1
|
Degen J, Storms M, Lee CB, Jechow A, Stöckl AL, Hölker F, Jakhar A, Walter T, Walter S, Mitesser O, Hovestadt T, Degen T. Shedding light with harmonic radar: Unveiling the hidden impacts of streetlights on moth flight behavior. Proc Natl Acad Sci U S A 2024; 121:e2401215121. [PMID: 39378094 PMCID: PMC11494349 DOI: 10.1073/pnas.2401215121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/31/2024] [Indexed: 10/10/2024] Open
Abstract
One of the most dramatic changes occurring on our planet is the ever-increasing extensive use of artificial light at night, which drastically altered the environment to which nocturnal animals are adapted. Such light pollution has been identified as a driver in the dramatic insect decline of the past years. One nocturnal species group experiencing marked declines are moths, which play a key role in food webs and ecosystem services such as plant pollination. Moths can be easily monitored within the illuminated area of a streetlight, where they typically exhibit disoriented behavior. Yet, little is known about their behavior beyond the illuminated area. Harmonic radar tracking enabled us to close this knowledge gap. We found a significant change in flight behavior beyond the illuminated area of a streetlight. A detailed analysis of the recorded trajectories revealed a barrier effect of streetlights on lappet moths whenever the moon was not available as a natural celestial cue. Furthermore, streetlights increased the tortuosity of flights for both hawk moths and lappet moths. Surprisingly, we had to reject our fundamental hypothesis that most individuals would fly toward a streetlight. Instead, this was true for only 4% of the tested individuals, indicating that the impact of light pollution might be more severe than assumed to date. Our results provide experimental evidence for the fragmentation of landscapes by streetlights and demonstrate that light pollution affects movement patterns of moths beyond what was previously assumed, potentially affecting their reproductive success and hampering a vital ecosystem service.
Collapse
Affiliation(s)
- Jacqueline Degen
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg97074, Germany
| | - Mona Storms
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg97074, Germany
| | - Chengfa Benjamin Lee
- Department of Remote Sensing, University of Würzburg, Würzburg97074, Germany
- Photogrammetry and Image Analysis Department, German Aerospace Center, Remote Sensing Technology Institute, Berlin12489, Germany
| | - Andreas Jechow
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin12587, Germany
- Department of Engineering, Brandenburg University of Applied Sciences, Brandenburg an der Havel14770, Germany
| | - Anna Lisa Stöckl
- Department of Biology, University of Konstanz, Konstanz78464, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz78457, Germany
- Zukunftskolleg, University of Konstanz, Konstanz78457, Germany
| | - Franz Hölker
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin12587, Germany
- Department of Biology, Freie Universität Berlin, Berlin14195, Germany
| | - Aryan Jakhar
- Department of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram695551, India
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI02912
- Institute at Brown for Environment and Society, Brown University, Providence, RI02912
| | - Thomas Walter
- Department of Computer Science, University of Würzburg, Würzburg97074, Germany
| | - Stefan Walter
- Department of Biology, Freie Universität Berlin, Berlin14195, Germany
| | - Oliver Mitesser
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg97074, Germany
| | - Thomas Hovestadt
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg97074, Germany
| | - Tobias Degen
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg97074, Germany
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg97074, Germany
| |
Collapse
|
2
|
Teng Y, Vamosi JC, Wang XF, Gong YB. Constructing more comprehensive pollination networks: integrating diurnal and nocturnal pollen data with visitation in a subalpine wetland community. FRONTIERS IN PLANT SCIENCE 2024; 15:1464970. [PMID: 39439512 PMCID: PMC11494514 DOI: 10.3389/fpls.2024.1464970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Introduction Sampling for describing plant-pollinator interaction networks has been performed using techniques that either focus on the plants (with flower-visit data) or the animals (with analyzing pollen on the body surface of flower visitors). The differences in the structure of the networks obtained using these methods likely influences our understanding of the contribution of nocturnal pollinators, yet this key finding has yet to be the focus of study. Methods In this study, we conducted an intensive diurnal field survey in the subalpine meadows of the Dajiuhu Wetland and supplemented the data with an analysis of diurnal and nocturnal pollen data to examine the changes in pollination networks. Results We observed 41 plant and 154 pollinator species, corresponding to 665 specific interactions. Visitation and pollen analyses showed significant differences in the composition and interaction between network plants and pollinators, resulting in important structural changes in the network. Given that the diurnal pollen data showed new links that were preferentially attached to highly connected nodes, the level of asymmetric specialization did not decrease; however, nestedness increased 1.3-fold, and mean pollinator connectivity from 3.1 to 5.1. As the behaviors of nocturnal pollinators tended to be more specialized, the inclusion of nocturnal pollen data led to an increase in the number of extreme-specialist pollinator species. Consequently, nestedness decreased 0.8-fold, but mean plant connectivity went from 14.2 to 16.2. Discussion These findings suggest that the structure of pollination networks is influenced by the sampling methods and the level of detail of the investigation. Our study has strong implications for the development of monitoring schemes for plant-pollinator interactions. Due to the practical difficulties of nocturnal field visitation, when conducting research, combining diurnal field visitation with both diurnal and nocturnal pollen analyses is the most convenient and realistic method to capture the full complexity of these networks.
Collapse
Affiliation(s)
- Yue Teng
- State Key Laboratory of Hybrid Rice, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau, Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jana C. Vamosi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Xiao-Fan Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau, Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan-Bing Gong
- State Key Laboratory of Hybrid Rice, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau, Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Yang H, Chen J, Zhong C, Zhang Z, Hu Z, Wu K. Night lights observations significantly improve the explainability of intra-annual vegetation growth globally. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173990. [PMID: 38879039 DOI: 10.1016/j.scitotenv.2024.173990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Understanding the underlying mechanism of vegetation growth is of great significance to improve our knowledge of how vegetation growth responds to its surrounding environment, thereby benefiting the prediction of future vegetation growth and guiding environmental management. However, human impacts on vegetation growth, especially its intra-annual variability, still represent a knowledge gap. Night Lights (NL) have been demonstrated as an effective indicator to characterize human activities, but little is known about the potential improvement of intra-annual vegetation growth using seasonal NL observations. To address this gap, we investigated and quantified the explainability improvement of intra-annual vegetation growth by establishing a multiple linear regression model for vegetation growth (indicated by Normalized Difference Vegetation Index, NDVI) with human factor (indicated by NL observations here) and three climatic factors, i.e., temperature, water availability, and solar radiation using the Principal Components Regression (PCR) method. Results indicate that NL observations significantly improve our understanding of intra-annual vegetation growth globally. Model explainability, i.e., adjusted R2 metric of the PCR model, was comparatively improved by 54 % on average with a median value of 11 % when taking NL observations into consideration. Such improvement occurred in 82 % of the whole investigation pixels. We found that the improvement of model explanatory power was significant in regions where both NL and NDVI trends were large, except for the case where both of their trends were negative. At the country-level, the improvement of model explanatory power increases as GDP decreases, illustrating a greater improvement in a lower middle-income country than that in a high-income country. Our findings emphasize the importance of considering human activities (indicated by NL here) in vegetation growth, offering novel insights into the explanation of intra-annual vegetation growth.
Collapse
Affiliation(s)
- Han Yang
- School of Ecology, Hainan University, Haikou 570000, China
| | - Jiahao Chen
- School of Ecology, Hainan University, Haikou 570000, China
| | - Chaohui Zhong
- School of Ecology, Hainan University, Haikou 570000, China
| | - Zijia Zhang
- Ecological Environment Monitoring Center of Hainan Province, Haikou 571126, China
| | - Zhongmin Hu
- School of Ecology, Hainan University, Haikou 570000, China; Hainan Baoting Tropical Rainforest Ecosystem Observation and Research Station, School of Ecology, Hainan University, Haikou 570228, China
| | - Kai Wu
- School of Ecology, Hainan University, Haikou 570000, China; Hainan Baoting Tropical Rainforest Ecosystem Observation and Research Station, School of Ecology, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
van Koppenhagen N, Haller J, Kappeler J, Gossner MM, Bolliger J. LED streetlight characteristics alter the functional composition of ground-dwelling invertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124209. [PMID: 38795821 DOI: 10.1016/j.envpol.2024.124209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Artificial Light at Night (ALAN) has been identified as a primary driver of environmental change in the 21st century with key impacts on ecosystems. At the same time, developments of LED lighting systems with adjustable parameters-such as color temperature and light intensity-may provide an opportunity to mitigate the negative effects of ALAN. To test the potential effects of LED properties, we conducted a comprehensive field study over two summers at three forest sites in Switzerland. We investigated the impact of three key attributes of LED lights (color temperature, brightness, and luminaire shape) on the abundance and community structure of ground-dwelling invertebrate functional groups (predators, omnivores, and detritivores). We found a significantly increased nocturnal attraction of omnivores (+275%) and predators (+70%), but not detritivores, to ALAN, altering arthropod community composition and trophic interactions in forests. LED color temperature and luminaire shape showed minimal effects on all three functional groups, while reducing light level from 100% to 50% attracted fewer individuals in all groups with a significant effect in omnivores (-57%). In addition, we observed significant interactions of color temperatures and luminaire shapes with light intensity, with a decrease in numbers when dimming the light to 50% intensity combined with a color temperature of 3700 K for predators (-53%), with diffusing luminaire shapes for omnivores (-77%) and with standard luminaire shape for detritivores (-27%). The predator-detritivore ratio showed a significant color temperature - light level interaction, with increased numbers of predators around streetlights with 3700 K and 100% intensity, resulting in an elevated top-down pressure on detritivores. These results suggest the importance of considering combined light characteristics in future outdoor lighting designs.
Collapse
Affiliation(s)
- Nicola van Koppenhagen
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland.
| | - Jörg Haller
- EKZ, Dreikönigstrasse 18, CH-8022, Zürich, Switzerland
| | - Julia Kappeler
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Martin M Gossner
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland; ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, CH-8092, Zurich, Switzerland
| | - Janine Bolliger
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
5
|
Liu Y, Heinen R. Plant invasions under artificial light at night. Trends Ecol Evol 2024; 39:703-705. [PMID: 38821783 DOI: 10.1016/j.tree.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 06/02/2024]
Abstract
Artificial light at night (ALAN) is a global change driver but how it interacts with plant invasions is unclear. Determining this requires understanding direct effects of ALAN on physiology, phenology, growth, and fitness of both invasive and native plant species and its indirect effects mediated through mutualistic and/or antagonistic interactions.
Collapse
Affiliation(s)
- Yanjie Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Robin Heinen
- Terrestrial Ecology Research Group, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| |
Collapse
|
6
|
Sanders D, Hirt MR, Brose U, Evans DM, Gaston KJ, Gauzens B, Ryser R. How artificial light at night may rewire ecological networks: concepts and models. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220368. [PMID: 37899020 PMCID: PMC10613535 DOI: 10.1098/rstb.2022.0368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 10/31/2023] Open
Abstract
Artificial light at night (ALAN) is eroding natural light cycles and thereby changing species distributions and activity patterns. Yet little is known about how ecological interaction networks respond to this global change driver. Here, we assess the scientific basis of the current understanding of community-wide ALAN impacts. Based on current knowledge, we conceptualize and review four major pathways by which ALAN may affect ecological interaction networks by (i) impacting primary production, (ii) acting as an environmental filter affecting species survival, (iii) driving the movement and distribution of species, and (iv) changing functional roles and niches by affecting activity patterns. Using an allometric-trophic network model, we then test how a shift in temporal activity patterns for diurnal, nocturnal and crepuscular species impacts food web stability. The results indicate that diel niche shifts can severely impact community persistence by altering the temporal overlap between species, which leads to changes in interaction strengths and rewiring of networks. ALAN can thereby lead to biodiversity loss through the homogenization of temporal niches. This integrative framework aims to advance a predictive understanding of community-level and ecological-network consequences of ALAN and their cascading effects on ecosystem functioning. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Dirk Sanders
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Myriam R. Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Darren M. Evans
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Kevin J. Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| |
Collapse
|
7
|
Shuai LY, Wang LQ, Xia Y, Xia JY, Hong K, Wu YN, Tian XY, Zhang FS. Combined effects of light pollution and vegetation height on behavior and body weight in a nocturnal rodent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121676. [PMID: 37098367 DOI: 10.1016/j.envpol.2023.121676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
At a global scale, organisms are under threat due to various kinds of environmental changes, such as artificial light at night (ALAN), noise, climatic change and vegetation destruction. Usually, these changes co-vary in time and space and may take effect simultaneously. Although impacts of ALAN on biological processes have been well documented, our knowledge on the combined effects of ALAN and other environmental changes on animals remains limited. In this study, we conducted field experiments in semi-natural enclosures to explore the combined effects of ALAN and vegetation height on foraging behavior, vigilance, activity patterns and body weight in dwarf striped hamsters (Cricetulus barabensis), a nocturnal rodent widely distributed in East Asia. We find that ALAN and vegetation height affected different aspects of behavior. ALAN negatively affected search speed and positively affected handling speed, while vegetation height negatively affected giving-up density and positively affected body weight. ALAN and vegetation height also additively shaped total time spent in a food patch. No significant interactive effect of ALAN and vegetation height was detected. C. barabensis exposed to ALAN and short vegetation suffered a significant loss in body weight, and possessed a much narrower temporal niche (i.e. initiated activity later but became inactive earlier) than those under other combinations of treatments. The observed behavioral responses to ALAN and changes in vegetation height may bring fitness consequences, as well as further changes in structure and functioning of local ecosystems.
Collapse
Affiliation(s)
- Ling-Ying Shuai
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Li-Qing Wang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yang Xia
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jin-Yu Xia
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Kang Hong
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ya-Nan Wu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xin-Yi Tian
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Fu-Shun Zhang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China.
| |
Collapse
|
8
|
Moubarak EM, David Fernandes AS, Stewart AJA, Niven JE. Artificial light impairs local attraction to females in male glow-worms. J Exp Biol 2023; 226:jeb245760. [PMID: 37311409 DOI: 10.1242/jeb.245760] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/03/2023] [Indexed: 06/15/2023]
Abstract
The negative effects of artificial lighting at night (ALAN) on insects are increasingly recognised and have been postulated as one possible cause of declines in insect populations. Yet, the behavioural mechanisms underpinning ALAN effects on insects remain unclear. ALAN interferes with the bioluminescent signal female glow-worms use to attract males, disrupting reproduction. To determine the behavioural mechanisms that underpin this effect of ALAN, we quantified the effect of white illumination on males' ability to reach a female-mimicking LED within a Y-maze. We show that as the intensity of illumination increases, the proportion of males reaching the female-mimicking LED declines. Brighter illumination also increases the time taken by males to reach the female-mimicking LED. This is a consequence of males spending more time: (i) in the central arm of the Y-maze; and (ii) with their head retracted beneath their head shield. These effects reverse rapidly when illumination is removed, suggesting that male glow-worms are averse to white light. Our results show that ALAN not only prevents male glow-worms from reaching females, but also increases the time they take to reach females and the time they spend avoiding exposure to light. This demonstrates that the impacts of ALAN on male glow-worms extend beyond those previously observed in field experiments, and raises the possibility that ALAN has similar behavioural impacts on other insect species that remain undetected in field experiments.
Collapse
Affiliation(s)
- Estelle M Moubarak
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | - Alan J A Stewart
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Jeremy E Niven
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
9
|
Impact of light pollution on nocturnal pollinators and their pollination services. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Stöckl AL, Foster JJ. Night skies through animals' eyes-Quantifying night-time visual scenes and light pollution as viewed by animals. Front Cell Neurosci 2022; 16:984282. [PMID: 36274987 PMCID: PMC9582234 DOI: 10.3389/fncel.2022.984282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
A large proportion of animal species enjoy the benefits of being active at night, and have evolved the corresponding optical and neural adaptations to cope with the challenges of low light intensities. However, over the past century electric lighting has introduced direct and indirect light pollution into the full range of terrestrial habitats, changing nocturnal animals' visual worlds dramatically. To understand how these changes affect nocturnal behavior, we here propose an animal-centered analysis method based on environmental imaging. This approach incorporates the sensitivity and acuity limits of individual species, arriving at predictions of photon catch relative to noise thresholds, contrast distributions, and the orientation cues nocturnal species can extract from visual scenes. This analysis relies on just a limited number of visual system parameters known for each species. By accounting for light-adaptation in our analysis, we are able to make more realistic predictions of the information animals can extract from nocturnal visual scenes under different levels of light pollution. With this analysis method, we aim to provide context for the interpretation of behavioral findings, and to allow researchers to generate specific hypotheses for the behavior of nocturnal animals in observed light-polluted scenes.
Collapse
Affiliation(s)
- Anna Lisa Stöckl
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, Universität Konstanz, Konstanz, Germany
| | - James Jonathan Foster
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
11
|
Kehoe R, Sanders D, van Veen FJ. Towards a mechanistic understanding of the effects of artificial light at night on insect populations and communities. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100950. [PMID: 35868610 DOI: 10.1016/j.cois.2022.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Artificial light at night (ALAN) is markedly changing the night-time environment with many studies showing single-species responses. Exposure to ALAN can lead to population declines that should have consequences for the functioning and stability of ecological communities. Here, we summarise current knowledge on how insect communities are affected by ALAN. Based on reported effects of ALAN on the interactions between species, and what has been demonstrated for similar effects in other contexts, we argue that direct effects of ALAN on a few species can potentially propagate through the network of species interactions to have widespread effects in ecological communities. This can lead to a shift in community structure and simplified communities. We discuss the diversity of ALAN as a pressure and highlight major gaps in the research field. In particular, we conclude that landscape level impacts on populations and communities are understudied.
Collapse
Affiliation(s)
- Rachel Kehoe
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Dirk Sanders
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Frank Jf van Veen
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom.
| |
Collapse
|
12
|
Katabaro JM, Yan Y, Hu T, Yu Q, Cheng X. A review of the effects of artificial light at night in urban areas on the ecosystem level and the remedial measures. Front Public Health 2022; 10:969945. [PMID: 36299764 PMCID: PMC9589889 DOI: 10.3389/fpubh.2022.969945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
This paper attempts to realize the balance between humans and ecology in designing the nighttime light environment of urban parks by clarifying the influence of nighttime artificial light on the ecosystem of urban parks. Firstly, we reviewed the effects of nighttime artificial light on individual predation and reproduction of animals and personal growth and reproduction of plants. Secondly, we discuss the impact of individual changes caused by artificial lighting on ecosystem function at the ecosystem and analyze its advantages and disadvantages. The results showed that nighttime artificial light had a double-sided impact on the ecosystem, which would hurt the ecosystem function, but had a positive effect on the green space, which lacked natural light and had high plant density. This paper focuses on the areas with increased application of artificial lighting and rich species of animals and plants in night cities, such as urban forest parks and urban green spaces. It discusses how to reduce the intrusion of artificial lighting on ecosystems and how to make better use of the positive effect of artificial light.
Collapse
Affiliation(s)
- Justine Mushobozi Katabaro
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of the Ministry of Education of Mountainous City and Towns Construction and New Technology, Chongqing University, Chongqing, China
| | - Yonghong Yan
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of the Ministry of Education of Mountainous City and Towns Construction and New Technology, Chongqing University, Chongqing, China
| | - Tao Hu
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of the Ministry of Education of Mountainous City and Towns Construction and New Technology, Chongqing University, Chongqing, China
| | - Quan Yu
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of the Ministry of Education of Mountainous City and Towns Construction and New Technology, Chongqing University, Chongqing, China
| | - Xiang Cheng
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of the Ministry of Education of Mountainous City and Towns Construction and New Technology, Chongqing University, Chongqing, China
| |
Collapse
|
13
|
Deprato A, Rao H, Durrington H, Maidstone R, Adan A, Navarro JF, Palomar-Cros A, Harding BN, Haldar P, Moitra S, Moitra T, Melenka L, Kogevinas M, Lacy P, Moitra S. The Influence of Artificial Light at Night on Asthma and Allergy, Mental Health, and Cancer Outcomes: A Systematic Scoping Review Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8522. [PMID: 35886376 PMCID: PMC9319466 DOI: 10.3390/ijerph19148522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/25/2022] [Accepted: 07/09/2022] [Indexed: 12/04/2022]
Abstract
Artificial light at night (ALAN) exposure is associated with the disruption of human circadian processes. Through numerous pathophysiological mechanisms such as melatonin dysregulation, it is hypothesised that ALAN exposure is involved in asthma and allergy, mental illness, and cancer outcomes. There are numerous existing studies considering these relationships; however, a critical appraisal of available evidence on health outcomes has not been completed. Due to the prevalence of ALAN exposure and these outcomes in society, it is critical that current evidence of their association is understood. Therefore, this systematic scoping review will aim to assess the association between ALAN exposure and asthma and allergy, mental health, and cancer outcomes. This systematic scoping review will be conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement. We will search bibliographic databases, registries, and references. We will include studies that have described potential sources of ALAN exposure (such as shift work or indoor and outdoor exposure to artificial light); have demonstrated associations with either allergic conditions (including asthma), mental health, or cancer-related outcomes; and are published in English in peer-reviewed journals. We will conduct a comprehensive literature search, title and abstract screening, full-text review, and data collection and analysis for each outcome separately.
Collapse
Affiliation(s)
- Andy Deprato
- Alberta Respiratory Centre and Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; (A.D.); (H.R.); (P.L.)
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2H9, Canada
| | - Himasha Rao
- Alberta Respiratory Centre and Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; (A.D.); (H.R.); (P.L.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Hannah Durrington
- Division of Infection, Immunity, and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK;
| | - Robert Maidstone
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxfordshire OX1 2JD, UK;
| | - Ana Adan
- Department of Clinical Psychology and Psychobiology, University of Barcelona, 08007 Barcelona, Spain;
- Institute of Neurosciences, University of Barcelona, 08007 Barcelona, Spain
| | - Jose Francisco Navarro
- Department of Psychobiology and Methodology of Behavioral Sciences, University of Malaga, 29071 Malaga, Spain;
| | - Anna Palomar-Cros
- Non-Communicable Diseases and Environment Group, ISGlobal, 08003 Barcelona, Spain; (A.P.-C.); (B.N.H.); (M.K.)
- Department of Experimental and Health Sciences, University of Pompeu Fabra, 08003 Barcelona, Spain
| | - Barbara N. Harding
- Non-Communicable Diseases and Environment Group, ISGlobal, 08003 Barcelona, Spain; (A.P.-C.); (B.N.H.); (M.K.)
| | - Prasun Haldar
- Department of Physiology, West Bengal State University, Barasat 700126, India;
- Department of Medical Laboratory Technology, Supreme Institute of Management and Technology, Mankundu 712139, India
| | - Saibal Moitra
- Department of Respiratory Medicine, Apollo Gleneagles Hospital, Kolkata 700054, India;
| | - Tanusree Moitra
- Department of Psychology, Barrackpore Rastraguru Surendranath College, Barrackpore 700120, India;
| | - Lyle Melenka
- Synergy Respiratory and Cardiac Care, Sherwood Park, AB T8H 0N2, Canada;
| | - Manolis Kogevinas
- Non-Communicable Diseases and Environment Group, ISGlobal, 08003 Barcelona, Spain; (A.P.-C.); (B.N.H.); (M.K.)
- Department of Experimental and Health Sciences, University of Pompeu Fabra, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), 08003 Barcelona, Spain
| | - Paige Lacy
- Alberta Respiratory Centre and Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; (A.D.); (H.R.); (P.L.)
| | - Subhabrata Moitra
- Alberta Respiratory Centre and Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; (A.D.); (H.R.); (P.L.)
| |
Collapse
|
14
|
Liu Y, Speißer B, Knop E, van Kleunen M. The Matthew effect: Common species become more common and rare ones become more rare in response to artificial light at night. GLOBAL CHANGE BIOLOGY 2022; 28:3674-3682. [PMID: 35152520 DOI: 10.1111/gcb.16126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/14/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Artificial light at night (ALAN) has been and still is rapidly spreading and has become an important component of global change. Although numerous studies have tested its potential biological and ecological impacts on animals, very few studies have tested whether it affects alien and native plants differently. Furthermore, common plant species, and particularly common alien species, are often found to benefit more from additional resources than rare native and rare alien species. Whether this is also the case with regard to increasing light due to ALAN is still unknown. Here, we tested how ALAN affected the performance of common and rare alien and native plant species in Germany directly, and indirectly via flying insects. We grew five common alien, six rare alien, five common native, and four rare native plant species under four combinations of two ALAN (no ALAN vs. ALAN) and two insect-exclusion (no exclusion vs. exclusion) treatments, and compared their biomass production. We found that common plant species, irrespective of their origin, produced significantly more biomass than rare species and that this was particularly true under ALAN. Furthermore, alien species tended to show a slightly stronger positive response to ALAN than native species did (p = .079). Our study shows that common plant species benefited more from ALAN than rare ones. This might lead to competitive exclusion of rare species, which could have cascading impacts on other trophic levels and thus have important community-wide consequences when ALAN becomes more widespread. In addition, the slightly more positive response of alien species indicates that ALAN might increase the risk of alien plant invasions.
Collapse
Affiliation(s)
- Yanjie Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Benedikt Speißer
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Eva Knop
- Agroscope, Agroecology and Environment, Zürich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| |
Collapse
|
15
|
Hölker F, Bolliger J, Davies TW, Giavi S, Jechow A, Kalinkat G, Longcore T, Spoelstra K, Tidau S, Visser ME, Knop E. 11 Pressing Research Questions on How Light Pollution Affects Biodiversity. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.767177] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Artificial light at night (ALAN) is closely associated with modern societies and is rapidly increasing worldwide. A dynamically growing body of literature shows that ALAN poses a serious threat to all levels of biodiversity—from genes to ecosystems. Many “unknowns” remain to be addressed however, before we fully understand the impact of ALAN on biodiversity and can design effective mitigation measures. Here, we distilled the findings of a workshop on the effects of ALAN on biodiversity at the first World Biodiversity Forum in Davos attended by several major research groups in the field from across the globe. We argue that 11 pressing research questions have to be answered to find ways to reduce the impact of ALAN on biodiversity. The questions address fundamental knowledge gaps, ranging from basic challenges on how to standardize light measurements, through the multi-level impacts on biodiversity, to opportunities and challenges for more sustainable use.
Collapse
|
16
|
Mao F, Wang Z, Zheng Y, Tang S, Luo X, Xiong T, Yan S. Fine mapping of a heading date QTL, Se16(t), under extremely long day conditions in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:70. [PMID: 37309360 PMCID: PMC10236121 DOI: 10.1007/s11032-021-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Heading date (flowering time) is a key trait that determines the yield and the adaptability of rice varieties. In the past 20 years, a number of genetic studies have been carried out to elucidate the genetic control of rice heading date, and many important genes have been cloned. These genes were identified under natural day (ND) conditions; however, little is known about the heading behavior under extreme day-length conditions. In this study, we identified a japonica variety, Sasanishiki, that showed sensitivity to extremely long days (ELD). Its heading date was significantly delayed for about 20 days under artificial ELD conditions that were achieved by setting a light emitting diode (LED) lamp beside a paddy field. We found that the late heading phenotype of Sasanishiki was induced when the day length was more than 14.75 h, and the LED light intensity was above 2 µmol m-2 s-1. Genetic analysis revealed that the photoperiod sensitivity of Sasanishiki was controlled by a dominant locus, temporarily named Se16(t). It was fine mapped to a 30.4-kb interval on chromosome 3, containing five predicted genes, including PHYC, a phytochrome encoding gene of rice. Our findings provide new information on the heading date under ELD conditions in rice. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01263-8.
Collapse
Affiliation(s)
- Fangming Mao
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Zhiquan Wang
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Yiyun Zheng
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Shusheng Tang
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Xin Luo
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Tao Xiong
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Song Yan
- Rice National Engineering Laboratory (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| |
Collapse
|
17
|
Grubisic M, van Grunsven RH. Artificial light at night disrupts species interactions and changes insect communities. CURRENT OPINION IN INSECT SCIENCE 2021; 47:136-141. [PMID: 34256168 DOI: 10.1016/j.cois.2021.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Artificial light at night (ALAN) is globally increasing, posing a threat to biodiversity. The impact of nocturnal illumination on individual insects has been relatively well documented. Recent studies show that ALAN also impacts species interactions, including intra-specific communication, trophic interactions and plant-pollinator interactions, with cascading effects in the ecosystem and impacts on ecosystem functioning that extend beyond nocturnal communities and illuminated areas. Reduced population sizes and changes in community composition because of exposure to ALAN have been reported but the understanding of the impacts of ALAN on insect communities is currently limited to few groups and ecosystems. The theoretical framework on how ALAN impacts insect communities and populations is poorly developed, limiting our understanding and the formulation of relevant hypotheses.
Collapse
Affiliation(s)
- Maja Grubisic
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301/310, 12587 Berlin, Germany.
| | - Roy Ha van Grunsven
- Dutch Butterfly Conservation, Mennonietenweg 10, 6702 AD Wageningen, The Netherlands
| |
Collapse
|
18
|
Van den Broeck M, De Cock R, Van Dongen S, Matthysen E. Blinded by the Light: Artificial Light Lowers Mate Attraction Success in Female Glow-Worms ( Lampyris noctiluca L.). INSECTS 2021; 12:734. [PMID: 34442300 PMCID: PMC8397135 DOI: 10.3390/insects12080734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 11/20/2022]
Abstract
Nocturnal light pollution from anthropogenic origin is increasing worldwide and is recognised as a major threat for nocturnal biodiversity. We studied the impact of artificial light on the mate attraction success of female common glow-worms (Lampyris noctiluca L.) by daily monitoring their glowing status in the field, acting as a proxy for mating status throughout the mating season. We found that females in dark surroundings typically stopped glowing after one night, indicating that they had mated, while females in illuminated areas glowed for significantly more nights, in some cases up to 15 nights. Our study confirms previous findings and hypotheses that females exposed to artificial light suffer from a reduced mate attraction success with a negative impact on populations.
Collapse
Affiliation(s)
- Mira Van den Broeck
- Evolutionary Ecology Group, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Wilrijk, B-2610 Antwerp, Belgium; (R.D.C.); (S.V.D.); (E.M.)
| | | | | | | |
Collapse
|
19
|
Boyes DH, Evans DM, Fox R, Parsons MS, Pocock MJO. Street lighting has detrimental impacts on local insect populations. SCIENCE ADVANCES 2021; 7:7/35/eabi8322. [PMID: 34433571 PMCID: PMC8386932 DOI: 10.1126/sciadv.abi8322] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/08/2021] [Indexed: 05/23/2023]
Abstract
Reported declines in insect populations have sparked global concern, with artificial light at night (ALAN) identified as a potential contributing factor. Despite strong evidence that lighting disrupts a range of insect behaviors, the empirical evidence that ALAN diminishes wild insect abundance is limited. Using a matched-pairs design, we found that street lighting strongly reduced moth caterpillar abundance compared with unlit sites (47% reduction in hedgerows and 33% reduction in grass margins) and affected caterpillar development. A separate experiment in habitats with no history of lighting revealed that ALAN disrupted the feeding behavior of nocturnal caterpillars. Negative impacts were more pronounced under white light-emitting diode (LED) street lights compared to conventional yellow sodium lamps. This indicates that ALAN and the ongoing shift toward white LEDs (i.e., narrow- to broad-spectrum lighting) will have substantial consequences for insect populations and ecosystem processes.
Collapse
Affiliation(s)
- Douglas H Boyes
- UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, UK.
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Butterfly Conservation, Wareham, Dorset BH20 5QP, UK
| | - Darren M Evans
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Richard Fox
- Butterfly Conservation, Wareham, Dorset BH20 5QP, UK
| | | | | |
Collapse
|
20
|
Giavi S, Fontaine C, Knop E. Impact of artificial light at night on diurnal plant-pollinator interactions. Nat Commun 2021; 12:1690. [PMID: 33727549 PMCID: PMC7966740 DOI: 10.1038/s41467-021-22011-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Artificial light at night has rapidly spread around the globe over the last decades. Evidence is increasing that it has adverse effects on the behavior, physiology, and survival of animals and plants with consequences for species interactions and ecosystem functioning. For example, artificial light at night disrupts plant-pollinator interactions at night and this can have consequences for the plant reproductive output. By experimentally illuminating natural plant-pollinator communities during the night using commercial street-lamps we tested whether light at night can also change interactions of a plant-pollinator community during daytime. Here we show that artificial light at night can alter diurnal plant-pollinator interactions, but the direction of the change depends on the plant species. We conclude that the effect of artificial light at night on plant-pollinator interactions is not limited to the night, but can also propagate to the daytime with so far unknown consequences for the pollinator community and the diurnal pollination function and services they provide.
Collapse
Affiliation(s)
- Simone Giavi
- Departement of Agroecology and Environment, Agroscope, Zürich, Switzerland
| | - Colin Fontaine
- Centre d'Ecologie et des Sciences de la Conservation, CESCO, Muséum National d'Histoire Naturelle-CNRS-Sorbonne Université, Paris, France
| | - Eva Knop
- Departement of Agroecology and Environment, Agroscope, Zürich, Switzerland.
- Departement of Evolutionary Biology and Environmental Sciences, University of Zürich, Zürich, Switzerland.
| |
Collapse
|