1
|
de Celis M, Ruiz J, Benitez-Dominguez B, Vicente J, Tomasi S, Izquierdo-Gea S, Rozés N, Ruiz-de-Villa C, Gombau J, Zamora F, Barroso-delJesus A, Terron-Camero LC, Andres-Leon E, Santos A, Belda I. Multi-omics framework to reveal the molecular determinants of fermentation performance in wine yeast populations. MICROBIOME 2024; 12:203. [PMID: 39407259 PMCID: PMC11481383 DOI: 10.1186/s40168-024-01930-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 09/11/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Connecting the composition and function of industrial microbiomes is a major aspiration in microbial biotechnology. Here, we address this question in wine fermentation, a model system where the diversity and functioning of fermenting yeast species are determinant of the flavor and quality of the resulting wines. RESULTS First, we surveyed yeast communities associated with grape musts collected across wine appellations, revealing the importance of environmental (i.e., biogeography) and anthropic factors (i.e., farming system) in shaping community composition and structure. Then, we assayed the fermenting yeast communities in synthetic grape must under common winemaking conditions. The dominating yeast species defines the fermentation performance and metabolite profile of the resulting wines, and it is determined by the initial fungal community composition rather than the imposed fermentation conditions. Yeast dominance also had a more pronounced impact on wine meta-transcriptome than fermentation conditions. We unveiled yeast-specific transcriptomic profiles, leveraging different molecular functioning strategies in wine fermentation environments. We further studied the orthologs responsible for metabolite production, revealing modules associated with the dominance of specific yeast species. This emphasizes the unique contributions of yeast species to wine flavor, here summarized in an array of orthologs that defines the individual contribution of yeast species to wine ecosystem functioning. CONCLUSIONS Our study bridges the gap between yeast community composition and wine metabolite production, providing insights to harness diverse yeast functionalities with the final aim to producing tailored high-quality wines. Video Abstract.
Collapse
Affiliation(s)
- Miguel de Celis
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Microbiology Unit, Complutense University of Madrid, C/ José Antonio Novais 12, Madrid, 28040, Spain.
- Department of Soil, Plant and Environmental Quality Institute of Agricultural Sciences, (ICA-CSIC), C/ de Serrano 115B, Madrid, 28006, Spain.
| | - Javier Ruiz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Microbiology Unit, Complutense University of Madrid, C/ José Antonio Novais 12, Madrid, 28040, Spain
| | - Belen Benitez-Dominguez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Microbiology Unit, Complutense University of Madrid, C/ José Antonio Novais 12, Madrid, 28040, Spain
- Institute of Functional Biology and Genomics (IBFG-CSIC), University of Salamanca, C/ Zacarias Gonzalez 2, Salamanca, 37007, Spain
| | - Javier Vicente
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Microbiology Unit, Complutense University of Madrid, C/ José Antonio Novais 12, Madrid, 28040, Spain
| | - Sandra Tomasi
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Microbiology Unit, Complutense University of Madrid, C/ José Antonio Novais 12, Madrid, 28040, Spain
| | - Sergio Izquierdo-Gea
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Microbiology Unit, Complutense University of Madrid, C/ José Antonio Novais 12, Madrid, 28040, Spain
| | - Nicolás Rozés
- Department of Biochemistry and Biotechnology, Faculty of Oenology, Rovira i Virgili University, C/Marcel.Li Domingo S/N, Tarragona, 43007, Spain
| | - Candela Ruiz-de-Villa
- Department of Biochemistry and Biotechnology, Faculty of Oenology, Rovira i Virgili University, C/Marcel.Li Domingo S/N, Tarragona, 43007, Spain
| | - Jordi Gombau
- Department of Biochemistry and Biotechnology, Faculty of Oenology, Rovira i Virgili University, C/Marcel.Li Domingo S/N, Tarragona, 43007, Spain
| | - Fernando Zamora
- Department of Biochemistry and Biotechnology, Faculty of Oenology, Rovira i Virgili University, C/Marcel.Li Domingo S/N, Tarragona, 43007, Spain
| | - Alicia Barroso-delJesus
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN-CSIC), PT Salud, Granada, 18016, Spain
| | - Laura C Terron-Camero
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN-CSIC), PT Salud, Granada, 18016, Spain
| | - Eduardo Andres-Leon
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN-CSIC), PT Salud, Granada, 18016, Spain
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Microbiology Unit, Complutense University of Madrid, C/ José Antonio Novais 12, Madrid, 28040, Spain
| | - Ignacio Belda
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Microbiology Unit, Complutense University of Madrid, C/ José Antonio Novais 12, Madrid, 28040, Spain.
| |
Collapse
|
2
|
Conacher CG, Watson BW, Bauer FF. Gradient boosted regression as a tool to reveal key drivers of temporal dynamics in a synthetic yeast community. FEMS Microbiol Ecol 2024; 100:fiae080. [PMID: 38777744 PMCID: PMC11212668 DOI: 10.1093/femsec/fiae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Microbial communities are vital to our lives, yet their ecological functioning and dynamics remain poorly understood. This understanding is crucial for assessing threats to these systems and leveraging their biotechnological applications. Given that temporal dynamics are linked to community functioning, this study investigated the drivers of community succession in the wine yeast community. We experimentally generated population dynamics data and used it to create an interpretable model with a gradient boosted regression tree approach. The model was trained on temporal data of viable species populations in various combinations, including pairs, triplets, and quadruplets, and was evaluated for predictive accuracy and input feature importance. Key findings revealed that the inoculation dosage of non-Saccharomyces species significantly influences their performance in mixed cultures, while Saccharomyces cerevisiae consistently dominates regardless of initial abundance. Additionally, we observed multispecies interactions where the dynamics of Wickerhamomyces anomalus were influenced by Torulaspora delbrueckii in pairwise cultures, but this interaction was altered by the inclusion of S. cerevisiae. This study provides insights into yeast community succession and offers valuable machine learning-based analysis techniques applicable to other microbial communities, opening new avenues for harnessing microbial communities.
Collapse
Affiliation(s)
- Cleo Gertrud Conacher
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Private Bag X1, Stellenbosch University, Stellenbosch 7600, South Africa
- Centre for Artificial Intelligence Research (CAIR), School for Data-Science & Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Bruce William Watson
- Centre for Artificial Intelligence Research (CAIR), School for Data-Science & Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Florian Franz Bauer
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Private Bag X1, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
3
|
Plante M. Epistemology of synthetic biology: a new theoretical framework based on its potential objects and objectives. Front Bioeng Biotechnol 2023; 11:1266298. [PMID: 38053845 PMCID: PMC10694798 DOI: 10.3389/fbioe.2023.1266298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
Synthetic biology is a new research field which attempts to understand, modify, and create new biological entities by adopting a modular and systemic conception of the living organisms. The development of synthetic biology has generated a pluralism of different approaches, bringing together a set of heterogeneous practices and conceptualizations from various disciplines, which can lead to confusion within the synthetic biology community as well as with other biological disciplines. I present in this manuscript an epistemological analysis of synthetic biology in order to better define this new discipline in terms of objects of study and specific objectives. First, I present and analyze the principal research projects developed at the foundation of synthetic biology, in order to establish an overview of the practices in this new emerging discipline. Then, I analyze an important scientometric study on synthetic biology to complete this overview. Afterwards, considering this analysis, I suggest a three-level classification of the object of study for synthetic biology (which are different kinds of living entities that can be built in the laboratory), based on three successive criteria: structural hierarchy, structural origin, functional origin. Finally, I propose three successively linked objectives in which synthetic biology can contribute (where the achievement of one objective led to the development of the other): interdisciplinarity collaboration (between natural, artificial, and theoretical sciences), knowledge of natural living entities (past, present, future, and alternative), pragmatic definition of the concept of "living" (that can be used by biologists in different contexts). Considering this new theoretical framework, based on its potential objects and objectives, I take the position that synthetic biology has not only the potential to develop its own new approach (which includes methods, objects, and objectives), distinct from other subdisciplines in biology, but also the ability to develop new knowledge on living entities.
Collapse
Affiliation(s)
- Mirco Plante
- Collège Montmorency, Laval, QC, Canada
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Université du Québec, Laval, QC, Canada
| |
Collapse
|
4
|
Dixon TA, Walker RSK, Pretorius IS. Visioning synthetic futures for yeast research within the context of current global techno-political trends. Yeast 2023; 40:443-456. [PMID: 37653687 DOI: 10.1002/yea.3897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
Yeast research is entering into a new period of scholarship, with new scientific tools, new questions to ask and new issues to consider. The politics of emerging and critical technology can no longer be separated from the pursuit of basic science in fields, such as synthetic biology and engineering biology. Given the intensifying race for technological leadership, yeast research is likely to attract significant investment from government, and that it offers huge opportunities to the curious minded from a basic research standpoint. This article provides an overview of new directions in yeast research with a focus on Saccharomyces cerevisiae, and places these trends in their geopolitical context. At the highest level, yeast research is situated within the ongoing convergence of the life sciences with the information sciences. This convergent effect is most strongly pronounced in areas of AI-enabled tools for the life sciences, and the creation of synthetic genomes, minimal genomes, pan-genomes, neochromosomes and metagenomes using computer-assisted design tools and methodologies. Synthetic yeast futures encompass basic and applied science questions that will be of intense interest to government and nongovernment funding sources. It is essential for the yeast research community to map and understand the context of their research to ensure their collaborations turn global challenges into research opportunities.
Collapse
Affiliation(s)
- Thomas A Dixon
- School of Social Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Roy S K Walker
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
| | - Isak S Pretorius
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Ruiz J, de Celis M, Diaz‐Colunga J, Vila JCC, Benitez‐Dominguez B, Vicente J, Santos A, Sanchez A, Belda I. Predictability of the community-function landscape in wine yeast ecosystems. Mol Syst Biol 2023; 19:e11613. [PMID: 37548146 PMCID: PMC10495813 DOI: 10.15252/msb.202311613] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Predictively linking taxonomic composition and quantitative ecosystem functions is a major aspiration in microbial ecology, which must be resolved if we wish to engineer microbial consortia. Here, we have addressed this open question for an ecological function of major biotechnological relevance: alcoholic fermentation in wine yeast communities. By exhaustively phenotyping an extensive collection of naturally occurring wine yeast strains, we find that most ecologically and industrially relevant traits exhibit phylogenetic signal, allowing functional traits in wine yeast communities to be predicted from taxonomy. Furthermore, we demonstrate that the quantitative contributions of individual wine yeast strains to the function of complex communities followed simple quantitative rules. These regularities can be integrated to quantitatively predict the function of newly assembled consortia. Besides addressing theoretical questions in functional ecology, our results and methodologies can provide a blueprint for rationally managing microbial processes of biotechnological relevance.
Collapse
Affiliation(s)
- Javier Ruiz
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
- Department of Microbial and Plant BiotechnologyCentre for Biological Research (CIB‐CSIC)MadridSpain
| | - Miguel de Celis
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
- Department of Soil, Plant and Environmental QualityInstitute of Agricultural Sciences (ICA‐CSIC)MadridSpain
| | - Juan Diaz‐Colunga
- Department of Ecology & Evolutionary BiologyYale UniversityNew HavenCTUSA
- Department of Microbial BiotechnologyNational Centre for Biotechnology (CNB‐CSIC)MadridSpain
| | - Jean CC Vila
- Department of Ecology & Evolutionary BiologyYale UniversityNew HavenCTUSA
- Department of BiologyStanford UniversityStanfordCAUSA
| | - Belen Benitez‐Dominguez
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
| | - Javier Vicente
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
| | - Alvaro Sanchez
- Department of Ecology & Evolutionary BiologyYale UniversityNew HavenCTUSA
- Department of Microbial BiotechnologyNational Centre for Biotechnology (CNB‐CSIC)MadridSpain
| | - Ignacio Belda
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
| |
Collapse
|
6
|
Xu X, Meier F, Blount BA, Pretorius IS, Ellis T, Paulsen IT, Williams TC. Trimming the genomic fat: minimising and re-functionalising genomes using synthetic biology. Nat Commun 2023; 14:1984. [PMID: 37031253 PMCID: PMC10082837 DOI: 10.1038/s41467-023-37748-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/30/2023] [Indexed: 04/10/2023] Open
Abstract
Naturally evolved organisms typically have large genomes that enable their survival and growth under various conditions. However, the complexity of genomes often precludes our complete understanding of them, and limits the success of biotechnological designs. In contrast, minimal genomes have reduced complexity and therefore improved engineerability, increased biosynthetic capacity through the removal of unnecessary genetic elements, and less recalcitrance to complete characterisation. Here, we review the past and current genome minimisation and re-functionalisation efforts, with an emphasis on the latest advances facilitated by synthetic genomics, and provide a critical appraisal of their potential for industrial applications.
Collapse
Affiliation(s)
- Xin Xu
- ARC Centre of Excellence in Synthetic Biology and School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Felix Meier
- ARC Centre of Excellence in Synthetic Biology and School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Benjamin A Blount
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Isak S Pretorius
- ARC Centre of Excellence in Synthetic Biology and School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Wellcome Trust Sanger Institute, Cambridgeshire, CB10 1SA, UK
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology and School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Thomas C Williams
- ARC Centre of Excellence in Synthetic Biology and School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
7
|
Koster CC, Postma ED, Knibbe E, Cleij C, Daran-Lapujade P. Synthetic Genomics From a Yeast Perspective. Front Bioeng Biotechnol 2022; 10:869486. [PMID: 35387293 PMCID: PMC8979029 DOI: 10.3389/fbioe.2022.869486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Synthetic Genomics focuses on the construction of rationally designed chromosomes and genomes and offers novel approaches to study biology and to construct synthetic cell factories. Currently, progress in Synthetic Genomics is hindered by the inability to synthesize DNA molecules longer than a few hundred base pairs, while the size of the smallest genome of a self-replicating cell is several hundred thousand base pairs. Methods to assemble small fragments of DNA into large molecules are therefore required. Remarkably powerful at assembling DNA molecules, the unicellular eukaryote Saccharomyces cerevisiae has been pivotal in the establishment of Synthetic Genomics. Instrumental in the assembly of entire genomes of various organisms in the past decade, the S. cerevisiae genome foundry has a key role to play in future Synthetic Genomics developments.
Collapse
Affiliation(s)
- Charlotte C Koster
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Eline D Postma
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Ewout Knibbe
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Céline Cleij
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands.,Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
| | | |
Collapse
|
8
|
Pretorius IS. Visualizing the next frontiers in wine yeast research. FEMS Yeast Res 2022; 22:foac010. [PMID: 35175339 PMCID: PMC8916113 DOI: 10.1093/femsyr/foac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
A range of game-changing biodigital and biodesign technologies are coming of age all around us, transforming our world in complex ways that are hard to predict. Not a day goes by without news of how data-centric engineering, algorithm-driven modelling, and biocyber technologies-including the convergence of artificial intelligence, machine learning, automated robotics, quantum computing, and genome editing-will change our world. If we are to be better at expecting the unexpected in the world of wine, we need to gain deeper insights into the potential and limitations of these technological developments and advances along with their promise and perils. This article anticipates how these fast-expanding bioinformational and biodesign toolkits might lead to the creation of synthetic organisms and model systems, and ultimately new understandings of biological complexities could be achieved. A total of four future frontiers in wine yeast research are discussed in this article: the construction of fully synthetic yeast genomes, including minimal genomes; supernumerary pan-genome neochromosomes; synthetic metagenomes; and synthetic yeast communities. These four concepts are at varying stages of development with plenty of technological pitfalls to overcome before such model chromosomes, genomes, strains, and yeast communities could illuminate some of the ill-understood aspects of yeast resilience, fermentation performance, flavour biosynthesis, and ecological interactions in vineyard and winery settings. From a winemaker's perspective, some of these ideas might be considered as far-fetched and, as such, tempting to ignore. However, synthetic biologists know that by exploring these futuristic concepts in the laboratory could well forge new research frontiers to deepen our understanding of the complexities of consistently producing fine wines with different fermentation processes from distinctive viticultural terroirs. As the saying goes in the disruptive technology industry, it take years to create an overnight success. The purpose of this article is neither to glorify any of these concepts as a panacea to all ills nor to crucify them as a danger to winemaking traditions. Rather, this article suggests that these proposed research endeavours deserve due consideration because they are likely to cast new light on the genetic blind spots of wine yeasts, and how they interact as communities in vineyards and wineries. Future-focussed research is, of course, designed to be subject to revision as new data and technologies become available. Successful dislodging of old paradigms with transformative innovations will require open-mindedness and pragmatism, not dogmatism-and this can make for a catch-22 situation in an archetypal traditional industry, such as the wine industry, with its rich territorial and socio-cultural connotations.
Collapse
Affiliation(s)
- I S Pretorius
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
9
|
Dixon TA, Williams TC, Pretorius IS. Bioinformational trends in grape and wine biotechnology. Trends Biotechnol 2021; 40:124-135. [PMID: 34108075 DOI: 10.1016/j.tibtech.2021.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023]
Abstract
The creative destruction caused by the coronavirus pandemic is yielding immense opportunity for collaborative innovation networks. The confluence of biosciences, information sciences, and the engineering of biology, is unveiling promising bioinformational futures for a vibrant and sustainable bioeconomy. Bioinformational engineering, underpinned by DNA reading, writing, and editing technologies, has become a beacon of opportunity in a world paralysed by uncertainty. This article draws on lessons from the current pandemic and previous agricultural blights, and explores bioinformational research directions aimed at future-proofing the grape and wine industry against biological shocks from global blights and climate change.
Collapse
Affiliation(s)
- Thomas A Dixon
- Department of Modern History, Politics and International Relations, Macquarie University, Sydney, NSW 2109, Australia.
| | - Thomas C Williams
- Department of Molecular Sciences and ARC Centre of Excellence in Synthetic Biology, Centre Headquarters, Macquarie University, Sydney, NSW 2109, Australia
| | - Isak S Pretorius
- Department of Molecular Sciences and ARC Centre of Excellence in Synthetic Biology, Centre Headquarters, Macquarie University, Sydney, NSW 2109, Australia; Chancellery, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|