30 patients with early-stage HCC. This epigenome dataset was analysed with previously reported genome and transcriptome data of the overlapping group of patients from the same cohort. We performed patient-specific differential expression testing using multiregion sequencing data to identify genes that undergo both enhancer and gene expression changes. Based on the genes selected, we identified two patient groups and performed a recurrence-free survival analysis. Results We observed large-scale changes in the enhancer distribution between HCC tumours and the adjacent normal samples. Many of the gain-in-tumour enhancers showed corresponding upregulation of the associated genes and vice versa, but much of the enhancer and gene expression changes were patient-specific. A subset of the upregulated genes was activated in a subgroup of patients' tumours. Recurrence-free survival analysis revealed that the patients with a more robust upregulation of those genes showed a worse prognosis. Conclusions We report the genomic enhancer signature associated with differential prognosis in HCC. Findings that cohere with oncofoetal reprogramming in HCC were underpinned by genome-wide enhancer rewiring. Our results present the epigenetic changes in HCC that offer the rational selection of epigenetic-driven gene targets for therapeutic intervention or disease prognostication in HCC. Impact and Implications Lifestyle and environmental-related exposures are the important risk factors of hepatocellular carcinoma (HCC), suggesting that tumour-associated epigenetic dysregulations may significantly underpin HCC. We profiled tumour tissues and their matched normal from 30 patients with early-stage HCC to study the dysregulated epigenetic changes associated with HCC. By also analysing the patients' RNA-seq and clinical data, we found the signature genes - with epigenetic and transcriptomic dysregulation - associated with worse prognosis. Our findings suggest that systemic approaches are needed to consider the surrounding cellular environmental and epigenetic changes in HCC tumours.
Collapse
Affiliation(s)
- Ah-Jung Jeon
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Singapore
| | - Chukwuemeka George Anene-Nzelu
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Quebec, Canada
| | - Yue-Yang Teo
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Singapore
| | - Shay Lee Chong
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Singapore
| | - Karthik Sekar
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Singapore
| | - Lingyan Wu
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Singapore
| | - Sin-Chi Chew
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Singapore
| | - Jianbin Chen
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Raden Indah Kendarsari
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Hannah Lai
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Wen Huan Ling
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Singapore
| | - Neslihan Arife Kaya
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Jia Qi Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Alexander Yaw Fui Chung
- Department of Hepatopancreatobiliary and Transplant Surgery, National Cancer Centre Singapore and Singapore General Hospital, Singapore
- Academic Clinical Programme for Surgery, Duke-NUS Medical School, Singapore
| | - Peng-Chung Cheow
- Department of Hepatopancreatobiliary and Transplant Surgery, National Cancer Centre Singapore and Singapore General Hospital, Singapore
- Academic Clinical Programme for Surgery, Duke-NUS Medical School, Singapore
| | - Juinn Huar Kam
- Department of Hepatopancreatobiliary and Transplant Surgery, National Cancer Centre Singapore and Singapore General Hospital, Singapore
- Academic Clinical Programme for Surgery, Duke-NUS Medical School, Singapore
| | - Krishnakumar Madhavan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore
| | - Alfred Kow
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore
| | - Iyer Shridhar Ganpathi
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Wei-Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Shihleone Loong
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Tracy Jiezhen Loh
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Wei Keat Wan
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | | | - Yin Huei Pang
- Department of Pathology, National University Hospital, Singapore
| | - Boon Koon Yoong
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Diana Bee-Lan Ong
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jasmine Lim
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vanessa H. de Villa
- Department of Surgery and Center for Liver Health and Transplantation, The Medical City, Pasig City, Philippines
| | - Rouchelle D. dela Cruz
- Department of Laboratory Medicine and Pathology, The Medical City, Pasig City, Philippines
| | - Rawisak Chanwat
- Hepato-Pancreato-Biliary Surgery Unit, Department of Surgery, National Cancer Institute, Bangkok, Thailand
| | | | - Glenn K. Bonney
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore
| | - Brian K.P. Goh
- Department of Hepatopancreatobiliary and Transplant Surgery, National Cancer Centre Singapore and Singapore General Hospital, Singapore
- Academic Clinical Programme for Surgery, Duke-NUS Medical School, Singapore
| | - Roger Sik Yin Foo
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Pierce Kah-Hoe Chow
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Singapore
- Department of Hepatopancreatobiliary and Transplant Surgery, National Cancer Centre Singapore and Singapore General Hospital, Singapore
- Academic Clinical Programme for Surgery, Duke-NUS Medical School, Singapore
- Corresponding author. Address: National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore 168583, Singapore. Tel.: +65-63065424.
| |
Collapse
|
25
|
Zhu X, Zhao W, Zhou Z, Gu X. Unraveling the Drivers of Tumorigenesis in the Context of Evolution: Theoretical Models and Bioinformatics Tools. J Mol Evol 2023:10.1007/s00239-023-10117-0. [PMID: 37246992 DOI: 10.1007/s00239-023-10117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
Cancer originates from somatic cells that have accumulated mutations. These mutations alter the phenotype of the cells, allowing them to escape homeostatic regulation that maintains normal cell numbers. The emergence of malignancies is an evolutionary process in which the random accumulation of somatic mutations and sequential selection of dominant clones cause cancer cells to proliferate. The development of technologies such as high-throughput sequencing has provided a powerful means to measure subclonal evolutionary dynamics across space and time. Here, we review the patterns that may be observed in cancer evolution and the methods available for quantifying the evolutionary dynamics of cancer. An improved understanding of the evolutionary trajectories of cancer will enable us to explore the molecular mechanism of tumorigenesis and to design tailored treatment strategies.
Collapse
Affiliation(s)
- Xunuo Zhu
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenyi Zhao
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhan Zhou
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China.
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 310058, China.
| | - Xun Gu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
26
|
Wilkins A, Corbett R, Eeles R. Age distribution and a multi-stage theory of carcinogenesis: 70 years on. Br J Cancer 2023; 128:404-406. [PMID: 36307647 PMCID: PMC9938128 DOI: 10.1038/s41416-022-02009-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
The Armitage Doll model demonstrates that the impact of age-dependent exposure to carcinogenic factors depends on whether the induced change occurs early, at the midpoint or late in carcinogenesis. 70 years on, updated modelling shows that their epidemiological observations still provide insight into clinical observations and their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Anna Wilkins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK.
- The Royal Marsden Hospitals NHS Trust, London, UK.
| | - Richard Corbett
- Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Rosalind Eeles
- The Royal Marsden Hospitals NHS Trust, London, UK
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| |
Collapse
|
27
|
Shen M, Demers LK, Bailey SD, Labbé DP. To bind or not to bind: Cistromic reprogramming in prostate cancer. Front Oncol 2022; 12:963007. [PMID: 36212399 PMCID: PMC9539323 DOI: 10.3389/fonc.2022.963007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
The term “cistrome” refers to the genome-wide location of regulatory elements associated with transcription factor binding-sites. The cistrome of key regulatory factors in prostate cancer etiology are substantially reprogrammed and altered during prostatic transformation and disease progression. For instance, the cistrome of the androgen receptor (AR), a ligand-inducible transcription factor central in normal prostate epithelium biology, is directly impacted and substantially reprogrammed during malignant transformation. Accumulating evidence demonstrates that additional transcription factors that are frequently mutated, or aberrantly expressed in prostate cancer, such as the pioneer transcription factors Forkhead Box A1 (FOXA1), the homeobox protein HOXB13, and the GATA binding protein 2 (GATA2), and the ETS-related gene (ERG), and the MYC proto-oncogene, contribute to the reprogramming of the AR cistrome. In addition, recent findings have highlighted key roles for the SWI/SNF complex and the chromatin-modifying helicase CHD1 in remodeling the epigenome and altering the AR cistrome during disease progression. In this review, we will cover the role of cistromic reprogramming in prostate cancer initiation and progression. Specifically, we will discuss the impact of key prostate cancer regulators, as well as the role of epigenetic and chromatin regulators in relation to the AR cistrome and the transformation of normal prostate epithelium. Given the importance of chromatin-transcription factor dynamics in normal cellular differentiation and cancer, an in-depth assessment of the factors involved in producing these altered cistromes is of great relevance and provides insight into new therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Michelle Shen
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Experimental Surgery, Department of Surgery, McGill University, Montréal, QC, Canada
| | - Léa-Kristine Demers
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada
| | - Swneke D. Bailey
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Experimental Surgery, Department of Surgery, McGill University, Montréal, QC, Canada
- Division of Thoracic Surgery, Department of Surgery, McGill University, Montréal, QC, Canada
| | - David P. Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Experimental Surgery, Department of Surgery, McGill University, Montréal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
- *Correspondence: David P. Labbé,
| |
Collapse
|
28
|
Pal R, Rakshit S, Shanmugam G, Paul N, Bhattacharya D, Chatterjee A, Singh A, George M, Sarkar K. Involvement of Xeroderma Pigmentosum Complementation Group G (XPG) in epigenetic regulation of T-Helper (T H) cell differentiation during breast cancer. Immunobiology 2022; 227:152259. [PMID: 36037675 DOI: 10.1016/j.imbio.2022.152259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 11/05/2022]
Abstract
TNFα and IFN-γ secreted by CD4+T-Helper (TH) cells have antitumor activity followed by polarisation of TH1 phenotype in response to IL-12 secreted by dendritic cells, inducing expression of XPG, Nucleotide-Excision Repair (NER) complex component, which is downregulated in breast cancer. Therefore, we investigated the involvement of XPG in TH-cell differentiation in breast cancer. XPG knock-out (KO) PBMC and TH1 polarised CD4+ TH-cells isolated from breast cancer and control subjects blood samples were used to observe mRNA expressions of associated genes, % enrichment of corresponding epigenetic markers, and m6A RNA methylation levels to study the molecular mechanisms involved. Assays to investigate Cytotoxic T Lymphocyte (CTL) activity after cross-checking extracellular secretion levels. Our XPGKO results indicated upregulation of TH2 and Treg, downregulation of TH1, and negligible change for TH17; reduced expression of genes associated with tumour suppression (TP53, BRCA1) and DNA repair (H2AFX, ATM) for breast cancer TH-cells. CTCF associated TH1 specific function, reduced %enrichment of XPG, CSA, and ERCC1, increased %enrichment of γH2A.X, and altered histone modifications (methylation, deacetylation) at the IFN-γ gene locus in XPGKO breast cancer TH1-cells. Increased m6A RNA methylation mediated by XPG leads to TH1 cell specificity, further inducing CTL activity by releasing extracellular IFG-γ, which activates CD8+ CTLs. This article explores the association of the vital NER protein, XPG with the epigenetic modifications behind TH1 cell differentiation, augmenting the expressions of TH1-network genes to evoke protective immunity in breast cancer.
Collapse
Affiliation(s)
- Riasha Pal
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nilanjan Paul
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Deep Bhattacharya
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Arya Chatterjee
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Arunangsu Singh
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital and Research Centre, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
29
|
Rath S, Chakraborty D, Pradhan J, Imran Khan M, Dandapat J. Epigenomic interplay in tumor heterogeneity: Potential of epidrugs as adjunct therapy. Cytokine 2022; 157:155967. [PMID: 35905624 DOI: 10.1016/j.cyto.2022.155967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
Abstract
"Heterogeneity" in tumor mass has immense importance in cancer progression and therapy. The impact of tumor heterogeneity is an emerging field and not yet fully explored. Tumor heterogeneity is mainly considered as intra-tumor heterogeneity and inter-tumor heterogeneity based on their origin. Intra-tumor heterogeneity refers to the discrepancy within the same cancer mass while inter-tumor heterogeneity refers to the discrepancy between different patients having the same tumor type. Both of these heterogeneity types lead to variation in the histopathological as well as clinical properties of the cancer mass which drives disease resistance towards therapeutic approaches. Cancer stem cells (CSCs) act as pinnacle progenitors for heterogeneity development along with various other genetic and epigenetic parameters that are regulating this process. In recent times epigenetic factors are one of the most studied parameters that drive oxidative stress pathways essential during cancer progression. These epigenetic changes are modulated by various epidrugs and have an impact on tumor heterogeneity. The present review summarizes various aspects of epigenetic regulation in the tumor microenvironment, oxidative stress, and progression towards tumor heterogeneity that creates complications during cancer treatment. This review also explores the possible role of epidrugs in regulating tumor heterogeneity and personalized therapy against drug resistance.
Collapse
Affiliation(s)
- Suvasmita Rath
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Diptesh Chakraborty
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Jyotsnarani Pradhan
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Mohammad Imran Khan
- Department of Biochemistry, King Abdulaziz University (KAU), Jeddah 21577, Saudi Arabia; Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jagneshwar Dandapat
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India; Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India.
| |
Collapse
|
30
|
Zhang M, Zhao J, Dong H, Xue W, Xing J, Liu T, Yu X, Gu Y, Sun B, Lu H, Zhang Y. DNA Methylation-Specific Analysis of G Protein-Coupled Receptor-Related Genes in Pan-Cancer. Genes (Basel) 2022; 13:genes13071213. [PMID: 35885996 PMCID: PMC9320183 DOI: 10.3390/genes13071213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor heterogeneity presents challenges for personalized diagnosis and treatment of cancer. The identification method of cancer-specific biomarkers has important applications for the diagnosis and treatment of cancer types. In this study, we analyzed the pan-cancer DNA methylation data from TCGA and GEO, and proposed a computational method to quantify the degree of specificity based on the level of DNA methylation of G protein-coupled receptor-related genes (GPCRs-related genes) and to identify specific GPCRs DNA methylation biomarkers (GRSDMs) in pan-cancer. Then, a ridge regression-based method was used to discover potential drugs through predicting the drug sensitivities of cancer samples. Finally, we predicted and verified 8 GRSDMs in adrenocortical carcinoma (ACC), rectum adenocarcinoma (READ), uveal Melanoma (UVM), thyroid carcinoma (THCA), and predicted 4 GRSDMs (F2RL3, DGKB, GRK5, PIK3R6) which were sensitive to 12 potential drugs. Our research provided a novel approach for the personalized diagnosis of cancer and informed individualized treatment decisions.
Collapse
Affiliation(s)
- Mengyan Zhang
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Jiyun Zhao
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Huili Dong
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Wenhui Xue
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Jie Xing
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Ting Liu
- College of pathology, Qiqihar Medical University, Qiqihar 161042, China; (T.L.); (X.Y.)
| | - Xiuwen Yu
- College of pathology, Qiqihar Medical University, Qiqihar 161042, China; (T.L.); (X.Y.)
| | - Yue Gu
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510089, China;
| | - Haibo Lu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150000, China
- Correspondence: (H.L.); (Y.Z.); Tel.: +86-131-2590-0189 (Y.Z.)
| | - Yan Zhang
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
- College of pathology, Qiqihar Medical University, Qiqihar 161042, China; (T.L.); (X.Y.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510089, China;
- Correspondence: (H.L.); (Y.Z.); Tel.: +86-131-2590-0189 (Y.Z.)
| |
Collapse
|
31
|
XIST loss impairs mammary stem cell differentiation and increases tumorigenicity through Mediator hyperactivation. Cell 2022; 185:2164-2183.e25. [PMID: 35597241 DOI: 10.1016/j.cell.2022.04.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 01/10/2022] [Accepted: 04/27/2022] [Indexed: 12/27/2022]
Abstract
X inactivation (XCI) is triggered by upregulation of XIST, which coats the chromosome in cis, promoting formation of a heterochromatic domain (Xi). XIST role beyond initiation of XCI is only beginning to be elucidated. Here, we demonstrate that XIST loss impairs differentiation of human mammary stem cells (MaSCs) and promotes emergence of highly tumorigenic and metastatic carcinomas. On the Xi, XIST deficiency triggers epigenetic changes and reactivation of genes overlapping Polycomb domains, including Mediator subunit MED14. MED14 overdosage results in increased Mediator levels and hyperactivation of the MaSC enhancer landscape and transcriptional program, making differentiation less favorable. We further demonstrate that loss of XIST and Xi transcriptional instability is common among human breast tumors of poor prognosis. We conclude that XIST is a gatekeeper of human mammary epithelium homeostasis, thus unveiling a paradigm in the control of somatic cell identity with potential consequences for our understanding of gender-specific malignancies.
Collapse
|
32
|
PHF13 epigenetically activates TGFβ driven epithelial to mesenchymal transition. Cell Death Dis 2022; 13:487. [PMID: 35597793 PMCID: PMC9124206 DOI: 10.1038/s41419-022-04940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Epigenetic alteration is a pivotal factor in tumor metastasis. PHD finger protein 13 (PHF13) is a recently identified epigenetic reader of H3K4me2/3 that functions as a transcriptional co-regulator. In this study, we demonstrate that PHF13 is required for pancreatic-cancer-cell growth and metastasis. Integrative analysis of transcriptome and epigenetic profiles provide further mechanistic insights into the epigenetic regulation of genes associated with cell metastasis during the epithelial-to-mesenchymal transition (EMT) induced by transforming growth factor β (TGFβ). Our data suggest PHF13 depletion impairs activation of TGFβ stimulated genes and correlates with a loss of active epigenetic marks (H3K4me3 and H3K27ac) at these genomic regions. These observations argue for a dependency of TGFβ target activation on PHF13. Furthermore, PHF13-dependent chromatin regions are enriched in broad H3K4me3 domains and super-enhancers, which control genes critical to cancer-cell migration and invasion, such as SNAI1 and SOX9. Overall, our data indicate a functional and mechanistic correlation between PHF13 and EMT.
Collapse
|
33
|
Machine learning approaches to explore digenic inheritance. Trends Genet 2022; 38:1013-1018. [DOI: 10.1016/j.tig.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022]
|
34
|
Salani F, Latarani M, Casadei-Gardini A, Gangadharannambiar P, Fornaro L, Vivaldi C, Pecora I, Massa V, Marisi G, Canale M, Ulivi P, Scartozzi M, Eccleston M, Masi G, Crea F. Predictive significance of circulating histones in hepatocellular carcinoma patients treated with sorafenib. Epigenomics 2022; 14:507-517. [PMID: 35473355 DOI: 10.2217/epi-2021-0383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Predictive biomarkers for advanced hepatocellular carcinoma are lacking. EZH2 drives sorafenib resistance through H3K27me3 and is counteracted by SETD2, which catalyzes H3K36me3. The authors tested the predictive power of circulating H3K27me3 and H3K36me3 in advanced hepatocellular carcinoma patients treated with sorafenib. Methods: A total of 80 plasma samples were tested for histone variants by ELISA. Changes from baseline to best response or progressive disease were correlated with patient survival. Results: A higher EZH2/SETD2 ratio predicted worse prognosis in this setting. H3K27me3 and H3K36me3 decreased from baseline to best response. The H3K27me3/H3K36me3 ratio increased from baseline to progressive disease. Higher ratios at best response were associated with shorter progression-free survival. Conclusion: The authors suggest that circulating H3K27me3/H3K36me3 ratio level acts as a predictive biomarker for sorafenib treatment outcomes in patients with advanced hepatocellular carcinoma.
Collapse
Affiliation(s)
- Francesca Salani
- Sant'Anna School of Advanced Studies, Institute of Life Sciences, Piazza Martiri della Libertà 33, Pisa, 56124, Italy.,Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK.,Medical Oncology Department, Pisa University, Via Savi 10, Pisa, 56126, Italy
| | - Maryam Latarani
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute Hospital, Milan, Italy
| | | | - Lorenzo Fornaro
- Medical Oncology Department, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100, Pisa
| | - Caterina Vivaldi
- Department of Translational Research and New Technologies for Medicine and Surgery, University of Pisa, Via Savi 10, Pisa, 56126, Italy
| | - Irene Pecora
- Unit of Medical Oncology, Ospedale Misericordia di Grosseto,Via Senese, 161, Grosseto, 58100, Italy
| | - Valentina Massa
- Medical Oncology Department, Pisa University, Via Savi 10, Pisa, 56126, Italy
| | - Giorgia Marisi
- Biosciences Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Romagnolo per lo Studio dei Tumori 'Dino Amadori,' Meldola, 47014, Italy
| | - Matteo Canale
- Biosciences Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Romagnolo per lo Studio dei Tumori 'Dino Amadori,' Meldola, 47014, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Romagnolo per lo Studio dei Tumori 'Dino Amadori,' Meldola, 47014, Italy
| | - Mario Scartozzi
- Department of Medical Sciences and Public Health, University of Cagliari, Via Università, 40, Cagliari CA, 09124, Italy
| | - Mark Eccleston
- Belgian Volition SPRL, Parc Scientifique Créalys, Rue Phocas Lejeune 22, Isnes, BE, 5032, Belgium
| | - Gianluca Masi
- Department of Translational Research and New Technologies for Medicine and Surgery, University of Pisa, Via Savi 10, Pisa, 56126, Italy
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| |
Collapse
|
35
|
H3K4 demethylase KDM5B regulates cancer cell identity and epigenetic plasticity. Oncogene 2022; 41:2958-2972. [PMID: 35440714 DOI: 10.1038/s41388-022-02311-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/08/2022]
Abstract
The H3K4 demethylase KDM5B is overexpressed in multiple cancer types, and elevated expression levels of KDM5B is associated with decreased survival. However, the underlying mechanistic contribution of dysregulated expression of KDM5B and H3K4 demethylation in cancer is poorly understood. Our results show that loss of KDM5B in multiple types of cancer cells leads to increased proliferation and elevated expression of cancer stem cell markers. In addition, we observed enhanced tumor formation following KDM5B depletion in a subset of representative cancer cell lines. Our findings also support a role for KDM5B in regulating epigenetic plasticity, where loss of KDM5B in cancer cells with elevated KDM5B expression leads to alterations in activity of chromatin states, which facilitate activation or repression of alternative transcriptional programs. In addition, we define KDM5B-centric epigenetic and transcriptional patterns that support cancer cell plasticity, where KDM5B depleted cancer cells exhibit altered epigenetic and transcriptional profiles resembling a more primitive cellular state. This study also provides a resource for evaluating associations between alterations in epigenetic patterning upon depletion of KDM5B and gene expression in a diverse set of cancer cells.
Collapse
|
36
|
Lin S, Xu H, Pang M, Zhou X, Pan Y, Zhang L, Guan X, Wang X, Lin B, Tian R, Chen K, Zhang X, Yang Z, Ji F, Huang Y, Wei W, Gong W, Ren J, Wang JM, Guo M, Huang J. CpG Site-Specific Methylation-Modulated Divergent Expression of PRSS3 Transcript Variants Facilitates Nongenetic Intratumor Heterogeneity in Human Hepatocellular Carcinoma. Front Oncol 2022; 12:831268. [PMID: 35480112 PMCID: PMC9035874 DOI: 10.3389/fonc.2022.831268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/16/2022] [Indexed: 01/18/2023] Open
Abstract
BackgroundHepatocellular carcinoma (HCC) is one of the most lethal human tumors with extensive intratumor heterogeneity (ITH). Serine protease 3 (PRSS3) is an indispensable member of the trypsin family and has been implicated in the pathogenesis of several malignancies, including HCC. However, the paradoxical effects of PRSS3 on carcinogenesis due to an unclear molecular basis impede the utilization of its biomarker potential. We hereby explored the contribution of PRSS3 transcripts to tumor functional heterogeneity by systematically dissecting the expression of four known splice variants of PRSS3 (PRSS3-SVs, V1~V4) and their functional relevance to HCC.MethodsThe expression and DNA methylation of PRSS3 transcripts and their associated clinical relevance in HCC were analyzed using several publicly available datasets and validated using qPCR-based assays. Functional experiments were performed in gain- and loss-of-function cell models, in which PRSS3 transcript constructs were separately transfected after deleting PRSS3 expression by CRISPR/Cas9 editing.ResultsPRSS3 was aberrantly differentially expressed toward bipolarity from very low (PRSS3Low) to very high (PRSS3High) expression across HCC cell lines and tissues. This was attributable to the disruption of PRSS3-SVs, in which PRSS3-V2 and/or PRSS3-V1 were dominant transcripts leading to PRSS3 expression, whereas PRSS3-V3 and -V4 were rarely or minimally expressed. The expression of PRSS3-V2 or -V1 was inversely associated with site-specific CpG methylation at the PRSS3 promoter region that distinguished HCC cells and tissues phenotypically between hypermethylated low-expression (mPRSS3-SVLow) and hypomethylated high-expression (umPRSS3-SVHigh) groups. PRSS3-SVs displayed distinct functions from oncogenic PRSS3-V2 to tumor-suppressive PRSS3-V1, -V3 or PRSS3-V4 in HCC cells. Clinically, aberrant expression of PRSS3-SVs was translated into divergent relevance in patients with HCC, in which significant epigenetic downregulation of PRSS3-V2 was seen in early HCC and was associated with favorable patient outcome.ConclusionsThese results provide the first evidence for the transcriptional and functional characterization of PRSS3 transcripts in HCC. Aberrant expression of divergent PRSS3-SVs disrupted by site-specific CpG methylation may integrate the effects of oncogenic PRSS3-V2 and tumor-suppressive PRSS3-V1, resulting in the molecular diversity and functional plasticity of PRSS3 in HCC. Dysregulated expression of PRSS3-V2 by site-specific CpG methylation may have potential diagnostic value for patients with early HCC.
Collapse
Affiliation(s)
- Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Hanli Xu
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Mengdi Pang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xiaomeng Zhou
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
- Department of Gastroenterology and Hepatology, Chinese People’s Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Lishu Zhang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xin Guan
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xiaoyue Wang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Bonan Lin
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Rongmeng Tian
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Keqiang Chen
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Xiaochen Zhang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Zijiang Yang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Fengmin Ji
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Yingying Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wu Wei
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Jianke Ren
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ji Ming Wang
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese People’s Liberation Army of China (PLA) General Hospital, Beijing, China
- *Correspondence: Jiaqiang Huang, ; Mingzhou Guo,
| | - Jiaqiang Huang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
- *Correspondence: Jiaqiang Huang, ; Mingzhou Guo,
| |
Collapse
|
37
|
Zhang Y, Wang Y, Zhao G, Tanner EJ, Adli M, Matei D. FOXK2 promotes ovarian cancer stemness by regulating the unfolded protein response pathway. J Clin Invest 2022; 132:151591. [PMID: 35349489 PMCID: PMC9106354 DOI: 10.1172/jci151591] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Understanding the regulatory programs enabling cancer stem cells (CSCs) to self-renew and drive tumorigenicity could identify new treatments. Through comparative chromatin-state and gene expression analyses in ovarian CSCs versus non-CSCs, we identified FOXK2 as a highly expressed stemness-specific transcription factor in ovarian cancer. Its genetic depletion diminished stemness features and reduced tumor initiation capacity. Our mechanistic studies highlight that FOXK2 directly regulated IRE1α (encoded by ERN1) expression, a key sensor for the unfolded protein response (UPR). Chromatin immunoprecipitation and sequencing revealed that FOXK2 bound to an intronic regulatory element of ERN1. Blocking FOXK2 from binding to this enhancer by using a catalytically inactive CRISPR/Cas9 (dCas9) diminished IRE1α transcription. At the molecular level, FOXK2-driven upregulation of IRE1α led to alternative XBP1 splicing and activation of stemness pathways, while genetic or pharmacological blockade of this sensor of the UPR inhibited ovarian CSCs. Collectively, these data establish what we believe is a new function for FOXK2 as a key transcriptional regulator of CSCs and a mediator of the UPR, providing insight into potentially targetable new pathways in CSCs.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Obstetrics and Gynecology
- Driskill Graduate Training Program in Life Sciences, and
| | - Yinu Wang
- Department of Obstetrics and Gynecology
| | - Guangyuan Zhao
- Department of Obstetrics and Gynecology
- Driskill Graduate Training Program in Life Sciences, and
| | - Edward J. Tanner
- Department of Obstetrics and Gynecology
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mazhar Adli
- Department of Obstetrics and Gynecology
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
38
|
Boujemaa M, Mighri N, Chouchane L, Boubaker MS, Abdelhak S, Boussen H, Hamdi Y. Health influenced by genetics: A first comprehensive analysis of breast cancer high and moderate penetrance susceptibility genes in the Tunisian population. PLoS One 2022; 17:e0265638. [PMID: 35333900 PMCID: PMC8956157 DOI: 10.1371/journal.pone.0265638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/04/2022] [Indexed: 12/03/2022] Open
Abstract
Significant advances have been made to understand the genetic basis of breast cancer. High, moderate and low penetrance variants have been identified with inter-ethnic variability in mutation frequency and spectrum. Genome wide association studies (GWAS) are widely used to identify disease-associated SNPs. Understanding the functional impact of these risk-SNPs will help the translation of GWAS findings into clinical interventions. Here we aim to characterize the genetic patterns of high and moderate penetrance breast cancer susceptibility genes and to assess the functional impact of non-coding SNPs. We analyzed BRCA1/2, PTEN, STK11, TP53, ATM, BRIP1, CHEK2 and PALB2 genotype data obtained from 135 healthy participants genotyped using Affymetrix Genome-Wide Human SNP-Array 6.0. Haplotype analysis was performed using Haploview.V4.2 and PHASE.V2.1. Population structure and genetic differentiation were assessed using principal component analysis (PCA) and fixation index (FST). Functional annotation was performed using In Silico web-based tools including RegulomeDB and VARAdb. Haplotype analysis showed distinct LD patterns with high levels of recombination and haplotype blocks of moderate to small size. Our findings revealed also that the Tunisian population tends to have a mixed origin with European, South Asian and Mexican footprints. Functional annotation allowed the selection of 28 putative regulatory variants. Of special interest were BRCA1_ rs8176318 predicted to alter the binding sites of a tumor suppressor miRNA hsa-miR-149 and PALB2_ rs120963 located in tumorigenesis-associated enhancer and predicted to strongly affect the binding of P53. Significant differences in allele frequencies were observed with populations of African and European ancestries for rs8176318 and rs120963 respectively. Our findings will help to better understand the genetic basis of breast cancer by guiding upcoming genome wide studies in the Tunisian population. Putative functional SNPs may be used to develop an efficient polygenic risk score to predict breast cancer risk leading to better disease prevention and management.
Collapse
Affiliation(s)
- Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Najah Mighri
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, United States of America
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Mohamed Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hamouda Boussen
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
- * E-mail:
| |
Collapse
|
39
|
Lasorsa VA, Montella A, Cantalupo S, Tirelli M, de Torres C, Aveic S, Tonini GP, Iolascon A, Capasso M. Somatic mutations enriched in cis-regulatory elements affect genes involved in embryonic development and immune system response in neuroblastoma. Cancer Res 2022; 82:1193-1207. [PMID: 35101866 DOI: 10.1158/0008-5472.can-20-3788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/04/2021] [Accepted: 01/27/2022] [Indexed: 11/16/2022]
Abstract
Noncoding cis-regulatory variants have gained interest as cancer drivers, yet progress in understanding their significance is hindered by the numerous challenges and limitations of variant prioritization. To overcome these limitations, we focused on active cis-regulatory elements (aCRE) in order to design a customized panel for the deep sequencing of 56 neuroblastoma tumor and normal DNA sample pairs. In order to search for driver mutations, aCREs were defined by reanalysis of H3K27ac ChiP-seq peaks in 25 neuroblastoma cell lines. These regulatory genomic regions were tested for an excess of somatic mutations and assessed for statistical significance using a global approach that accounted for chromatin accessibility and replication timing. Additional validation was provided by whole genome sequence analysis of 151 neuroblastomas. Analysis of Hi-C data determined the presence of candidate target genes interacting with mutated regions. An excess of somatic mutations in aCREs of diverse genes were identified, including IPO7, HAND2, and ARID3A. CRISPR-Cas9 editing was utilized to assess the functional consequences of mutations in the IPO7 aCRE. Patients with noncoding mutations in aCREs showed inferior overall and event-free survival independent of age at diagnosis, stage, risk stratification, and MYCN status. Expression of aCRE-interacting genes correlated strongly with negative prognostic markers and low survival rates. Moreover, a convergence between the biological functions of aCRE target genes and transcription factors with mutated binding motifs was associated with embryonic development and immune system response. Overall, this strategy enabled the identification of somatic mutations in regulatory elements that collectively promote neuroblastoma tumorigenesis.
Collapse
Affiliation(s)
- Vito Alessandro Lasorsa
- Department of Molecular Medicine and Medical Biotechnology, Università degli Studi di Napoli Federico II
| | - Annalaura Montella
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, CEINGE Biotecnologie Avanzate
| | | | | | - Carmen de Torres
- Developmental Tumor Biology Laboratory and Department of Oncology, Hospital Sant Joan de Déu Barcelona
| | - Sanja Aveic
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Citta della Speranza
| | | | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II
| |
Collapse
|
40
|
Vojvoda Zeljko T, Ugarković Đ, Pezer Ž. Differential enrichment of H3K9me3 at annotated satellite DNA repeats in human cell lines and during fetal development in mouse. Epigenetics Chromatin 2021; 14:47. [PMID: 34663449 PMCID: PMC8524813 DOI: 10.1186/s13072-021-00423-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/05/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Trimethylation of histone H3 on lysine 9 (H3K9me3) at satellite DNA sequences has been primarily studied at (peri)centromeric regions, where its level shows differences associated with various processes such as development and malignant transformation. However, the dynamics of H3K9me3 at distal satellite DNA repeats has not been thoroughly investigated. RESULTS We exploit the sets of publicly available data derived from chromatin immunoprecipitation combined with massively parallel DNA sequencing (ChIP-Seq), produced by the The Encyclopedia of DNA Elements (ENCODE) project, to analyze H3K9me3 at assembled satellite DNA repeats in genomes of human cell lines and during mouse fetal development. We show that annotated satellite elements are generally enriched for H3K9me3, but its level in cancer cell lines is on average lower than in normal cell lines. We find 407 satellite DNA instances with differential H3K9me3 enrichment between cancer and normal cells including a large 115-kb cluster of GSATII elements on chromosome 12. Differentially enriched regions are not limited to satellite DNA instances, but instead encompass a wider region of flanking sequences. We found no correlation between the levels of H3K9me3 and noncoding RNA at corresponding satellite DNA loci. The analysis of data derived from multiple tissues identified 864 instances of satellite DNA sequences in the mouse reference genome that are differentially enriched between fetal developmental stages. CONCLUSIONS Our study reveals significant differences in H3K9me3 level at a subset of satellite repeats between biological states and as such contributes to understanding of the role of satellite DNA repeats in epigenetic regulation during development and carcinogenesis.
Collapse
Affiliation(s)
| | | | - Željka Pezer
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia.
| |
Collapse
|
41
|
Parrello D, Vlasenok M, Kranz L, Nechaev S. Targeting the Transcriptome Through Globally Acting Components. Front Genet 2021; 12:749850. [PMID: 34603400 PMCID: PMC8481634 DOI: 10.3389/fgene.2021.749850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription is a step in gene expression that defines the identity of cells and its dysregulation is associated with diseases. With advancing technologies revealing molecular underpinnings of the cell with ever-higher precision, our ability to view the transcriptomes may have surpassed our knowledge of the principles behind their organization. The human RNA polymerase II (Pol II) machinery comprises thousands of components that, in conjunction with epigenetic and other mechanisms, drive specialized programs of development, differentiation, and responses to the environment. Parts of these programs are repurposed in oncogenic transformation. Targeting of cancers is commonly done by inhibiting general or broadly acting components of the cellular machinery. The critical unanswered question is how globally acting or general factors exert cell type specific effects on transcription. One solution, which is discussed here, may be among the events that take place at genes during early Pol II transcription elongation. This essay turns the spotlight on the well-known phenomenon of promoter-proximal Pol II pausing as a step that separates signals that establish pausing genome-wide from those that release the paused Pol II into the gene. Concepts generated in this rapidly developing field will enhance our understanding of basic principles behind transcriptome organization and hopefully translate into better therapies at the bedside.
Collapse
Affiliation(s)
- Damien Parrello
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| | - Maria Vlasenok
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Lincoln Kranz
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| | - Sergei Nechaev
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| |
Collapse
|
42
|
Beacon TH, Delcuve GP, López C, Nardocci G, Kovalchuk I, van Wijnen AJ, Davie JR. The dynamic broad epigenetic (H3K4me3, H3K27ac) domain as a mark of essential genes. Clin Epigenetics 2021; 13:138. [PMID: 34238359 PMCID: PMC8264473 DOI: 10.1186/s13148-021-01126-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Transcriptionally active chromatin is marked by tri-methylation of histone H3 at lysine 4 (H3K4me3) located after first exons and around transcription start sites. This epigenetic mark is typically restricted to narrow regions at the 5`end of the gene body, though a small subset of genes have a broad H3K4me3 domain which extensively covers the coding region. Although most studies focus on the H3K4me3 mark, the broad H3K4me3 domain is associated with a plethora of histone modifications (e.g., H3 acetylated at K27) and is therein termed broad epigenetic domain. Genes marked with the broad epigenetic domain are involved in cell identity and essential cell functions and have clinical potential as biomarkers for patient stratification. Reducing expression of genes with the broad epigenetic domain may increase the metastatic potential of cancer cells. Enhancers and super-enhancers interact with the broad epigenetic domain marked genes forming a hub of interactions involving nucleosome-depleted regions. Together, the regulatory elements coalesce with transcription factors, chromatin modifying/remodeling enzymes, coactivators, and the Mediator and/or Integrator complex into a transcription factory which may be analogous to a liquid–liquid phase-separated condensate. The broad epigenetic domain has a dynamic chromatin structure which supports frequent transcription bursts. In this review, we present the current knowledge of broad epigenetic domains.
Collapse
Affiliation(s)
- Tasnim H Beacon
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Geneviève P Delcuve
- Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Camila López
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Gino Nardocci
- Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Molecular Biology and Bioinformatics Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CIIB), Universidad de Los Andes, Santiago, Chile
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - James R Davie
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada. .,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada.
| |
Collapse
|
43
|
Replication Stress, Genomic Instability, and Replication Timing: A Complex Relationship. Int J Mol Sci 2021; 22:ijms22094764. [PMID: 33946274 PMCID: PMC8125245 DOI: 10.3390/ijms22094764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
The replication-timing program constitutes a key element of the organization and coordination of numerous nuclear processes in eukaryotes. This program is established at a crucial moment in the cell cycle and occurs simultaneously with the organization of the genome, thus indicating the vital significance of this process. With recent technological achievements of high-throughput approaches, a very strong link has been confirmed between replication timing, transcriptional activity, the epigenetic and mutational landscape, and the 3D organization of the genome. There is also a clear relationship between replication stress, replication timing, and genomic instability, but the extent to which they are mutually linked to each other is unclear. Recent evidence has shown that replication timing is affected in cancer cells, although the cause and consequence of this effect remain unknown. However, in-depth studies remain to be performed to characterize the molecular mechanisms of replication-timing regulation and clearly identify different cis- and trans-acting factors. The results of these studies will potentially facilitate the discovery of new therapeutic pathways, particularly for personalized medicine, or new biomarkers. This review focuses on the complex relationship between replication timing, replication stress, and genomic instability.
Collapse
|