1
|
Fritzsche M, Kruse K. Mechanical force matters in early T cell activation. Proc Natl Acad Sci U S A 2024; 121:e2404748121. [PMID: 39240966 PMCID: PMC11406235 DOI: 10.1073/pnas.2404748121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024] Open
Abstract
Mechanical force has repeatedly been highlighted to be involved in T cell activation. However, the biological significance of mechanical force for T cell receptor signaling remains under active consideration. Here, guided by theoretical analysis, we provide a perspective on how mechanical forces between a T cell and an antigen-presenting cell can influence the bond of a single T cell receptor major histocompatibility complex during early T cell activation. We point out that the lifetime of T cell receptor bonds and thus the degree of their phosphorylation which is essential for T cell activation depends considerably on the T cell receptor rigidity and the average magnitude and frequency of an applied oscillatory force. Such forces could be, for example, produced by protrusions like microvilli during early T cell activation or invadosomes during full T cell activation. These features are suggestive of mechanical force being exploited by T cells to advance self-nonself discrimination in early T cell activation.
Collapse
Affiliation(s)
- Marco Fritzsche
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX37FY, United Kingdom
- Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, United Kingdom
| | - Karsten Kruse
- Department of Biochemistry, University of Geneva, Geneva 1205, Switzerland
- Department of Theoretical Physics, University of Geneva, Geneva 1205, Switzerland
| |
Collapse
|
2
|
Ou L, Wu T, Qiu B, Jin H, Xu F, Wu H, Zhang W, Xue M, Zhou Z, Lin B, Sun D, Chen S. Real-Time Wireless Sensing of Cardiomyocyte Contractility by Integrating Magnetic Microbeam and Oriented Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45861-45870. [PMID: 39177826 DOI: 10.1021/acsami.4c01585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
In vitro cardiomyocyte mechano-sensing platform is crucial for evaluating the mechanical performance of cardiac tissues and will be an indispensable tool for application in drug discovery and disease mechanism study. Magnetic sensing offers significant advantages in real-time, in situ wireless monitoring and resistance to ion interference. However, due to the mismatch between the stiffness of traditional rigid magnetic material and myocardial tissue, sensitivity is insufficient and it is difficult to achieve cell structure induction and three-dimensional cultivation. Herein, a magnetic sensing platform that integrates a neodymium-iron-boron/polydimethylsiloxane (NdFeB/PDMS) flexible microbeam with suspended and ordered polycaprolactone (PCL) nanofiber membranes was developed, providing a three-dimensional anisotropic culture environment for cardiomyocyte growth and simultaneously realizing in situ wireless contractility monitoring. The as-prepared sensor presented an ultrahigh sensitivity of 442.2 μV/μm and a deflection resolution of 2 μm. By continuously monitoring the cardiomyocyte growth status and drug stimulation feedback, we verified the capability of the platform to capture dynamic changes in cardiomyocyte contractility. This platform provides a perspective tool for evaluating cardiomyocyte maturity and drug performance.
Collapse
Affiliation(s)
- Lu Ou
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Tianhao Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Bin Qiu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Hang Jin
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Feng Xu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Huiquan Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Wangzihan Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Mingcheng Xue
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Zhuomin Zhou
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Bin Lin
- Guangdong Beating Origin Regenerative Medicine Co., Ltd., Foshan 528231, China
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Songyue Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Jin XK, Jin KQ, Yang XK, Wen MY, Liu YL, Huang WH. Real-time monitoring of intracellular biochemical response in locally stretched single cell by a nanosensor. Anal Bioanal Chem 2024; 416:4779-4787. [PMID: 38802680 DOI: 10.1007/s00216-024-05348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/27/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Mechanotransduction is the essential process that cells convert mechanical force into biochemical responses, and electrochemical sensor stands out from existing techniques by providing quantitative and real-time information about the biochemical signals during cellular mechanotransduction. However, the intracellular biochemical response evoked by mechanical force has been poorly monitored. In this paper, we report a method to apply local stretch on single cell and simultaneously monitor the ensuing intracellular biochemical signals. Specifically, a ferromagnetic micropipette was fabricated to locally stretch a single cell labeled with Fe3O4 nanoparticles under the external magnetic field, and the SiC@Pt nanowire electrode (SiC@Pt NWE) was inserted into the cell to monitor the intracellular hydrogen peroxide (H2O2) production induced by the local stretch. As a proof of concept, this work quantitatively investigated the elevated amount of H2O2 levels in single endothelial cell under different stretching amplitudes. This work puts forward a new research modality to manipulate and monitor the mechanotransduction at the single-cell level.
Collapse
Affiliation(s)
- Xue-Ke Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kai-Qi Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiao-Ke Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ming-Yong Wen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
4
|
Blázquez-Carmona P, Ruiz-Mateos R, Barrasa-Fano J, Shapeti A, Martín-Alfonso JE, Domínguez J, Van Oosterwyck H, Reina-Romo E, Sanz-Herrera JA. Quantitative atlas of collagen hydrogels reveals mesenchymal cancer cell traction adaptation to the matrix nanoarchitecture. Acta Biomater 2024; 185:281-295. [PMID: 38992411 DOI: 10.1016/j.actbio.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Collagen-based hydrogels are commonly used in mechanobiology to mimic the extracellular matrix. A quantitative analysis of the influence of collagen concentration and properties on the structure and mechanics of the hydrogels is essential for tailored design adjustments for specific in vitro conditions. We combined focused ion beam scanning electron microscopy and rheology to provide a detailed quantitative atlas of the mechanical and nanoscale three-dimensional structural alterations that occur when manipulating different hydrogel's physicochemistry. Moreover, we study the effects of such alterations on the phenotype of breast cancer cells and their mechanical interactions with the extracellular matrix. Regardless of the microenvironment's pore size, porosity or mechanical properties, cancer cells are able to reach a stable mesenchymal-like morphology. Additionally, employing 3D traction force microscopy, a positive correlation between cellular tractions and ECM mechanics is observed up to a critical threshold, beyond which tractions plateau. This suggests that cancer cells in a stable mesenchymal state calibrate their mechanical interactions with the ECM to keep their migration and invasiveness capacities unaltered. STATEMENT OF SIGNIFICANCE: The paper presents a thorough study on the mechanical microenvironment in breast cancer cells during their interaction with collagen based hydrogels of different compositions. The hydrogels' microstructure were obtained using state-of-the-art 3D microscopy, namely focused ion beam-scanning electron microscope (FIB-SEM). FIB-SEM was originally applied in this work to reconstruct complex fibered collagen microstructures within the nanometer range, to obtain key microarchitectural parameters. The mechanical microenvironment of cells was recovered using Traction Force Microscopy (TFM). The obtained results suggest that cells calibrate tractions such that they depend on mechanical, microstructural and physicochemical characteristics of the hydrogels, hence revealing a steric hindrance. We hypothesize that cancer cells studied in this paper tune their mechanical state to keep their migration and invasiveness capacities unaltered.
Collapse
Affiliation(s)
- Pablo Blázquez-Carmona
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - Raquel Ruiz-Mateos
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - Jorge Barrasa-Fano
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300. B-3001 Heverlee, Belgium
| | - Apeksha Shapeti
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300. B-3001 Heverlee, Belgium
| | - José Enrique Martín-Alfonso
- Escuela Técnica Superior de Ingeniería, Universidad de Huelva. Avda. de las Fuerzas Armadas s/n, 21007 Huelva, Spain
| | - Jaime Domínguez
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - Hans Van Oosterwyck
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300. B-3001 Heverlee, Belgium
| | - Esther Reina-Romo
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - José Antonio Sanz-Herrera
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain.
| |
Collapse
|
5
|
Llewellyn J, Charrier A, Cuciniello R, Helfer E, Dono R. Substrate stiffness alters layer architecture and biophysics of human induced pluripotent stem cells to modulate their differentiation potential. iScience 2024; 27:110557. [PMID: 39175774 PMCID: PMC11340605 DOI: 10.1016/j.isci.2024.110557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024] Open
Abstract
Lineage-specific differentiation of human induced pluripotent stem cells (hiPSCs) relies on complex interactions between biochemical and physical cues. Here we investigated the ability of hiPSCs to undergo lineage commitment in response to inductive signals and assessed how this competence is modulated by substrate stiffness. We showed that Activin A-induced hiPSC differentiation into mesendoderm and its derivative, definitive endoderm, is enhanced on gel-based substrates softer than glass. This correlated with changes in tight junction formation and extensive cytoskeletal remodeling. Further, live imaging and biophysical studies suggested changes in cell motility and interfacial contacts underlie hiPSC layer reshaping on soft substrates. Finally, we repurposed an ultra-soft silicone gel, which may provide a suitable substrate for culturing hiPSCs at physiological stiffnesses. Our results provide mechanistic insight into how epithelial mechanics dictate the hiPSC response to chemical signals and provide a tool for their efficient differentiation in emerging stem cell therapies.
Collapse
Affiliation(s)
- Jack Llewellyn
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, NeuroMarseille, Marseille, France
- Aix Marseille University, CNRS, CINAM, Turing Centre for Living Systems, 13009 Marseille, France
| | - Anne Charrier
- Aix Marseille University, CNRS, CINAM, Turing Centre for Living Systems, 13009 Marseille, France
| | - Rossana Cuciniello
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, NeuroMarseille, Marseille, France
| | - Emmanuèle Helfer
- Aix Marseille University, CNRS, CINAM, Turing Centre for Living Systems, 13009 Marseille, France
| | - Rosanna Dono
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, NeuroMarseille, Marseille, France
| |
Collapse
|
6
|
Booth JH, Meek AT, Kronenberg NM, Pulver SR, Gather MC. Optical mapping of ground reaction force dynamics in freely behaving Drosophila melanogaster larvae. eLife 2024; 12:RP87746. [PMID: 39042447 PMCID: PMC11265794 DOI: 10.7554/elife.87746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
During locomotion, soft-bodied terrestrial animals solve complex control problems at substrate interfaces, but our understanding of how they achieve this without rigid components remains incomplete. Here, we develop new all-optical methods based on optical interference in a deformable substrate to measure ground reaction forces (GRFs) with micrometre and nanonewton precision in behaving Drosophila larvae. Combining this with a kinematic analysis of substrate-interfacing features, we shed new light onto the biomechanical control of larval locomotion. Crawling in larvae measuring ~1 mm in length involves an intricate pattern of cuticle sequestration and planting, producing GRFs of 1-7 µN. We show that larvae insert and expand denticulated, feet-like structures into substrates as they move, a process not previously observed in soft-bodied animals. These 'protopodia' form dynamic anchors to compensate counteracting forces. Our work provides a framework for future biomechanics research in soft-bodied animals and promises to inspire improved soft-robot design.
Collapse
Affiliation(s)
- Jonathan H Booth
- SUPA, School of Physics and Astronomy, University of St AndrewsSt AndrewsUnited Kingdom
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of CologneCologneGermany
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
- Centre of Biophotonics, University of St AndrewsSt AndrewsUnited Kingdom
| | - Andrew T Meek
- SUPA, School of Physics and Astronomy, University of St AndrewsSt AndrewsUnited Kingdom
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of CologneCologneGermany
- Centre of Biophotonics, University of St AndrewsSt AndrewsUnited Kingdom
| | - Nils M Kronenberg
- SUPA, School of Physics and Astronomy, University of St AndrewsSt AndrewsUnited Kingdom
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of CologneCologneGermany
- Centre of Biophotonics, University of St AndrewsSt AndrewsUnited Kingdom
| | - Stefan R Pulver
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
- Centre of Biophotonics, University of St AndrewsSt AndrewsUnited Kingdom
| | - Malte C Gather
- SUPA, School of Physics and Astronomy, University of St AndrewsSt AndrewsUnited Kingdom
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of CologneCologneGermany
- Centre of Biophotonics, University of St AndrewsSt AndrewsUnited Kingdom
| |
Collapse
|
7
|
Cheung BCH, Abbed RJ, Wu M, Leggett SE. 3D Traction Force Microscopy in Biological Gels: From Single Cells to Multicellular Spheroids. Annu Rev Biomed Eng 2024; 26:93-118. [PMID: 38316064 DOI: 10.1146/annurev-bioeng-103122-031130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cell traction force plays a critical role in directing cellular functions, such as proliferation, migration, and differentiation. Current understanding of cell traction force is largely derived from 2D measurements where cells are plated on 2D substrates. However, 2D measurements do not recapitulate a vital aspect of living systems; that is, cells actively remodel their surrounding extracellular matrix (ECM), and the remodeled ECM, in return, can have a profound impact on cell phenotype and traction force generation. This reciprocal adaptivity of living systems is encoded in the material properties of biological gels. In this review, we summarize recent progress in measuring cell traction force for cells embedded within 3D biological gels, with an emphasis on cell-ECM cross talk. We also provide perspectives on tools and techniques that could be adapted to measure cell traction force in complex biochemical and biophysical environments.
Collapse
Affiliation(s)
- Brian C H Cheung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA;
| | - Rana J Abbed
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA;
| | - Susan E Leggett
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
8
|
Chen T, Giannone G. Single molecule imaging unveils cellular architecture, dynamics and mechanobiology. Curr Opin Cell Biol 2024; 88:102369. [PMID: 38759257 DOI: 10.1016/j.ceb.2024.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/19/2024]
Abstract
The biomechanical regulation of the cytoskeleton and cell adhesions underlies various essential cellular functions. Studying them requires visualizing their nanostructure and molecular dynamics with evermore precise spatio-temporal resolution. In this review we will focus on the recent advances in single molecule fluorescence imaging techniques and discuss how they improve our understanding of mechanically sensitive cellular structures such as adhesions and the cytoskeleton. We will also discuss future directions for research, emphasizing on the 3D nature of cellular structures and tissues, their mechanical regulation at the molecule level, as well as how super-resolution microscopy will enhance our knowledge on protein structure and conformational changes in the cellular context.
Collapse
Affiliation(s)
- Tianchi Chen
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, 33000 Bordeaux, France
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
9
|
Smith AM, Inocencio DG, Pardi BM, Gopinath A, Andresen Eguiluz RC. Facile Determination of the Poisson's Ratio and Young's Modulus of Polyacrylamide Gels and Polydimethylsiloxane. ACS APPLIED POLYMER MATERIALS 2024; 6:2405-2416. [PMID: 38420286 PMCID: PMC10897882 DOI: 10.1021/acsapm.3c03154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
Polyacrylamide hydrogels (PAH gel) and polydimethylsiloxane (PDMS, an elastomer) are two soft materials often used in cell mechanics and mechanobiology, in manufacturing lab-on-a-chip applications, among others. This is partly due to the ability to tune their elasticity with ease in addition to various chemical modifications. For affine polymeric networks, two (of three) elastic constants, Young's modulus (E), the shear modulus (G), and Poisson's ratio (ν), describe the purely elastic response to external forces. However, the literature addressing the experimental determination of ν for PAH (sometimes called PAA gels in the literature) and the PDMS elastomer is surprisingly limited when compared to the literature that reports values of the elastic moduli, E and G. Here, we present a facile method to obtain the Poisson's ratio and Young's modulus for PAH gel and PDMS elastomer based on static tensile tests. The value of ν obtained from the deformation of the sample is compared to the value determined by comparing E and G via a second independent method that utilizes small amplitude shear rheology. We show that the Poisson's ratio may vary significantly from the value for incompressible materials (ν = 0.5), often assumed in the literature even for soft compressible hydrogels. Surprisingly, we find a high degree of agreement between elastic constants obtained by shear rheology and macroscopic static tension test data for polyacrylamide hydrogels but not for elastomeric PDMS.
Collapse
Affiliation(s)
- Ariell Marie Smith
- Department of Materials Science and Engineering, School of Engineering, University of California, Merced, 5200 North Lake Road, Merced, California 95344, United States
| | - Dominique Gabriele Inocencio
- Department of Materials Science and Engineering, School of Engineering, University of California, Merced, 5200 North Lake Road, Merced, California 95344, United States
| | - Brandon Michael Pardi
- Department of Materials Science and Engineering, School of Engineering, University of California, Merced, 5200 North Lake Road, Merced, California 95344, United States
| | - Arvind Gopinath
- Department of Bioengineering, School of Engineering, University of California, Merced, 5200 North Lake Road, Merced, California 95344, United States
- Health Sciences Research Institute, University of California Merced, Merced, 5200 North Lake Road, Merced, California 95344, United States
| | - Roberto Carlos Andresen Eguiluz
- Department of Materials Science and Engineering, School of Engineering, University of California, Merced, 5200 North Lake Road, Merced, California 95344, United States
- Health Sciences Research Institute, University of California Merced, Merced, 5200 North Lake Road, Merced, California 95344, United States
| |
Collapse
|
10
|
Lee M, Jeong H, Lee C, Lee MJ, Delmo BR, Heo WD, Shin JH, Park Y. High-resolution assessment of multidimensional cellular mechanics using label-free refractive-index traction force microscopy. Commun Biol 2024; 7:115. [PMID: 38245624 PMCID: PMC10799850 DOI: 10.1038/s42003-024-05788-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
A critical requirement for studying cell mechanics is three-dimensional assessment of cellular shapes and forces with high spatiotemporal resolution. Traction force microscopy with fluorescence imaging enables the measurement of cellular forces, but it is limited by photobleaching and a slow acquisition speed. Here, we present refractive-index traction force microscopy (RI-TFM), which simultaneously quantifies the volumetric morphology and traction force of cells using a high-speed illumination scheme with 0.5-Hz temporal resolution. Without labelling, our method enables quantitative analyses of dry-mass distributions and shear (in-plane) and normal (out-of-plane) tractions of single cells on the extracellular matrix. When combined with a constrained total variation-based deconvolution algorithm, it provides 0.55-Pa shear and 1.59-Pa normal traction sensitivity for a 1-kPa hydrogel substrate. We demonstrate its utility by assessing the effects of compromised intracellular stress and capturing the rapid dynamics of cellular junction formation in the spatiotemporal changes in non-planar traction components.
Collapse
Affiliation(s)
- Moosung Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, South Korea
- Institute for Functional Matter and Quantum Technologies, Universität Stuttgart, 70569, Stuttgart, Germany
| | - Hyuntae Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Chaeyeon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Mahn Jae Lee
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, South Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Benedict Reve Delmo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
- KAIST Institute for the BioCentury (KIB), KAIST, Jaejeo, Daejeon, 34141, South Korea.
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, South Korea.
- Tomocube Inc., Daejeon, 34109, South Korea.
| |
Collapse
|
11
|
Fujikawa R, Okimura C, Kozawa S, Ikeda K, Inagaki N, Iwadate Y, Sakumura Y. Bayesian traction force estimation using cell boundary-dependent force priors. Biophys J 2023; 122:4542-4554. [PMID: 37915171 PMCID: PMC10719052 DOI: 10.1016/j.bpj.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/12/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023] Open
Abstract
Understanding the principles of cell migration necessitates measurements of the forces generated by cells. In traction force microscopy (TFM), fluorescent beads are placed on a substrate's surface and the substrate strain caused by the cell traction force is observed as displacement of the beads. Mathematical analysis can estimate traction force from bead displacement. However, most algorithms estimate substrate stresses independently of cell boundary, which results in poor estimation accuracy in low-density bead environments. To achieve accurate force estimation at low density, we proposed a Bayesian traction force estimation (BTFE) algorithm that incorporates cell-boundary-dependent force as a prior. We evaluated the performance of the proposed algorithm using synthetic data generated with mathematical models of cells and TFM substrates. BTFE outperformed other methods, especially in low-density bead conditions. In addition, the BTFE algorithm provided a reasonable force estimation using TFM images from the experiment.
Collapse
Affiliation(s)
- Ryosuke Fujikawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Chika Okimura
- Department of Biology, Yamaguchi University, Yamaguchi, Japan
| | - Satoshi Kozawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Kazushi Ikeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Data Science Center, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Naoyuki Inagaki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | - Yuichi Sakumura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Data Science Center, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| |
Collapse
|
12
|
Chen MB, Javanmardi Y, Shahreza S, Serwinski B, Aref A, Djordjevic B, Moeendarbary E. Mechanobiology in oncology: basic concepts and clinical prospects. Front Cell Dev Biol 2023; 11:1239749. [PMID: 38020912 PMCID: PMC10644154 DOI: 10.3389/fcell.2023.1239749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The interplay between genetic transformations, biochemical communications, and physical interactions is crucial in cancer progression. Metastasis, a leading cause of cancer-related deaths, involves a series of steps, including invasion, intravasation, circulation survival, and extravasation. Mechanical alterations, such as changes in stiffness and morphology, play a significant role in all stages of cancer initiation and dissemination. Accordingly, a better understanding of cancer mechanobiology can help in the development of novel therapeutic strategies. Targeting the physical properties of tumours and their microenvironment presents opportunities for intervention. Advancements in imaging techniques and lab-on-a-chip systems enable personalized investigations of tumor biomechanics and drug screening. Investigation of the interplay between genetic, biochemical, and mechanical factors, which is of crucial importance in cancer progression, offers insights for personalized medicine and innovative treatment strategies.
Collapse
Affiliation(s)
- Michelle B. Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Somayeh Shahreza
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Bianca Serwinski
- Department of Mechanical Engineering, University College London, London, United Kingdom
- 199 Biotechnologies Ltd., London, United Kingdom
- Northeastern University London, London, United Kingdom
| | - Amir Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Boris Djordjevic
- Department of Mechanical Engineering, University College London, London, United Kingdom
- 199 Biotechnologies Ltd., London, United Kingdom
| | - Emad Moeendarbary
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
13
|
Liu Y, Wu W, Feng S, Chen Y, Wu X, Zhang Q, Wu S. Dynamic response of the cell traction force to osmotic shock. MICROSYSTEMS & NANOENGINEERING 2023; 9:131. [PMID: 37854722 PMCID: PMC10579240 DOI: 10.1038/s41378-023-00603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
Osmotic pressure is vital to many physiological activities, such as cell proliferation, wound healing and disease treatment. However, how cells interact with the extracellular matrix (ECM) when subjected to osmotic shock remains unclear. Here, we visualize the mechanical interactions between cells and the ECM during osmotic shock by quantifying the dynamic evolution of the cell traction force. We show that both hypertonic and hypotonic shocks induce continuous and large changes in cell traction force. Moreover, the traction force varies with cell volume: the traction force increases as cells shrink and decreases as cells swell. However, the direction of the traction force is independent of cell volume changes and is always toward the center of the cell-substrate interface. Furthermore, we reveal a mechanical mechanism in which the change in cortical tension caused by osmotic shock leads to the variation in traction force, which suggests a simple method for measuring changes in cell cortical tension. These findings provide new insights into the mechanical force response of cells to the external environment and may provide a deeper understanding of how the ECM regulates cell structure and function. Traction force exerted by cells under hypertonic and hypotonic shocks. Scale bar, 200 Pa. Color bar, Pa. The black arrows represent the tangential traction forces.
Collapse
Affiliation(s)
- Yongman Liu
- School of Biomedical Engineering, Anhui Medical University, 230032 Hefei, China
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Wenjie Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Shuo Feng
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Ye Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Xiaoping Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
14
|
Zhang Y, Li X, Gao S, Liao Y, Luo Y, Liu M, Bian Y, Xiong H, Yue Y, He A. Genetic reporter for live tracing fluid flow forces during cell fate segregation in mouse blastocyst development. Cell Stem Cell 2023; 30:1110-1123.e9. [PMID: 37541214 DOI: 10.1016/j.stem.2023.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/02/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
Mechanical forces are known to be important in mammalian blastocyst formation; however, due to limited tools, specific force inputs and how they relay to first cell fate control of inner cell mass (ICM) and/or trophectoderm (TE) remain elusive. Combining in toto live imaging and various perturbation experiments, we demonstrate and measure fluid flow forces existing in the mouse blastocyst cavity and identify Klf2(Krüppel-like factor 2) as a fluid force reporter with force-responsive enhancers. Long-term live imaging and lineage reconstructions reveal that blastomeres subject to higher fluid flow forces adopt ICM cell fates. These are reinforced by internal ferrofluid-induced flow force assays. We also utilize ex vivo fluid flow force mimicking and pharmacological perturbations to confirm mechanosensing specificity. Together, we report a genetically encoded reporter for continuously monitoring fluid flow forces and cell fate decisions and provide a live imaging framework to infer force information enriched lineage landscape during development. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Youdong Zhang
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xin Li
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shu Gao
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuanhui Liao
- School of Software and Microelectronics, Peking University, Beijing 100871, China
| | - Yingjie Luo
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Min Liu
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yunkun Bian
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haiqing Xiong
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yanzhu Yue
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Department of Cell Fate and Diseases, Jilin Provincial Key Laboratory of Women's Reproductive Health, the First Hospital of Jilin University, Changchun, Jilin 130061, China.
| | - Aibin He
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Zhu Y, Zhang M, Sun Q, Wang X, Li X, Li Q. Advanced Mechanical Testing Technologies at the Cellular Level: The Mechanisms and Application in Tissue Engineering. Polymers (Basel) 2023; 15:3255. [PMID: 37571149 PMCID: PMC10422338 DOI: 10.3390/polym15153255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Mechanics, as a key physical factor which affects cell function and tissue regeneration, is attracting the attention of researchers in the fields of biomaterials, biomechanics, and tissue engineering. The macroscopic mechanical properties of tissue engineering scaffolds have been studied and optimized based on different applications. However, the mechanical properties of the overall scaffold materials are not enough to reveal the mechanical mechanism of the cell-matrix interaction. Hence, the mechanical detection of cell mechanics and cellular-scale microenvironments has become crucial for unraveling the mechanisms which underly cell activities and which are affected by physical factors. This review mainly focuses on the advanced technologies and applications of cell-scale mechanical detection. It summarizes the techniques used in micromechanical performance analysis, including atomic force microscope (AFM), optical tweezer (OT), magnetic tweezer (MT), and traction force microscope (TFM), and analyzes their testing mechanisms. In addition, the application of mechanical testing techniques to cell mechanics and tissue engineering scaffolds, such as hydrogels and porous scaffolds, is summarized and discussed. Finally, it highlights the challenges and prospects of this field. This review is believed to provide valuable insights into micromechanics in tissue engineering.
Collapse
Affiliation(s)
- Yingxuan Zhu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Mengqi Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qingqing Sun
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
16
|
Rajendran AK, Sankar D, Amirthalingam S, Kim HD, Rangasamy J, Hwang NS. Trends in mechanobiology guided tissue engineering and tools to study cell-substrate interactions: a brief review. Biomater Res 2023; 27:55. [PMID: 37264479 DOI: 10.1186/s40824-023-00393-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Sensing the mechanical properties of the substrates or the matrix by the cells and the tissues, the subsequent downstream responses at the cellular, nuclear and epigenetic levels and the outcomes are beginning to get unraveled more recently. There have been various instances where researchers have established the underlying connection between the cellular mechanosignalling pathways and cellular physiology, cellular differentiation, and also tissue pathology. It has been now accepted that mechanosignalling, alone or in combination with classical pathways, could play a significant role in fate determination, development, and organization of cells and tissues. Furthermore, as mechanobiology is gaining traction, so do the various techniques to ponder and gain insights into the still unraveled pathways. This review would briefly discuss some of the interesting works wherein it has been shown that specific alteration of the mechanical properties of the substrates would lead to fate determination of stem cells into various differentiated cells such as osteoblasts, adipocytes, tenocytes, cardiomyocytes, and neurons, and how these properties are being utilized for the development of organoids. This review would also cover various techniques that have been developed and employed to explore the effects of mechanosignalling, including imaging of mechanosensing proteins, atomic force microscopy (AFM), quartz crystal microbalance with dissipation measurements (QCMD), traction force microscopy (TFM), microdevice arrays, Spatio-temporal image analysis, optical tweezer force measurements, mechanoscanning ion conductance microscopy (mSICM), acoustofluidic interferometric device (AID) and so forth. This review would provide insights to the researchers who work on exploiting various mechanical properties of substrates to control the cellular and tissue functions for tissue engineering and regenerative applications, and also will shed light on the advancements of various techniques that could be utilized to unravel the unknown in the field of cellular mechanobiology.
Collapse
Affiliation(s)
- Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Deepthi Sankar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwan D Kim
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Jayakumar Rangasamy
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
17
|
Javanmardi Y, Agrawal A, Malandrino A, Lasli S, Chen M, Shahreza S, Serwinski B, Cammoun L, Li R, Jorfi M, Djordjevic B, Szita N, Spill F, Bertazzo S, Sheridan GK, Shenoy V, Calvo F, Kamm R, Moeendarbary E. Endothelium and Subendothelial Matrix Mechanics Modulate Cancer Cell Transendothelial Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206554. [PMID: 37051804 PMCID: PMC10238207 DOI: 10.1002/advs.202206554] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/19/2023] [Indexed: 06/04/2023]
Abstract
Cancer cell extravasation, a key step in the metastatic cascade, involves cancer cell arrest on the endothelium, transendothelial migration (TEM), followed by the invasion into the subendothelial extracellular matrix (ECM) of distant tissues. While cancer research has mostly focused on the biomechanical interactions between tumor cells (TCs) and ECM, particularly at the primary tumor site, very little is known about the mechanical properties of endothelial cells and the subendothelial ECM and how they contribute to the extravasation process. Here, an integrated experimental and theoretical framework is developed to investigate the mechanical crosstalk between TCs, endothelium and subendothelial ECM during in vitro cancer cell extravasation. It is found that cancer cell actin-rich protrusions generate complex push-pull forces to initiate and drive TEM, while transmigration success also relies on the forces generated by the endothelium. Consequently, mechanical properties of the subendothelial ECM and endothelial actomyosin contractility that mediate the endothelial forces also impact the endothelium's resistance to cancer cell transmigration. These results indicate that mechanical features of distant tissues, including force interactions between the endothelium and the subendothelial ECM, are key determinants of metastatic organotropism.
Collapse
Affiliation(s)
- Yousef Javanmardi
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Ayushi Agrawal
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Andrea Malandrino
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Biomaterials, Biomechanics and Tissue Engineering GroupDepartment of Materials Science and Engineering and Research Center for Biomedical EngineeringUniversitat Politécnica de Catalunya (UPC)08019BarcelonaSpain
| | - Soufian Lasli
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Michelle Chen
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Somayeh Shahreza
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Bianca Serwinski
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- 199 Biotechnologies LtdGloucester RoadLondonW2 6LDUK
| | - Leila Cammoun
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ran Li
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Mehdi Jorfi
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Boris Djordjevic
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- 199 Biotechnologies LtdGloucester RoadLondonW2 6LDUK
| | - Nicolas Szita
- Department of Biochemical EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - Fabian Spill
- School of MathematicsUniversity of BirminghamEdgbastonBirminghamB152TSUK
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - Graham K Sheridan
- School of Life SciencesQueen's Medical CentreUniversity of NottinghamNottinghamNG7 2UHUK
| | - Vivek Shenoy
- Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria)Santander39011Spain
| | - Roger Kamm
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Emad Moeendarbary
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
18
|
Pourmasoumi P, Moghaddam A, Nemati Mahand S, Heidari F, Salehi Moghaddam Z, Arjmand M, Kühnert I, Kruppke B, Wiesmann HP, Khonakdar HA. A review on the recent progress, opportunities, and challenges of 4D printing and bioprinting in regenerative medicine. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:108-146. [PMID: 35924585 DOI: 10.1080/09205063.2022.2110480] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Four-dimensional (4 D) printing is a novel emerging technology, which can be defined as the ability of 3 D printed materials to change their form and functions. The term 'time' is added to 3 D printing as the fourth dimension, in which materials can respond to a stimulus after finishing the manufacturing process. 4 D printing provides more versatility in terms of size, shape, and structure after printing the construct. Complex material programmability, multi-material printing, and precise structure design are the essential requirements of 4 D printing systems. The utilization of stimuli-responsive polymers has increasingly taken the place of cell traction force-dependent methods and manual folding, offering a more advanced technique to affect a construct's adjusted shape transformation. The present review highlights the concept of 4 D printing and the responsive bioinks used in 4 D printing, such as water-responsive, pH-responsive, thermo-responsive, and light-responsive materials used in tissue regeneration. Cell traction force methods are described as well. Finally, this paper aims to introduce the limitations and future trends of 4 D printing in biomedical applications based on selected key references from the last decade.
Collapse
Affiliation(s)
| | | | | | - Fatemeh Heidari
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | - Zahra Salehi Moghaddam
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Ines Kühnert
- Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Hans-Peter Wiesmann
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran.,Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| |
Collapse
|
19
|
The Forces behind Directed Cell Migration. BIOPHYSICA 2022. [DOI: 10.3390/biophysica2040046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Directed cell migration is an essential building block of life, present when an embryo develops, a dendritic cell migrates toward a lymphatic vessel, or a fibrotic organ fails to restore its normal parenchyma. Directed cell migration is often guided by spatial gradients in a physicochemical property of the cell microenvironment, such as a gradient in chemical factors dissolved in the medium or a gradient in the mechanical properties of the substrate. Single cells and tissues sense these gradients, establish a back-to-front polarity, and coordinate the migration machinery accordingly. Central to these steps we find physical forces. In some cases, these forces are integrated into the gradient sensing mechanism. Other times, they transmit information through cells and tissues to coordinate a collective response. At any time, they participate in the cellular migratory system. In this review, we explore the role of physical forces in gradient sensing, polarization, and coordinating movement from single cells to multicellular collectives. We use the framework proposed by the molecular clutch model and explore to what extent asymmetries in the different elements of the clutch can lead to directional migration.
Collapse
|
20
|
Li Y, Wong IY, Guo M. Reciprocity of Cell Mechanics with Extracellular Stimuli: Emerging Opportunities for Translational Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107305. [PMID: 35319155 PMCID: PMC9463119 DOI: 10.1002/smll.202107305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Human cells encounter dynamic mechanical cues in healthy and diseased tissues, which regulate their molecular and biophysical phenotype, including intracellular mechanics as well as force generation. Recent developments in bio/nanomaterials and microfluidics permit exquisitely sensitive measurements of cell mechanics, as well as spatiotemporal control over external mechanical stimuli to regulate cell behavior. In this review, the mechanobiology of cells interacting bidirectionally with their surrounding microenvironment, and the potential relevance for translational medicine are considered. Key fundamental concepts underlying the mechanics of living cells as well as the extracelluar matrix are first introduced. Then the authors consider case studies based on 1) microfluidic measurements of nonadherent cell deformability, 2) cell migration on micro/nano-topographies, 3) traction measurements of cells in three-dimensional (3D) matrix, 4) mechanical programming of organoid morphogenesis, as well as 5) active mechanical stimuli for potential therapeutics. These examples highlight the promise of disease diagnosis using mechanical measurements, a systems-level understanding linking molecular with biophysical phenotype, as well as therapies based on mechanical perturbations. This review concludes with a critical discussion of these emerging technologies and future directions at the interface of engineering, biology, and medicine.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
21
|
Mustapha F, Sengupta K, Puech PH. May the force be with your (immune) cells: an introduction to traction force microscopy in Immunology. Front Immunol 2022; 13:898558. [PMID: 35990636 PMCID: PMC9389945 DOI: 10.3389/fimmu.2022.898558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022] Open
Abstract
For more than a couple of decades now, "force" has been recognized as an important physical parameter that cells employ to adapt to their microenvironment. Whether it is externally applied, or internally generated, cells use force to modulate their various actions, from adhesion and migration to differentiation and immune function. T lymphocytes use such mechano-sensitivity to decipher signals when recognizing cognate antigens presented on the surface of antigen presenting cells (APCs), a critical process in the adaptive immune response. As such, many techniques have been developed and used to measure the forces felt/exerted by these small, solitary and extremely reactive cells to decipher their influence on diverse T cell functions, primarily activation. Here, we focus on traction force microscopy (TFM), in which a deformable substrate, coated with the appropriate molecules, acts as a force sensor on the cellular scale. This technique has recently become a center of interest for many groups in the "ImmunoBiophysics" community and, as a consequence, has been subjected to refinements for its application to immune cells. Here, we present an overview of TFM, the precautions and pitfalls, and the most recent developments in the context of T cell immunology.
Collapse
Affiliation(s)
- Farah Mustapha
- Laboratory Adhesion Inflammation (LAI), INSERM, CNRS, Aix Marseille University, Marseille, France
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), CNRS, Aix Marseille University, Marseille, France
- Turing Center for Living Systems (CENTURI), Marseille, France
| | - Kheya Sengupta
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), CNRS, Aix Marseille University, Marseille, France
- Turing Center for Living Systems (CENTURI), Marseille, France
| | - Pierre-Henri Puech
- Laboratory Adhesion Inflammation (LAI), INSERM, CNRS, Aix Marseille University, Marseille, France
- Turing Center for Living Systems (CENTURI), Marseille, France
| |
Collapse
|
22
|
Céspedes PF, Jainarayanan A, Fernández-Messina L, Valvo S, Saliba DG, Kurz E, Kvalvaag A, Chen L, Ganskow C, Colin-York H, Fritzsche M, Peng Y, Dong T, Johnson E, Siller-Farfán JA, Dushek O, Sezgin E, Peacock B, Law A, Aubert D, Engledow S, Attar M, Hester S, Fischer R, Sánchez-Madrid F, Dustin ML. T-cell trans-synaptic vesicles are distinct and carry greater effector content than constitutive extracellular vesicles. Nat Commun 2022; 13:3460. [PMID: 35710644 PMCID: PMC9203538 DOI: 10.1038/s41467-022-31160-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/07/2022] [Indexed: 12/19/2022] Open
Abstract
The immunological synapse is a molecular hub that facilitates the delivery of three activation signals, namely antigen, costimulation/corepression and cytokines, from antigen-presenting cells (APC) to T cells. T cells release a fourth class of signaling entities, trans-synaptic vesicles (tSV), to mediate bidirectional communication. Here we present bead-supported lipid bilayers (BSLB) as versatile synthetic APCs to capture, characterize and advance the understanding of tSV biogenesis. Specifically, the integration of juxtacrine signals, such as CD40 and antigen, results in the adaptive tailoring and release of tSV, which differ in size, yields and immune receptor cargo compared with steadily released extracellular vesicles (EVs). Focusing on CD40L+ tSV as model effectors, we show that PD-L1 trans-presentation together with TSG101, ADAM10 and CD81 are key in determining CD40L vesicular release. Lastly, we find greater RNA-binding protein and microRNA content in tSV compared with EVs, supporting the specialized role of tSV as intercellular messengers.
Collapse
Affiliation(s)
- Pablo F Céspedes
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK.
| | - Ashwin Jainarayanan
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Lola Fernández-Messina
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
- Intercellular communication in the inflammatory response. Vascular Physiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Salvatore Valvo
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - David G Saliba
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Elke Kurz
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Audun Kvalvaag
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Lina Chen
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Charity Ganskow
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Huw Colin-York
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
| | - Marco Fritzsche
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
| | - Yanchun Peng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Errin Johnson
- Sir William Dunn School of Pathology, The University of Oxford, Oxford, UK
| | | | - Omer Dushek
- Sir William Dunn School of Pathology, The University of Oxford, Oxford, UK
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Simon Engledow
- Oxford Genomics Centre, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK
| | - Moustafa Attar
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
- Oxford Genomics Centre, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK
| | - Svenja Hester
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, The University of Oxford, Oxford, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, The University of Oxford, Oxford, UK
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
- Intercellular communication in the inflammatory response. Vascular Physiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK.
| |
Collapse
|
23
|
Brameshuber M, Klotzsch E, Ponjavic A, Sezgin E. Understanding immune signaling using advanced imaging techniques. Biochem Soc Trans 2022; 50:853-866. [PMID: 35343569 PMCID: PMC9162467 DOI: 10.1042/bst20210479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022]
Abstract
Advanced imaging is key for visualizing the spatiotemporal regulation of immune signaling which is a complex process involving multiple players tightly regulated in space and time. Imaging techniques vary in their spatial resolution, spanning from nanometers to micrometers, and in their temporal resolution, ranging from microseconds to hours. In this review, we summarize state-of-the-art imaging methodologies and provide recent examples on how they helped to unravel the mysteries of immune signaling. Finally, we discuss the limitations of current technologies and share our insights on how to overcome these limitations to visualize immune signaling with unprecedented fidelity.
Collapse
Affiliation(s)
- Mario Brameshuber
- Institute of Applied Physics – Biophysics, TU Wien, 1040 Vienna, Austria
| | - Enrico Klotzsch
- Humboldt-Universität zu Berlin, Institut für Biophysik, Experimentelle Biophysik Mechanobiologie, Sitz Invalidenstrasse 42, 10115 Berlin, Germany
| | - Aleks Ponjavic
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| |
Collapse
|
24
|
Zaccai NR, Kadlecova Z, Dickson VK, Korobchevskaya K, Kamenicky J, Kovtun O, Umasankar PK, Wrobel AG, Kaufman JGG, Gray SR, Qu K, Evans PR, Fritzsche M, Sroubek F, Höning S, Briggs JAG, Kelly BT, Owen DJ, Traub LM. FCHO controls AP2's initiating role in endocytosis through a PtdIns(4,5)P 2-dependent switch. SCIENCE ADVANCES 2022; 8:eabn2018. [PMID: 35486718 PMCID: PMC9054013 DOI: 10.1126/sciadv.abn2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the main mechanism by which mammalian cells control their cell surface proteome. Proper operation of the pivotal CME cargo adaptor AP2 requires membrane-localized Fer/Cip4 homology domain-only proteins (FCHO). Here, live-cell enhanced total internal reflection fluorescence-structured illumination microscopy shows that FCHO marks sites of clathrin-coated pit (CCP) initiation, which mature into uniform-sized CCPs comprising a central patch of AP2 and clathrin corralled by an FCHO/Epidermal growth factor potential receptor substrate number 15 (Eps15) ring. We dissect the network of interactions between the FCHO interdomain linker and AP2, which concentrates, orients, tethers, and partially destabilizes closed AP2 at the plasma membrane. AP2's subsequent membrane deposition drives its opening, which triggers FCHO displacement through steric competition with phosphatidylinositol 4,5-bisphosphate, clathrin, cargo, and CME accessory factors. FCHO can now relocate toward a CCP's outer edge to engage and activate further AP2s to drive CCP growth/maturation.
Collapse
Affiliation(s)
- Nathan R. Zaccai
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Zuzana Kadlecova
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | | | - Kseniya Korobchevskaya
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Jan Kamenicky
- Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodarenskou vezi 4, 182 08 Prague 8, Czech Republic
| | - Oleksiy Kovtun
- MRC LMB Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Perunthottathu K. Umasankar
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Antoni G. Wrobel
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | | | - Sally R. Gray
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Kun Qu
- MRC LMB Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | | | - Marco Fritzsche
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
- Rosalind Franklin Institute, Harwell Campus, Didcot, UK
| | - Filip Sroubek
- Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodarenskou vezi 4, 182 08 Prague 8, Czech Republic
| | - Stefan Höning
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Straße 52, 50931 Cologne, Germany
| | - John A. G. Briggs
- MRC LMB Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Bernard T. Kelly
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - David J. Owen
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Linton M. Traub
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Abstract
Much of the current research into immune escape from cancer is focused on molecular and cellular biology, an area of biophysics that is easily overlooked. A large number of immune drugs entering the clinic are not effective for all patients. Apart from the molecular heterogeneity of tumors, the biggest reason for this may be that knowledge of biophysics has not been considered, and therefore an exploration of biophysics may help to address this challenge. To help researchers better investigate the relationship between tumor immune escape and biophysics, this paper provides a brief overview on recent advances and challenges of the biophysical factors and strategies by which tumors acquire immune escape and a comprehensive analysis of the relevant forces acting on tumor cells during immune escape. These include tumor and stromal stiffness, fluid interstitial pressure, shear stress, and viscoelasticity. In addition, advances in biophysics cannot be made without the development of detection tools, and this paper also provides a comprehensive summary of the important detection tools available at this stage in the field of biophysics.
Collapse
Affiliation(s)
- Maonan Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
26
|
Beeghly GF, Amofa KY, Fischbach C, Kumar S. Regulation of Tumor Invasion by the Physical Microenvironment: Lessons from Breast and Brain Cancer. Annu Rev Biomed Eng 2022; 24:29-59. [PMID: 35119915 DOI: 10.1146/annurev-bioeng-110220-115419] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The success of anticancer therapies is often limited by heterogeneity within and between tumors. While much attention has been devoted to understanding the intrinsic molecular diversity of tumor cells, the surrounding tissue microenvironment is also highly complex and coevolves with tumor cells to drive clinical outcomes. Here, we propose that diverse types of solid tumors share common physical motifs that change in time and space, serving as universal regulators of malignancy. We use breast cancer and glioblastoma as instructive examples and highlight how invasion in both diseases is driven by the appropriation of structural guidance cues, contact-dependent heterotypic interactions with stromal cells, and elevated interstitial fluid pressure and flow. We discuss how engineering strategies show increasing value for measuring and modeling these physical properties for mechanistic studies. Moreover, engineered systems offer great promise for developing and testing novel therapies that improve patient prognosis by normalizing the physical tumor microenvironment. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Garrett F Beeghly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Kwasi Y Amofa
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; .,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA; .,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, USA
| | - Sanjay Kumar
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; .,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
27
|
Blumberg JW, Schwarz US. Comparison of direct and inverse methods for 2.5D traction force microscopy. PLoS One 2022; 17:e0262773. [PMID: 35051243 PMCID: PMC8775276 DOI: 10.1371/journal.pone.0262773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/04/2022] [Indexed: 11/18/2022] Open
Abstract
Essential cellular processes such as cell adhesion, migration and division strongly depend on mechanical forces. The standard method to measure cell forces is traction force microscopy (TFM) on soft elastic substrates with embedded marker beads. While in 2D TFM one only reconstructs tangential forces, in 2.5D TFM one also considers normal forces. Here we present a systematic comparison between two fundamentally different approaches to 2.5D TFM, which in particular require different methods to deal with noise in the displacement data. In the direct method, one calculates strain and stress tensors directly from the displacement data, which in principle requires a divergence correction. In the inverse method, one minimizes the difference between estimated and measured displacements, which requires some kind of regularization. By calculating the required Green's functions in Fourier space from Boussinesq-Cerruti potential functions, we first derive a new variant of 2.5D Fourier Transform Traction Cytometry (FTTC). To simulate realistic traction patterns, we make use of an analytical solution for Hertz-like adhesion patches. We find that FTTC works best if only tangential forces are reconstructed, that 2.5D FTTC is more precise for small noise, but that the performance of the direct method approaches the one of 2.5D FTTC for larger noise, before both fail for very large noise. Moreover we find that a divergence correction is not really needed for the direct method and that it profits more from increased resolution than the inverse method.
Collapse
Affiliation(s)
- Johannes W. Blumberg
- Heidelberg University, Institute for Theoretical Physics and Bioquant, Heidelberg, Germany
| | - Ulrich S. Schwarz
- Heidelberg University, Institute for Theoretical Physics and Bioquant, Heidelberg, Germany
| |
Collapse
|
28
|
Zhang P, Zhou X, Wang R, Jiang J, Wan Z, Wang S. Label-Free Imaging of Nanoscale Displacements and Free-Energy Profiles of Focal Adhesions with Plasmonic Scattering Microscopy. ACS Sens 2021; 6:4244-4254. [PMID: 34711049 PMCID: PMC8638434 DOI: 10.1021/acssensors.1c01938] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell adhesion plays a critical role in cell communication, cell migration, cell proliferation, and integration of medical implants with tissues. Focal adhesions physically link the cell cytoskeleton to the extracellular matrix, but it remains challenging to image single focal adhesions directly. Here, we show that plasmonic scattering microscopy (PSM) can directly image the single focal adhesions in a label-free, real-time, and non-invasive manner with sub-micrometer spatial resolution. PSM is developed based on surface plasmon resonance (SPR) microscopy, and the evanescent illumination makes it immune to the interference of intracellular structures. Unlike the conventional SPR microscopy, PSM can provide a high signal-to-noise ratio and sub-micrometer spatial resolution for imaging the analytes with size down to a single-molecule level, thus allowing both the super-resolution lateral localization for measuring the nanoscale displacement and precise tracking of vertical distances between the analyte centroid and the sensor surface for analysis of free-energy profiles. PSM imaging of the RBL-2H3 cell with temporal resolution down to microseconds shows that the focal adhesions have random diffusion behaviors in addition to their directional movements during the antibody-mediated activation process. The free-energy mapping also shows a similar movement tendency, indicating that the cell may change its morphology upon varying the binding conditions of adhesive structures. PSM provides insights into the individual focal adhesion activities and can also serve as a promising tool for investigating the cell/surface interactions, such as cell capture and detection and tissue adhesive materials screening.
Collapse
Affiliation(s)
- Pengfei Zhang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
| | - Xinyu Zhou
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Rui Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
| | - Jiapei Jiang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Zijian Wan
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
- School of Electrical, Energy and Computer Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
29
|
Javanmardi Y, Colin-York H, Szita N, Fritzsche M, Moeendarbary E. Quantifying cell-generated forces: Poisson's ratio matters. COMMUNICATIONS PHYSICS 2021; 4:237. [PMID: 34841089 PMCID: PMC7612038 DOI: 10.1038/s42005-021-00740-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 10/14/2021] [Indexed: 05/09/2023]
Abstract
Quantifying mechanical forces generated by cellular systems has led to key insights into a broad range of biological phenomena from cell adhesion to immune cell activation. Traction force microscopy (TFM), the most widely employed force measurement methodology, fundamentally relies on knowledge of the force-displacement relationship and mechanical properties of the substrate. Together with the elastic modulus, the Poisson's ratio is a basic material property that to date has largely been overlooked in TFM. Here, we evaluate the sensitivity of TFM to Poisson's ratio by employing a series of computer simulations and experimental data analysis. We demonstrate how applying the correct Poisson's ratio is important for accurate force reconstruction and develop a framework for the determination of error levels resulting from the misestimation of the Poisson's ratio. In addition, we provide experimental estimation of the Poisson's ratios of elastic substrates commonly applied in TFM. Our work thus highlights the role of Poisson's ratio underpinning cellular force quantification studied across many biological systems.
Collapse
Affiliation(s)
- Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Huw Colin-York
- Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK
| | - Nicolas Szita
- Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK
- Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
30
|
Dalton CJ, Lemmon CA. Fibronectin: Molecular Structure, Fibrillar Structure and Mechanochemical Signaling. Cells 2021; 10:2443. [PMID: 34572092 PMCID: PMC8471655 DOI: 10.3390/cells10092443] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) plays a key role as both structural scaffold and regulator of cell signal transduction in tissues. In times of ECM assembly and turnover, cells upregulate assembly of the ECM protein, fibronectin (FN). FN is assembled by cells into viscoelastic fibrils that can bind upward of 40 distinct growth factors and cytokines. These fibrils play a key role in assembling a provisional ECM during embryonic development and wound healing. Fibril assembly is also often upregulated during disease states, including cancer and fibrotic diseases. FN fibrils have unique mechanical properties, which allow them to alter mechanotransduction signals sensed and relayed by cells. Binding of soluble growth factors to FN fibrils alters signal transduction from these proteins, while binding of other ECM proteins, including collagens, elastins, and proteoglycans, to FN fibrils facilitates the maturation and tissue specificity of the ECM. In this review, we will discuss the assembly of FN fibrils from individual FN molecules; the composition, structure, and mechanics of FN fibrils; the interaction of FN fibrils with other ECM proteins and growth factors; the role of FN in transmitting mechanobiology signaling events; and approaches for studying the mechanics of FN fibrils.
Collapse
Affiliation(s)
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, VA 23284, USA;
| |
Collapse
|
31
|
Sensitive detection of cell-derived force and collagen matrix tension in microtissues undergoing large-scale densification. Proc Natl Acad Sci U S A 2021; 118:2106061118. [PMID: 34470821 DOI: 10.1073/pnas.2106061118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanical forces generated by cells and the tension of the extracellular matrix (ECM) play a decisive role in establishment, homeostasis maintenance, and repair of tissue morphology. However, the dynamic change of cell-derived force during large-scale remodeling of soft tissue is still unknown, mainly because the current techniques of force detection usually produce a nonnegligible and interfering feedback force on the cells during measurement. Here, we developed a method to fabricate highly stretchable polymer-based microstrings on which a microtissue of fibroblasts in collagen was cultured and allowed to contract to mimic the densification of soft tissue. Taking advantage of the low-spring constant and large deflection range of the microstrings, we detected a strain-induced contraction force as low as 5.2 µN without disturbing the irreversible densification. Meanwhile, the microtissues displayed extreme sensitivity to the mechanical boundary within a narrow range of tensile stress. More importantly, results indicated that the cell-derived force did not solely increase with increased ECM stiffness as previous studies suggested. Indeed, the cell-derived force and collagen tension exchanged dramatically in dominating the microtissue strain during the densification, and the proportion of cell-derived force decreased linearly as the microtissue densified, with stiffness increasing to ∼500 Pa. Thus, this study provides insights into the biomechanical cross-talk between the cells and ECM of extremely soft tissue during large-extent densification, which may be important to guide the construction of life-like tissue by applying appropriate mechanical boundary conditions.
Collapse
|
32
|
Hobson CM, Aaron JS, Heddleston JM, Chew TL. Visualizing the Invisible: Advanced Optical Microscopy as a Tool to Measure Biomechanical Forces. Front Cell Dev Biol 2021; 9:706126. [PMID: 34552926 PMCID: PMC8450411 DOI: 10.3389/fcell.2021.706126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 01/28/2023] Open
Abstract
The importance of mechanical force in biology is evident across diverse length scales, ranging from tissue morphogenesis during embryo development to mechanotransduction across single adhesion proteins at the cell surface. Consequently, many force measurement techniques rely on optical microscopy to measure forces being applied by cells on their environment, to visualize specimen deformations due to external forces, or even to directly apply a physical perturbation to the sample via photoablation or optogenetic tools. Recent developments in advanced microscopy offer improved approaches to enhance spatiotemporal resolution, imaging depth, and sample viability. These advances can be coupled with already existing force measurement methods to improve sensitivity, duration and speed, amongst other parameters. However, gaining access to advanced microscopy instrumentation and the expertise necessary to extract meaningful insights from these techniques is an unavoidable hurdle. In this Live Cell Imaging special issue Review, we survey common microscopy-based force measurement techniques and examine how they can be bolstered by emerging microscopy methods. We further explore challenges related to the accompanying data analysis in biomechanical studies and discuss the various resources available to tackle the global issue of technology dissemination, an important avenue for biologists to gain access to pre-commercial instruments that can be leveraged for biomechanical studies.
Collapse
Affiliation(s)
- Chad M. Hobson
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Jesse S. Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - John M. Heddleston
- Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, FL, United States
| | - Teng-Leong Chew
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| |
Collapse
|
33
|
Barbieri L, Colin-York H, Korobchevskaya K, Li D, Wolfson DL, Karedla N, Schneider F, Ahluwalia BS, Seternes T, Dalmo RA, Dustin ML, Li D, Fritzsche M. Two-dimensional TIRF-SIM-traction force microscopy (2D TIRF-SIM-TFM). Nat Commun 2021; 12:2169. [PMID: 33846317 PMCID: PMC8041833 DOI: 10.1038/s41467-021-22377-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/12/2021] [Indexed: 02/01/2023] Open
Abstract
Quantifying small, rapidly evolving forces generated by cells is a major challenge for the understanding of biomechanics and mechanobiology in health and disease. Traction force microscopy remains one of the most broadly applied force probing technologies but typically restricts itself to slow events over seconds and micron-scale displacements. Here, we improve >2-fold spatially and >10-fold temporally the resolution of planar cellular force probing compared to its related conventional modalities by combining fast two-dimensional total internal reflection fluorescence super-resolution structured illumination microscopy and traction force microscopy. This live-cell 2D TIRF-SIM-TFM methodology offers a combination of spatio-temporal resolution enhancement relevant to forces on the nano- and sub-second scales, opening up new aspects of mechanobiology to analysis.
Collapse
Grants
- Biotechnology and Biological Sciences Research Council
- 212343/Z/18/Z Wellcome Trust
- 107457 Wellcome Trust
- 100262/Z/12/Z Wellcome Trust
- Wellcome Trust
- 091911 Wellcome Trust
- Medical Research Council
- L.B. would like to acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC) and Medical Research Council (EP/L016052/1). M.F., H.C.Y., K.K., and M.L.D. would like to thank the Rosalind Franklin Institute and the Kennedy Trust for Rheumatology Research (KTRR) for support. M.F., F.S., and H.C.Y. thank the Wellcome Trust (212343/Z/18/Z) and EPSRC (EP/S004459/1). M.L.D. also thank the Wellcome Trust for the Principal Research Fellowship awarded to M.D. (100262/Z/12/Z). Di.L. and D.L. are supported by a grant from the Chinese Ministry of Science and Technology (MOST: 2017YFA0505301, 2016YFA0500203), the National Natural Science Foundation of China (NSFC; 91754202, 31827802), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2020094). N.K. thanks the Alexander von Humboldt Foundation for funding his Feoder Lynen Fellowship. R.A.D acknowledge the Research Council of Norway (grant no. 301401) for funding. The TIRF-SIM platform was built in collaboration with and with funds from Micron (www.micronoxford.com), an Oxford-wide advanced microscopy technology consortium supported by Wellcome Strategic Awards (091911 and 107457) and an MRC/EPSRC/BBSRC next generation imaging award.
Collapse
Affiliation(s)
- Liliana Barbieri
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Huw Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | | | - Di Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Deanna L Wolfson
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Narain Karedla
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
- Rosalind Franklin Institute, Didcot, UK
| | - Falk Schneider
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - Balpreet S Ahluwalia
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Tore Seternes
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Roy A Dalmo
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Michael L Dustin
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - Dong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK.
- Rosalind Franklin Institute, Didcot, UK.
| |
Collapse
|
34
|
Pfannenstill V, Barbotin A, Colin-York H, Fritzsche M. Quantitative Methodologies to Dissect Immune Cell Mechanobiology. Cells 2021; 10:851. [PMID: 33918573 PMCID: PMC8069647 DOI: 10.3390/cells10040851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/25/2022] Open
Abstract
Mechanobiology seeks to understand how cells integrate their biomechanics into their function and behavior. Unravelling the mechanisms underlying these mechanobiological processes is particularly important for immune cells in the context of the dynamic and complex tissue microenvironment. However, it remains largely unknown how cellular mechanical force generation and mechanical properties are regulated and integrated by immune cells, primarily due to a profound lack of technologies with sufficient sensitivity to quantify immune cell mechanics. In this review, we discuss the biological significance of mechanics for immune cells across length and time scales, and highlight several experimental methodologies for quantifying the mechanics of immune cells. Finally, we discuss the importance of quantifying the appropriate mechanical readout to accelerate insights into the mechanobiology of the immune response.
Collapse
Affiliation(s)
- Veronika Pfannenstill
- Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK; (V.P.); (A.B.)
| | - Aurélien Barbotin
- Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK; (V.P.); (A.B.)
| | - Huw Colin-York
- Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK; (V.P.); (A.B.)
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK; (V.P.); (A.B.)
- Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK
| |
Collapse
|