1
|
Haraguchi T, Emoto T. Stimulus-Response Plots as a Novel Bowel-Sound-Based Method for Evaluating Motor Response to Drinking in Healthy People. SENSORS (BASEL, SWITZERLAND) 2024; 24:3054. [PMID: 38793909 PMCID: PMC11125318 DOI: 10.3390/s24103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Constipation is a common gastrointestinal disorder that impairs quality of life. Evaluating bowel motility via traditional methods, such as MRI and radiography, is expensive and inconvenient. Bowel sound (BS) analysis has been proposed as an alternative, with BS-time-domain acoustic features (BSTDAFs) being effective for evaluating bowel motility via several food and drink consumption tests. However, the effect of BSTDAFs before drink consumption on those after drink consumption is yet to be investigated. This study used BS-based stimulus-response plots (BSSRPs) to investigate this effect on 20 participants who underwent drinking tests. A strong negative correlation was observed between the number of BSs per minute before carbonated water consumption and the ratio of that before and after carbonated water consumption. However, a similar trend was not observed when the participants drank cold water. These findings suggest that when carbonated water is drunk, bowel motility before ingestion affects motor response to ingestion. This study provides a non-invasive BS-based approach for evaluating motor response to food and drink, offering a new research window for investigators in this field.
Collapse
Affiliation(s)
- Takeyuki Haraguchi
- Science and Technology, Graduate School of Sciences and Technology for Innovation, Tokushima University, Tokushima 770-8506, Japan;
| | - Takahiro Emoto
- Division of Science and Technology, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8506, Japan
| |
Collapse
|
2
|
Sasidharan A, Peethambar BA, Kumar KS, Kumar AV, Hiregange A, Fawkes N, Collins JF, Grosche A, Vidyasagar S. Advancing peristalsis deciphering in mouse small intestine by multi-parameter tracking. Commun Biol 2023; 6:1237. [PMID: 38062160 PMCID: PMC10703907 DOI: 10.1038/s42003-023-05631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Assessing gastrointestinal motility lacks simultaneous evaluation of intraluminal pressure (ILP), circular muscle (CM) and longitudinal muscle (LM) contraction, and lumen emptying. In this study, a sophisticated machine was developed that synchronized real-time recordings to quantify the intricate interplay between CM and LM contractions, and their timings for volume changes using high-resolution cameras with machine learning capability, the ILP using pressure transducers and droplet discharge (DD) using droplet counters. Results revealed four distinct phases, BPhase, NPhase, DPhase, and APhase, distinguished by pressure wave amplitudes. Fluid filling impacted LM strength and contraction frequency initially, followed by CM contraction affecting ILP, volume, and the extent of anterograde, retrograde, and segmental contractions during these phases that result in short or long duration DD. This comprehensive analysis sheds light on peristalsis mechanisms, understand their sequence and how one parameter influenced the other, offering insights for managing peristalsis by regulating smooth muscle contractions.
Collapse
Affiliation(s)
- Anusree Sasidharan
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | | | | | - Ashok V Kumar
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | | | | | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Astrid Grosche
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
3
|
Yan B, Song B, Mu G, Fan Y, Zhao Y. Compressed single-shot 3D photoacoustic imaging with a single-element transducer. PHOTOACOUSTICS 2023; 34:100570. [PMID: 38027529 PMCID: PMC10661598 DOI: 10.1016/j.pacs.2023.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/14/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Three-dimensional (3D) photoacoustic imaging (PAI) can provide rich information content and has gained increasingly more attention in various biomedical applications. However, current 3D PAI methods either involves pointwise scanning of the 3D volume using a single-element transducer, which can be time-consuming, or requires an array of transducers, which is known to be complex and expensive. By utilizing a 3D encoder and compressed sensing techniques, we develop a new imaging modality that is capable of single-shot 3D PAI using a single-element transducer. The proposed method is validated with phantom study, which demonstrates single-shot 3D imaging of different objects and 3D tracking of a moving object. After one-time calibration, while the system could perform single-shot 3D imaging for different objects, the calibration could remain effective over 7 days, which is highly beneficial for practical translation. Overall, the experimental results showcase the potential of this technique for both scientific research and clinical applications.
Collapse
Affiliation(s)
- Bingbao Yan
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Bowen Song
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Gen Mu
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Yanyu Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
4
|
Nouizi F, Kwong TC, Turong B, Nikkhah D, Sampathkumaran U, Gulsen G. Fast ICCD-based temperature modulated fluorescence tomography. APPLIED OPTICS 2023; 62:7420-7430. [PMID: 37855510 PMCID: PMC11396546 DOI: 10.1364/ao.499281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/06/2023] [Indexed: 10/20/2023]
Abstract
Fluorescence tomography (FT) has become a powerful preclinical imaging modality with a great potential for several clinical applications. Although it has superior sensitivity and utilizes low-cost instrumentation, the highly scattering nature of bio-tissue makes FT in thick samples challenging, resulting in poor resolution and low quantitative accuracy. To overcome the limitations of FT, we previously introduced a novel method, termed temperature modulated fluorescence tomography (TMFT), which is based on two key elements: (1) temperature-sensitive fluorescent agents (ThermoDots) and (2) high-intensity focused ultrasound (HIFU). The fluorescence emission of ThermoDots increases up to hundredfold with only several degree temperature elevation. The exceptional and reversible response of these ThermoDots enables their modulation, which effectively allows their localization using the HIFU. Their localization is then used as functional a priori during the FT image reconstruction process to resolve their distribution with higher spatial resolution. The last version of the TMFT system was based on a cooled CCD camera utilizing a step-and-shoot mode, which necessitated long total imaging time only for a small selected region of interest (ROI). In this paper, we present the latest version of our TMFT technology, which uses a much faster continuous HIFU scanning mode based on an intensified CCD (ICCD) camera. This new, to the best of our knowledge, version can capture the whole field-of-view (FOV) of 50×30m m 2 at once and reduces the total imaging time down to 30 min, while preserving the same high resolution (∼1.3m m) and superior quantitative accuracy (<7% error) as the previous versions. Therefore, this new method is an important step toward utilization of TMFT for preclinical imaging.
Collapse
|
5
|
Oliinyk OS, Ma C, Pletnev S, Baloban M, Taboada C, Sheng H, Yao J, Verkhusha VV. Deep-tissue SWIR imaging using rationally designed small red-shifted near-infrared fluorescent protein. Nat Methods 2023; 20:70-74. [PMID: 36456785 PMCID: PMC10725253 DOI: 10.1038/s41592-022-01683-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022]
Abstract
Applying rational design, we developed 17 kDa cyanobacteriochrome-based near-infrared (NIR-I) fluorescent protein, miRFP718nano. miRFP718nano efficiently binds endogenous biliverdin chromophore and brightly fluoresces in mammalian cells and tissues. miRFP718nano has maximal emission at 718 nm and an emission tail in the short-wave infrared (SWIR) region, allowing deep-penetrating off-peak fluorescence imaging in vivo. The miRFP718nano structure reveals the molecular basis of its red shift. We demonstrate superiority of miRFP718nano-enabled SWIR imaging over NIR-I imaging of microbes in the mouse digestive tract, mammalian cells injected into the mouse mammary gland and NF-kB activity in a mouse model of liver inflammation.
Collapse
Affiliation(s)
- Olena S Oliinyk
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Chenshuo Ma
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC, USA
| | - Sergei Pletnev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mikhail Baloban
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Carlos Taboada
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC, USA
| | - Huaxin Sheng
- Department of Anesthesiology, School of Medicine, Duke University, Durham, NC, USA
| | - Junjie Yao
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC, USA.
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
6
|
Zhang H, Nagy A, Bowman C, Peladeau-Pigeon M, Hu A, Lovell J, Steele CM, Xia J. Food-Grade Activated Charcoal for Contrast-Enhanced Photoacoustic Imaging of Aspiration: A Phantom Study. Dysphagia 2022; 37:1651-1661. [PMID: 35224656 PMCID: PMC9624436 DOI: 10.1007/s00455-022-10422-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/11/2022] [Indexed: 12/16/2022]
Abstract
Aspiration pneumonia has the highest attributable mortality of all medical complications post-stroke, or in individuals with progressive neurological diseases. For optimum health outcomes for individuals with dysphagia, a non-invasive and convenient method for objectively detecting aspiration is needed. This study introduces a potential new aspiration screening method based on photoacoustic imaging (PAI), a medical imaging technology that measures the optical contrast of tissue rather than mechanical or elastic properties. In this preliminary study, a tissue-mimicking neck phantom was designed to test the performance of PAI for aspiration screening with a charcoal solution as a contrast agent. A 1064 nm wavelength light source was illuminated on the anterior of the neck phantom to induce the photoacoustic effect. The resulting photoacoustic signal of the charcoal contrast in the mock trachea was detected by a linear transducer array with a 2.25 MHz central ultrasound frequency. The phantom results showed that charcoal solution at 10 mg/ml exhibited strong photoacoustic signals when flowing into the phantom trachea. By overlaying the photoacoustic signals of the charcoal contrast on top of the ultrasound image, we were able to simultaneously visualize the movement of food contrast and a cross-section of tissue structures during mock swallowing. Moreover, we confirmed the ability to detect the flow of charcoal contrast at a small bolus volume of ~ 7 μl through the phantom, suggesting high sensitivity to detect small aspiration events. The study suggests that PAI holds promise to be developed as an aspiration detection tool with charcoal powder as a contrast agent.
Collapse
Affiliation(s)
- Huijuan Zhang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Ahmed Nagy
- Department of Communicative Disorders and Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
- E.N.T. Department Faculty of Medicine, Fayoum University, Faiyum, Egypt
| | - Corrin Bowman
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Melanie Peladeau-Pigeon
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, M5G 2A2, Canada
| | - Alexander Hu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jonathan Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Catriona M Steele
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, M5G 2A2, Canada
- Temerty Faculty of Medicine, Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|