1
|
Ren L, Lu X, Yan J, Zhang A, Li W. Hierarchical assembly of thermoresponsive helical dendronized poly(phenylacetylene)s through photo-crosslinking of the thermal aggregates. J Colloid Interface Sci 2025; 677:928-940. [PMID: 39128287 DOI: 10.1016/j.jcis.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Supramolecular assembly of helical homopolymers to form stable chiral entities in water is highly valuable for creating chiral nanostructures and fabricating chiral biomaterials. Here we report on thermally induced supramolecular assembly of helical dendronized poly(phenylacetylene)s (PPAs) in aqueous solutions, and their in-situ photo-crosslinking at elevated temperatures to afford crosslinked nano-assemblies with hierarchical structures and stabilized helicities. These helical dendronized homopolymers carry cinnamate-cored dendritic oligoethylene glycol (OEG) pendants, which exhibit characteristic thermoresponsive behavior. Their thermal aggregation confers hexagonal packing of the polymer chains, and simultaneously resulting in enhancement of their chiralities. Assisted by radial amphiphilicity and worm-like molecular geometry, these dendronized PPAs form supramolecular twisted fibers, spheroid particles or toroids via thermal aggregation. Through UV photoirradiation above their cloud points (Tcps), cycloaddition of cinnamate moieties from the dendritic pendants promotes intermolecular crosslinking of dendronized PPA chains within the thermal aggregates, and simultaneously, the dynamic morphologies and supramolecular chirality from the dendronized PPAs through thermally induced aggregation can be fixed. In addition, photo-crosslinking can be occurred solely within individual aggregates due to the protection of densely packed dendritic OEGs. Therefore, various crosslinked assemblies from the dendronized homopolymers with tailorable morphologies and stabilized chirality are fabricated by tuning their thermally induced dynamic aggregations followed by in-situ photo-crosslinking. We believe that this work paves a convenient route to fabricate chiral assemblies with stabilized morphologies and fixed chiralities from dynamic helical homopolymers through intermolecular crosslinking, which can be promising for various chiral applications.
Collapse
Affiliation(s)
- Liangxuan Ren
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Xueting Lu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Jiatao Yan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
2
|
Si X, Jiang C, Hu Y, Mu J. Two-dimensional (2D) quasi-living crystallization-driven self-assembly of polyethylene- b-hyperbranched polyglycidol diblock copolymers in solution. SOFT MATTER 2024; 20:7258-7269. [PMID: 39238360 DOI: 10.1039/d4sm00845f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
This paper presents a systematic investigation of the crystalline nucleation, micellization, two-dimensional (2D) growth of polyethylene-b-hyperbranched polyglycidol (PE-b-hbPG) copolymers in solutions during cooling and isothermal crystallization. As a result, lozenge-shaped monolayer or multilayer lamellar crystals were prepared by optimizing the "self-nucleation" conditions. The effect of crystallization temperatures (Tc), critical micelle temperature (CMT), selective solvents, and the topology of block copolymers (BCPs) on the growth of 2D lozenge-shaped crystals is extensively explored using TEM, AFM and in situ DLS techniques. The results demonstrate that the formation of a perfect lozenge-shaped monolayer crystal is contingent upon the relationship between CMT and Tc of the BCPs (CMT < Tc), as well as the isothermal crystallization temperature Tiso (CMT < Tiso < Tc). This significant finding provides a feasibility programme for the preparation of 2D lamellar crystals using the "self-nucleation" approach from an alternative viewpoint of the corona topology.
Collapse
Affiliation(s)
- Xiaowen Si
- Department of Polymer Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Chenxi Jiang
- Department of Polymer Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Yu Hu
- Department of Polymer Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Jingshan Mu
- Department of Polymer Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.
| |
Collapse
|
3
|
Wang X, Lu J, Shi S, Li S, Guo H, Shi AC, Liu B. Well-Defined Homopolymer Nanoparticles with Uniaxial Molecular Orientation by Synchronized Polymerization and Self-Assembly. J Am Chem Soc 2024; 146:22661-22674. [PMID: 39099104 DOI: 10.1021/jacs.4c07261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Synthesizing anisotropic polymeric nanoparticles (NPs) with well-defined shapes, dimensions, and molecular orientations is a very challenging task. Herein, we report the synthesis of surprisingly highly uniform shape-anisotropic polymer NPs with uniaxial internal molecular orientation. Keys to our method are synchronized polymerization and self-assembly (SPSA), which can even be realized by regular dispersion polymerization. This is demonstrated using a monomer containing a rigid 4-nitroazobenzene (NAB) side group. The short nucleation period, the completion of microphase separation before molecular motion is frozen, and sufficient low particle/solvent interfacial tension are shown to be the origins of the highly uniform dimensions, single liquid crystal domains, and well-defined anisotropic shape of particles. The liquid crystallization ability of the polymers, control of molecular weight distribution, and the polymerization kinetics are identified as three key factors controlling the NP formation. The uniformity of these NPs facilitates their SA formation into colloidal crystals. The particles exhibit optically anisotropic properties depending on orientations and, in particular, show intriguing photoswitchable LC-glass (order-disorder) transition, which can be used for the detection of ultraviolet (UV) light and allows the fabrication of photoreversible colloidal films.
Collapse
Affiliation(s)
- Xiao Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Lu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shanshan Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongxia Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - An-Chang Shi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Bing Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Park S, Kang SY, Yang S, Choi TL. Independent Control of the Width and Length of Semiconducting 2D Nanorectangles via Accelerated Living Crystallization-Driven Self-Assembly. J Am Chem Soc 2024; 146:19369-19376. [PMID: 38965837 DOI: 10.1021/jacs.4c05351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Self-assembly of conjugated polymers offers a powerful method to prepare semiconducting two-dimensional (2D) nanosheets for optoelectronic applications. However, due to the typical biaxial growth behavior of the polymer self-assembly, independent control of the width and length of 2D sheets has been challenging. Herein, we present a greatly accelerated crystallization-driven self-assembly (CDSA) system of polyacetylene-based conjugated polymer to produce 2D semiconducting nanorectangles with precisely controllable dimensions. In detail, rectangular 2D seeds with tunable widths of 0.2-1.3 μm were produced by changing the cosolvent% and grown in the length direction by uniaxial living CDSA up to 11.8 μm. The growth rate was effectively enhanced by tuning the cosolvent%, seed concentration, and temperature, achieving up to 27-fold increase. Additionally, systematic kinetic investigation yielded empirical rate equations, elucidating the relationship between growth rate constant, cosolvent%, seed concentration, and seed width. Finally, the living CDSA allowed us to prepare penta-block comicelles with tunable width, length, and height.
Collapse
Affiliation(s)
- Songyee Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sung-Yun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sanghee Yang
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea
| | - Tae-Lim Choi
- Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
5
|
MacKenzie HK, Zhang Y, Zheng W, Shaikh H, MacFarlane LR, Musgrave RA, Manners I. Functional Noncentrosymmetric Nanoparticle-Nanofiber Hybrids via Selective Fragmentation. J Am Chem Soc 2024; 146:18504-18512. [PMID: 38946087 DOI: 10.1021/jacs.4c04234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Noncentrosymmetric nanostructures are an attractive synthetic target as they can exhibit complex interparticle interactions useful for numerous applications. However, generating uniform, colloidally stable, noncentrosymmetric nanoparticles with low aspect ratios is a significant challenge using solution self-assembly approaches. Herein, we outline the synthesis of noncentrosymmetric multiblock co-nanofibers by subsequent living crystallization-driven self-assembly of block co-polymers, spatially confined attachment of nanoparticles, and localized nanofiber fragmentation. Using this strategy, we have fabricated uniform diblock and triblock noncentrosymmetric π-conjugated nanofiber-nanoparticle hybrid structures. Additionally, in contrast to Brownian motion typical of centrosymmetric nanoparticles, we demonstrated that these noncentrosymmetric nanofibers undergo ballistic motion in the presence of H2O2 and thus could be employed as nanomotors in various applications, including drug delivery and environmental remediation.
Collapse
Affiliation(s)
- Harvey K MacKenzie
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Yifan Zhang
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Weijia Zheng
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
| | - Huda Shaikh
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
| | - Liam R MacFarlane
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
| | - Rebecca A Musgrave
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
6
|
Liao C, Gong Y, Che Y, Ji H, Liu B, Zang L, Che Y, Zhao J. Concentric hollow multi-hexagonal platelets from a small molecule. Nat Commun 2024; 15:5668. [PMID: 38971832 PMCID: PMC11227555 DOI: 10.1038/s41467-024-49995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
The creation of well-defined hollow two-dimensional structures from small organic molecules, particularly those with controlled widths and numbers of segments, remains a formidable challenge. Here we report the fabrication of the well-defined concentric hollow two-dimensional platelets with programmable widths and numbers of segments through constructing a concentric multiblock two-dimensional precursor followed by post-processing. The fabrication of concentric multi-hexagons two-dimensional platelets is realized by the alternative heteroepitaxial growth of two donor-acceptor molecules. Upon ultraviolet irradiation, one of the two donor-acceptor molecules can be selectively oxidized by singlet oxygen generated during the process, and the oxidized product becomes more soluble due to increased polarity. This allows for selective removal of the oxidized segments simply by solvent dissolution, yielding hollow multiblock two-dimensional structures. The hollow two-dimensional platelets can be utilized as templates to lithograph complex electrodes with precisely controlled gap sizes, thereby offering a platform for examining the optoelectronic performance of functional materials.
Collapse
Affiliation(s)
- Chenglong Liao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanjun Gong
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanxue Che
- HT-NOVA Co. Ltd., Zhuyuan Road, Shunyi District, Beijing, China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bing Liu
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Ling Zang
- Department of Materials Science and Engineering, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA.
| | - Yanke Che
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Pan H, Zhang C, Jiang W, Zhou Y. Living Self-Assembly of Monodisperse Micron-Sized Polymer Vesicles. Angew Chem Int Ed Engl 2024; 63:e202404589. [PMID: 38654509 DOI: 10.1002/anie.202404589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Artificial vesicles are recognized as powerful platforms for a large body of research across the disciplines of chemistry, physics and biology. Despite the great progress, control of the size distribution to make uniform vesicles remains fundamentally difficult due to the highly uncontrollable growth kinetics, especially for micron-sized vesicles. Here we report a template-free living self-assembly method to prepare monodisperse vesicles around 1 μm from an alternating copolymer. The polymer forms nanodisks (ca. 9 nm) in N,N-dimethylformamide (DMF), acting as seeds for subsequent growth. By adding water, the nanodisks gradually grow into larger circular bilayer nanosheets, which bend to crowns and continue to grow into uniform micron-sized vesicles. The first-order growth kinetics as well as the small size polydispersity index (<0.1) suggests the living self-assembly characteristics. This work paves a new way in both living self-assembly and monodisperse polymer vesicles.
Collapse
Affiliation(s)
- Hui Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Changxu Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Wenfeng Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| |
Collapse
|
8
|
Jin B, Hu L, Li X. Mesogenic Ordering-Driven Self-Assembly of Liquid Crystalline Block Copolymers in Solution. Chemistry 2024; 30:e202400312. [PMID: 38454618 DOI: 10.1002/chem.202400312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
With the development of nanotechnology, the preparation of polymeric nanoparticles with nicely defined structures has been well-developed, and the functionalization and subsequent applications of the resultant nanostructures are becoming increasingly important. Particularly, by introducing mesogenic ordering as the driving force for the solution-state self-assembly of liquid crystalline (LC) block copolymers (BCPs), micellar nanostructures with different morphologies, especially anisotropic morphologies, can be easily prepared. This review summarizes the recent progress in the solution-state self-assembly of LC BCPs and is mostly focused on four main related aspects, including an in-depth understanding of the mesogenic ordering-driven self-assembly, precise assembly methods, utilization of these methods to fabricate hierarchical structures, and the potential applications of these well-defined nanostructures. We hope not only to make a systematic summary of previous studies but also to provide some useful thinking for the future development of this field.
Collapse
Affiliation(s)
- Bixin Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lingjuan Hu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaoyu Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Key Laboratory of High Energy Density Materials, MOE. Beijing, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
9
|
Jiang J, Nikbin E, Liu Y, Lei S, Ye G, Howe JY, Manners I, Winnik MA. Defect-Induced Secondary Crystals Drive Two-Dimensional to Three-Dimensional Morphological Evolution in the Co-Self-Assembly of Polyferrocenylsilane Block Copolymer and Homopolymer. J Am Chem Soc 2023; 145:28096-28110. [PMID: 38088827 DOI: 10.1021/jacs.3c09791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Bottom-up fabrication protocols for uniform 3D hierarchical structures in solution are rare. We report two different approaches to fabricate uniform 3D spherulites and their precursors using mixtures of poly(ferrocenyldimethylsilane) (PFS) block copolymer (BCP) and PFS homopolymer (HP). Both protocols are designed to promote defects in 2D assemblies that serve as intermediate structures. In a multistep seeded growth protocol, we add the BCP/HP mixture to (1D) rod-like PFS micelles in a selective solvent as first-generation seeds. This leads to 2D platelet structures. If this step is conducted at a high supersaturation, secondary crystals form on the basal surface of these platelets. Co-crystallization and rapid crystallization of BCP/HP promote the formation of defects that act as nucleation sites for secondary crystals, resulting in multilayer platelets. This is the key step. The multilayer platelets serve as second-generation seeds upon subsequent addition of BCP/HP blends and, with increasing supersaturation, lead to the sequential formation of uniform (3D) hedrites, sheaves, and spherulites. Similar structures can also be obtained by a simple one-pot direct self-assembly (heating-cooling-aging) protocol of PFS BCP/HP blends. In this case, for a carefully chosen but narrow temperature range, PFS HPs nucleate formation of uniform structures, and the annealing temperature regulates the supersaturation level. In both protocols, the competitive crystallization kinetics of HP/BCP affects the morphology. Both protocols exhibit broad generality. We believe the morphological transformation from 2D to 3D structures, regulated by defect formation, co-crystallization, and supersaturation levels, could apply to various semicrystalline polymers. Moreover, the 3D structures are sufficiently robust to serve as recoverable carriers for nanoparticle catalysts, exhibiting valuable catalytic activity and opening new possibilities for applications requiring exquisite 3D structures.
Collapse
Affiliation(s)
- Jingjie Jiang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ehsan Nikbin
- Department of Material Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Yang Liu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shixing Lei
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Gang Ye
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Jane Y Howe
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Material Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Material Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| |
Collapse
|
10
|
Yao Y, Zhang L, Zhang S, Huang X, Feng C, Lin S, Xu B. Morphologically Tunable Rectangular Platelets Self-Assembled from Diblock Molecular Brushes Containing Azopyridine Pendants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18880-18888. [PMID: 38084706 DOI: 10.1021/acs.langmuir.3c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Two-dimensional (2D) platelet structures are of growing importance as building blocks for the preparation of optical and electrical devices. However, the creation of morphologically tunable rectangular platelets through polymer self-assembly still remains a challenge. Herein, we describe a rational strategy for the fabrication of 2D rectangular platelets by stacking azopyridine-containing diblock molecular brushes in two dimensions in a selective solvent. Amphiphilic PEG-co-(PtBA-g-PAzoPy) DMBs with poly(ethylene glycol) (PEG) block, poly(t-butyl acrylate) (PtBA) backbone, and poly(6-(4-(4-pyridyazo)phenoxy)-hexyl methacrylate) (PAzoPy) brush were synthesized by sequential reversible addition-fragmentation chain transfer polymerization and atom transfer radical polymerization. Various rectangular platelets were obtained via the solution self-assembly of PEG-co-(PtBA-g-PAzoPy) through a heating-cooling-aging process in which the morphology and size of platelets could be controlled by adjusting the composition of DMBs as well as the solvent polarity. In addition, we investigated the metal chelation ability and H-bonding-assisted co-assembly capability of PEG-co-(PtBA-g-PAzoPy). The results displayed that 2D hybrids and flower-like platelets were formed, respectively. Our study presents an efficient method to fabricate rectangular platelets with tunable morphologies.
Collapse
Affiliation(s)
- Yuan Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Lu Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Sen Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Chun Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Binbin Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
11
|
Xia T, Tong Z, Xie Y, Arno MC, Lei S, Xiao L, Rho JY, Ferguson CTJ, Manners I, Dove AP, O’Reilly RK. Tuning the Functionality of Self-Assembled 2D Platelets in the Third Dimension. J Am Chem Soc 2023; 145:25274-25282. [PMID: 37938914 PMCID: PMC10682995 DOI: 10.1021/jacs.3c08770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
The decoration of 2D nanostructures using heteroepitaxial growth is of great importance to achieve functional assemblies employed in biomedical, electrical, and mechanical applications. Although the functionalization of polymers before self-assembly has been investigated, the exploration of direct surface modification in the third dimension from 2D nanostructures has, to date, been unexplored. Here, we used living crystallization-driven self-assembly to fabricate poly(ε-caprolactone)-based 2D platelets with controlled size. Importantly, surface modification of the platelets in the third dimension was achieved by using functional monomers and light-induced polymerization. This method allows us to selectively regulate the height and fluorescence properties of the nanostructures. Using this approach, we gained unprecedented spatial control over the surface functionality in the specific region of complex 2D platelets.
Collapse
Affiliation(s)
- Tianlai Xia
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Zaizai Tong
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, People’s
Republic of China
| | - Yujie Xie
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Maria C. Arno
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
- Institute
of Cancer and Genomic Sciences, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Shixing Lei
- Department
of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Laihui Xiao
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Julia Y. Rho
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Calum T. J. Ferguson
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Ian Manners
- Department
of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- Centre
for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Andrew P. Dove
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| |
Collapse
|
12
|
Zhu L, Liu L, Varlas S, Wang RY, O'Reilly RK, Tong Z. Understanding the Seeded Heteroepitaxial Growth of Crystallizable Polymers: The Role of Crystallization Thermodynamics. ACS NANO 2023. [PMID: 37979190 DOI: 10.1021/acsnano.3c09130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Seeded heteroepitaxial growth is a "living" crystallization-driven self-assembly (CDSA) method that has emerged as a promising route to create uniform segmented nanoparticles with diverse core chemistries by using chemically distinct core-forming polymers. Our previous results have demonstrated that crystallization kinetics is a key factor that determines the occurrence of heteroepitaxial growth, but an in-depth understanding of controlling heteroepitaxy from the perspective of crystallization thermodynamics is yet unknown. Herein, we select crystallizable aliphatic polycarbonates (PxCs) with a different number of methylene groups (xCH2, x = 4, 6, 7, 12) in their repeating units as model polymers to explore the effect of lattice match and core compatibility on the seeded growth behavior. Seeded growth of PxCs-containing homopolymer/block copolymer blend unimers from poly(ε-caprolactone) (PCL) core-forming seed platelet micelles exhibits distinct crystal growth behavior at subambient temperatures, which is governed by the lattice match and core compatibility. A case of seeded growth with better core compatibility and a smaller lattice mismatch follows epitaxial growth, where the newly created crystal domain has the same structural orientation as the original platelet substrate. In contrast, a case of seeded growth with better core compatibility but a larger lattice mismatch shows nonepitaxial growth with less-defined crystal orientations in the platelet plane. Additionally, a case of seeded growth with poor core compatibility and larger lattice mismatch results in polydisperse platelet micelles, whereby crystal formation is not nucleated from the crystalline substrate. These findings reveal important factors that govern the specific crystal growth during a seeded growth approach by using compositionally distinct cores, which would further guide researchers in designing 2D segmented materials via polymer crystallization approaches.
Collapse
Affiliation(s)
- Lingyuan Zhu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Liping Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Spyridon Varlas
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K
| | - Rui-Yang Wang
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Zaizai Tong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
13
|
Sasaki N, Kikkawa J, Ishii Y, Uchihashi T, Imamura H, Takeuchi M, Sugiyasu K. Multistep, site-selective noncovalent synthesis of two-dimensional block supramolecular polymers. Nat Chem 2023; 15:922-929. [PMID: 37264101 DOI: 10.1038/s41557-023-01216-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/24/2023] [Indexed: 06/03/2023]
Abstract
Although the principles of noncovalent bonding are well understood and form the basis for the syntheses of many intricate supramolecular structures, supramolecular noncovalent synthesis cannot yet achieve the levels of precision and complexity that are attainable in organic and/or macromolecular covalent synthesis. Here we show the stepwise synthesis of block supramolecular polymers from metal-porphyrin derivatives (in which the metal centre is Zn, Cu or Ni) functionalized with fluorinated alkyl chains. These monomers first undergo a one-dimensional supramolecular polymerization and cyclization process to form a toroidal structure. Subsequently, successive secondary nucleation, elongation and cyclization steps result in two-dimensional assemblies with concentric toroidal morphologies. The site selectivity endowed by the fluorinated chains, reminiscent of regioselectivity in covalent synthesis, enables the precise control of the compositions and sequences of the supramolecular structures, as demonstrated by the synthesis of several triblock supramolecular terpolymers.
Collapse
Grants
- JP22H02134 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H04682 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19K05592 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H04669 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05868 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Norihiko Sasaki
- Molecular Design and Function Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Jun Kikkawa
- Electron Microscopy Group, Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Yoshiki Ishii
- Department of Physics, Nagoya University, Nagoya, Japan
| | | | - Hitomi Imamura
- Molecular Design and Function Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masayuki Takeuchi
- Molecular Design and Function Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazunori Sugiyasu
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| |
Collapse
|
14
|
Tong Z, Xie Y, Arno MC, Zhang Y, Manners I, O'Reilly RK, Dove AP. Uniform segmented platelet micelles with compositionally distinct and selectively degradable cores. Nat Chem 2023; 15:824-831. [PMID: 37081206 PMCID: PMC10239731 DOI: 10.1038/s41557-023-01177-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/08/2023] [Indexed: 04/22/2023]
Abstract
The creation of nanoparticles with controlled and uniform dimensions and spatially defined functionality is a key challenge. The recently developed living crystallization-driven self-assembly (CDSA) method has emerged as a promising route to one-dimensional (1D) and 2D core-shell micellar assemblies by seeded growth of polymeric and molecular amphiphiles. However, the general limitation of the epitaxial growth process to a single core-forming chemistry is an important obstacle to the creation of complex nanoparticles with segmented cores of spatially varied composition that can be subsequently exploited in selective transformations or responses to external stimuli. Here we report the successful use of a seeded growth approach that operates for a variety of different crystallizable polylactone homopolymer/block copolymer blend combinations to access 2D platelet micelles with compositionally distinct segmented cores. To illustrate the utility of controlling internal core chemistry, we demonstrate spatially selective hydrolytic degradation of the 2D platelets-a result that may be of interest for the design of complex stimuli-responsive particles for programmed-release and cargo-delivery applications.
Collapse
Affiliation(s)
- Zaizai Tong
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, P. R. China
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Yujie Xie
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Maria C Arno
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Yifan Zhang
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada.
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
15
|
Wang M, Chen G, Hou X, Luo Y, Jin B, Li X. Assembly of Supramolecular Nanoplatelets with Tailorable Geometrical Shapes and Dimensions. Polymers (Basel) 2023; 15:polym15112547. [PMID: 37299347 DOI: 10.3390/polym15112547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The craving for controllable assembly of geometrical nanostructures from artificial building motifs, which is routinely achieved in naturally occurring systems, has been a perpetual and outstanding challenge in the field of chemistry and materials science. In particular, the assembly of nanostructures with different geometries and controllable dimensions is crucial for their functionalities and is usually achieved with distinct assembling subunits via convoluted assembly strategies. Herein, we report that with the same building subunits of α-cyclodextrin (α-CD)/block copolymer inclusion complex (IC), geometrical nanoplatelets with hexagonal, square, and circular shapes could be produced by simply controlling the solvent conditions via one-step assembly procedure, driven by the crystallization of IC. Interestingly, these nanoplatelets with different shapes shared the same crystalline lattice and could therefore be interconverted to each other by merely tuning the solvent compositions. Moreover, the dimensions of these platelets could be decently controlled by tuning the overall concentrations.
Collapse
Affiliation(s)
- Moyan Wang
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| | - Gangfeng Chen
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| | - Xiaojian Hou
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| | - Yunjun Luo
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
- Key Laboratory of High Energy Density Materials, MOE, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| | - Bixin Jin
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| | - Xiaoyu Li
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
- Key Laboratory of High Energy Density Materials, MOE, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| |
Collapse
|
16
|
Tian J, Xie SH, Borucu U, Lei S, Zhang Y, Manners I. High-resolution cryo-electron microscopy structure of block copolymer nanofibres with a crystalline core. NATURE MATERIALS 2023:10.1038/s41563-023-01559-4. [PMID: 37217702 DOI: 10.1038/s41563-023-01559-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Seeded growth of crystallizable block copolymers and π-stacking molecular amphiphiles in solution using living crystallization-driven self-assembly is an emerging route to fabricate uniform one-dimensional and two-dimensional core-shell micellar nanoparticles of controlled size with a range of potential applications. Although experimental evidence indicates that the crystalline core of these nanomaterials is highly ordered, a direct observation of their crystal lattice has not been successful. Here we report the high-resolution cryo-transmission electron microscopy studies of vitrified solutions of nanofibres made from a crystalline core of poly(ferrocenyldimethylsilane) (PFS) and a corona of polysiloxane grafted with 4-vinylpyridine groups. These studies show that poly(ferrocenyldimethylsilane) chains pack in an 8-nm-diameter core lattice with two-dimensional pseudo-hexagonal symmetry that is coated by a 27 nm 4-vinylpyridine corona with a 3.5 nm distance between each 4-vinylpyridine strand. We combine this structural information with a molecular modelling analysis to propose a detailed molecular model for solvated poly(ferrocenyldimethylsilane)-b-4-vinylpyridine nanofibres.
Collapse
Affiliation(s)
- Jia Tian
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Song-Hai Xie
- Department of Chemistry, Fudan University, Shanghai, China
| | - Ufuk Borucu
- GW4 Facility for High-Resolution Electron Cryo-Microscopy, University of Bristol, Bristol, UK
| | - Shixing Lei
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| | - Yifan Zhang
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
17
|
Yun N, Kang C, Yang S, Hwang SH, Park JM, Choi TL. Size-Tunable Semiconducting 2D Nanorectangles from Conjugated Polyenyne Homopolymer Synthesized via Cascade Metathesis and Metallotropy Polymerization. J Am Chem Soc 2023; 145:9029-9038. [PMID: 37040606 DOI: 10.1021/jacs.3c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Size-tunable semiconducting two-dimensional (2D) nanosheets from conjugated homopolymers are promising materials for easy access to optoelectronic applications, but it has been challenging due to the low solubility of conjugated homopolymers. Herein, we report size-tunable and uniform semiconducting 2D nanorectangles via living crystallization-driven self-assembly (CDSA) of a fully conjugated polyenyne homopolymer prepared by cascade metathesis and metallotropy (M&M) polymerization. The resulting polyenyne with enhanced solubility successfully underwent living CDSA via biaxial growth mechanism, thereby producing 2D nanorectangles with sizes precisely tuned from 0.1 to 3.0 μm2 with narrow dispersity mostly less than 1.1 and low aspect ratios less than 3.1. Furthermore, living CDSA produced complex 2D block comicelles with different heights from various degrees of polymerization (DPs) of unimers. Based on diffraction analyses and DFT calculations, we proposed an interdigitating packing model with an orthorhombic crystal lattice of semiconducting 2D nanorectangles.
Collapse
Affiliation(s)
- Namkyu Yun
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Cheol Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sanghee Yang
- Department of Chemistry, Inha University, Incheon 22212, Korea
| | - Soon-Hyeok Hwang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jun-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Tae-Lim Choi
- Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
18
|
Suraeva O, Kaltbeitzel A, Landfester K, Wurm FR, Lieberwirth I. Nanoscale Control of the Surface Functionality of Polymeric 2D Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206454. [PMID: 36929281 DOI: 10.1002/smll.202206454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Typically, 2D nanosheets have a homogeneous surface, making them a major challenge to structure. This study proposes a novel concept of 2D organic nanosheets with a heterogeneously functionalized surface. This work achieves this by consecutively crystallizing two precisely synthesized polymers with different functional groups in the polymer backbone in a two-step process. First, the core platelet is formed and then the second polymer is crystallized around it. As a result, the central area of the platelets has a different surface functionality than the periphery. This concept offers two advantages: the resulting polymeric 2D platelets are stable in dispersion, which simplifies further processing and makes both crystal surfaces accessible for subsequent functionalization. Additionally, a wide variety of polymers can be used, making the process and the choice of surface functionalization very flexible.
Collapse
Affiliation(s)
- Oksana Suraeva
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Anke Kaltbeitzel
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Frederik R Wurm
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ingo Lieberwirth
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
19
|
Khanra P, Singh AK, Roy L, Das A. Pathway Complexity in Supramolecular Copolymerization and Blocky Star Copolymers by a Hetero-Seeding Effect. J Am Chem Soc 2023; 145:5270-5284. [PMID: 36797682 DOI: 10.1021/jacs.2c12894] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
This study unravels the intricate kinetic and thermodynamic pathways involved in the supramolecular copolymerization of the two chiral dipolar naphthalene monoimide (NMI) building blocks (O-NMI and S-NMI), differing merely by a single heteroatom (oxygen vs sulfur). O-NMI exhibits distinct supramolecular polymerization features as compared to S-NMI in terms of its pathway complexity, hierarchical organization, and chiroptical properties. Two distinct self-assembly pathways in O-NMI occur due to the interplay between the competing dipolar interactions among the NMI chromophores and amide-amide hydrogen (H)-bonding that engenders distinct nanotapes and helical fibers, from its antiparallel and parallel stacking modes, respectively. In contrast, the propensity of S-NMI to form only a stable spherical assembly is ascribed to its much stronger amide-amide H-bonding, which outperforms other competing interactions. Under the thermodynamic route, an equimolar mixture of the two monomers generates a temporally controlled chiral statistical supramolecular copolymer that autocatalytically evolves from an initially formed metastable spherical heterostructure. In contrast, the sequence-controlled addition of the two monomers leads to the kinetically driven hetero-seeded block copolymerization. The ability to trap O-NMI in a metastable state allows its secondary nucleation from the surface of the thermodynamically stable S-NMI spherical "seed", which leads to the core-multiarmed "star" copolymer with reversibly and temporally controllable length of the growing O-NMI "arms" from the S-NMI "core". Unlike the one-dimensional self-assembly of O-NMI and its random co-assembly with S-NMI, which are both chiral, unprecedentedly, the preferred helical bias of the nucleating O-NMI fibers is completely inhibited by the absence of stereoregularity of the S-NMI "seed" in the "star" topology.
Collapse
Affiliation(s)
- Payel Khanra
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
20
|
Cai C, Lin J. Recent advances in the solution self‐assembly of polypeptides. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
21
|
Cai S, Huang Y, Xie S, Wang S, Guan Y, Wan X, Zhang J. 2D Hexagonal Assemblies of Amphiphilic Double-Helical Poly(phenylacetylene) Homopolymers with Enhanced Circularly Polarized Luminescence and Chiral Self-Sorting. Angew Chem Int Ed Engl 2022; 61:e202214293. [PMID: 36305302 DOI: 10.1002/anie.202214293] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 11/07/2022]
Abstract
Two-dimensional (2D) chiral materials have been attracting immense attentions owing to their unique properties. Herein, we successfully developed a unique assembly strategy of amphiphilic homopolymers to construct stable free-standing 2D chiral nanosheets in solution. The amphiphilic poly(phenylacetylene) (PPA) homopolymers bearing the hydrophobic and hydrophilic dendritic side chains adopt a DNA-like double-helical conformation. The regular hexagonal nanosheets were formed in THF/EtOH through nucleation and epitaxial growth. The sizes of the nanosheets can be modulated from nanometers to submillimeters upon varying the ratio of binary solvents, while the thickness is linearly correlated with the molecular weights. The 2D architecture can significantly enhance the CPL of polymers with a high dissymmetry factor ≈0.1. Driven by a discrimination of helical conformation, the PPAs can self-sort into homochiral 2D nanosheets, as directly visualized by using fluorescent microscopy.
Collapse
Affiliation(s)
- Siliang Cai
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yihan Huang
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Siyu Xie
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Sheng Wang
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yan Guan
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Science, Key Labora tory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
22
|
Deng R, Mao X, Pearce S, Tian J, Zhang Y, Manners I. Role of Competitive Crystallization Kinetics in the Formation of 2D Platelets with Distinct Coronal Surface Patterns via Seeded Growth. J Am Chem Soc 2022; 144:19051-19059. [PMID: 36201750 DOI: 10.1021/jacs.2c07962] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Low dispersity 2D platelet micelles with controllable surface patterns were prepared by seeded-growth/living crystallization-driven self-assembly (CDSA) of block copolymer/homopolymer (BCP/HP) blends of poly(ferrocenyldimethylsilane)-b-poly(2-vinyl pyridine) (PFS-b-P2VP) and PFS. The precise morphology was found to be dependent on the proportion of the P2VP corona block, which can be efficiently controlled by changing the molar concentration ratio of PFS-b-P2VP/PFS, (cB/cH)t, as well as their relative rates of crystallization, (GB/GH)t. In the case where their molar concentration ratio was comparable to their crystallization rate ratio, platelets with a uniform distribution of P2VP coronal chains were formed. In other cases, as the concentration ratio increased (or decreased) during the living CDSA process, hierarchical structures were formed, including chain-like assemblies consisting of end-to-end linked rectangular platelets and fusiform (tapered) micelles. (GB/GH)t was adjusted by tuning the degree of polymerization of the crystallizable PFS core-forming block and the BCP block ratio and by varying the terminus of the HP or changing the solvent used. Furthermore, the open edge of the platelets remained active for further growth, which permitted control of the morphology and dimensions of the platelets. Interestingly, in cases where the molar concentration ratio was lower than the crystallization rate ratio, growth rings were observed after two or more living CDSA steps. This study on the formation of platelet micelles by living CDSA of BCP/HP blends under kinetic control offers a considerable scope for the design of 2D polymer nanomaterials with controlled shape and surface patterns.
Collapse
Affiliation(s)
- Renhua Deng
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.,Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xi Mao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Samuel Pearce
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Jia Tian
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Yifan Zhang
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.,Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
23
|
Lei S, Tian J, Kang Y, Zhang Y, Manners I. AIE-Active, Stimuli-Responsive Fluorescent 2D Block Copolymer Nanoplatelets Based on Corona Chain Compression. J Am Chem Soc 2022; 144:17630-17641. [PMID: 36107414 DOI: 10.1021/jacs.2c07133] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aggregation-induced emission (AIE) represents a powerful tool in nanoscience as a result of enhanced luminescence in the condensed state. Although AIEgenic materials have been utilized in a wide range of applications, well-defined self-assembled nanoparticles with tailorable and uniform dimensions and morphology remain challenging to access. Herein, we use the seeded growth, living crystallization-driven self-assembly (CDSA) method to prepare size-tunable and uniform AIE-active 2D nanoplatelets from amphiphilic block copolymer (BCP) precursors with a crystallizable core-forming block and a corona-forming block to which tetraphenylethene (TPE) groups were covalently grafted as AIE-active pendants. The nanoplatelets were formed as a result of a solvophobicity-induced 1D to 2D morphology preference change, which accompanied the seeded growth of a BCP with a quaternized corona-forming block bearing the TPE luminogen. The 2D nanoplatelets exhibited a solvent-responsive fluorescent emission, and examples with coronas containing homogeneously distributed AIE-active TPE groups and Hg(II)-capturing thymine units exhibited excellent performance as proof-of-concept "turn-on" sensors for Hg(II) detection with a rapid response, high selectivity, and a low detection limit (5-125 × 10-9 M, i.e., 1-25 ppb). The fluorescence intensity was found to be nonlinear with respect to analyte concentration and to increase with the area of the nanoplatelet. This behavior is consistent with a cooperative mechanism based on changes in the steric compression of the corona chains, which gives rise to a restriction of the intramolecular motion (RIM) effect.
Collapse
Affiliation(s)
- Shixing Lei
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Jia Tian
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Yuetong Kang
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Yifan Zhang
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
24
|
Hicks GEJ, Cranston RR, Lotocki V, Manion JG, Lessard BH, Seferos DS. Dopant-Stabilized Assembly of Poly(3-hexylthiophene). J Am Chem Soc 2022; 144:16456-16470. [PMID: 36044779 DOI: 10.1021/jacs.2c04984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polymer self-assembly is a powerful approach for forming nanostructures for solution-phase applications. However, polymer semiconductor assembly has primarily been driven by solvent interactions. Here, we report poly(3-hexythiophene) homopolymer assembly driven and stabilized by oxidative doping with iron (III) p-toluenesulfonate in benzonitrile. By this improved method, dopant mol % and addition temperature determine the size and morphology of oxidized polymer nanostructures. The dopant counterion provides colloidal stability in a process of dopant-stabilized assembly (DSA). Each variable governing polymer assembly is systematically varied, revealing general principles of oxidized nanostructure assembly and allowing the polymer planarity, optical absorption, and doping level to be modulated. Oxidized nanostructure heights, lengths, and widths are shown to depend on these properties, which we hypothesize is due to competing nanostructure formation and oxidation mechanisms that are governed by the polymer conformation upon doping. Finally, we demonstrate that the nanoparticle oxidative doping level can be tuned post-formation through sequential dopant addition. By revealing the fundamental processes underlying DSA, this work provides a powerful toolkit to control the assembly and optoelectronic properties of oxidatively doped nanostructures in solution.
Collapse
Affiliation(s)
- Garion E J Hicks
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6 Toronto, Ontario, Canada
| | - Rosemary R Cranston
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, K1N 6N5 Ottawa, Ontario, Canada
| | - Victor Lotocki
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6 Toronto, Ontario, Canada
| | - Joseph G Manion
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, K1N 6N5 Ottawa, Ontario, Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, K1N 6N5 Ottawa, Ontario, Canada.,School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward, K1N 6N5 Ottawa, Ontario, Canada
| | - Dwight S Seferos
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6 Toronto, Ontario, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, M5S 3E5 Toronto, Ontario, Canada
| |
Collapse
|
25
|
Abstract
Conjugated polymers have been actively studied as an alternative to inorganic semiconductors for their unique optical and electrical properties and low-cost solution processability. However, typical conjugated polymer films contain numerous defects that negatively affect their transport properties, which remains a major issue despite much effort to develop ways to improve the molecular packing structure. In principle, conjugated block copolymers (BCPs) composed of a rod-type conjugated polymer and a coil-type insulating polymer can assemble into various types of ordered nanostructures based on the microphase segregation of two polymer blocks. However, such assembly typically requires a relatively large volume fraction of the coil block or modification of the rod block, both of which tend to impede charge transport. As an alternative, we and others have fabricated nanoscale assemblies of conjugated BCPs via solution-phase self-assembly, which can be used as building blocks for construction of extended nanoarrays of conjugated polymers. In particular, BCPs containing poly(3-hexylthiophene) (P3HT), a conjugated polymer widely used for its high hole mobility, form highly ordered and technologically relevant one-dimensional (1D) nanowires with controlled lengths. A range of well-defined assembly structures such as square plates, ribbons, vesicles, and helices have been prepared from various conjugated BCPs, resembling those of peptide self-assembly, forming diverse nanostructures through combinations of π-π stacking, hydrogen bonding, and hydrophobic interactions.When the self-assembly of P3HT BCPs takes place at an air-water interface, the initially formed polymer nanowires further assemble into hierarchical two-dimensional (2D) nanoarrays with solvent evaporation. The fluidic nature of the water subphase allows fabrication of highly ordered assembly structures from P3HT BCPs with high P3HT content. The ultrathin free-standing film integrated in a field effect transistor (FET) showed orders of magnitude higher current and hole mobility compared to that fabricated by conventional spin-coating. Furthermore, binary self-assembly of a P3HT BCP and quantum dots (QDs) at the air-water interface generates well-ordered 2D films of alternating P3HT nanowires and 1D QD arrays. Unlike coil-coil BCP systems, QDs reside at the interface between P3HT and coil blocks for a broad range of QD sizes due to the strong P3HT packing interactions and the flexible water subphase, forming tight p-n junctions for enhanced photocurrent. Incorporation of magnetic nanoparticles can further improve the degree of order, enabling fabrication of long-range order and direction-controlled P3HT nanoarrays through magnetic-field induced self-assembly.The conjugated BCP approach is highly modular and can be combined with various types of functional molecules, polymers, and nanoparticles, offering a powerful platform for fabrication of functional polymer nanostructures with desired morphologies and properties. This Account introduces recent advances in the self-assembly of π-conjugated BCPs, describes how they differ from prototypical coil-coil type BCPs, and discusses current issues and future outlooks.
Collapse
Affiliation(s)
- Seulki Kang
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Ga-Hyun Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
26
|
Ellis CE, Hils C, Oliver AM, Greiner A, Schmalz H, Manners I. Electrospinning of 1D Fiber‐Like Block Copolymer Micelles with a Crystalline Core. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Charlotte E. Ellis
- Department of Chemistry University of Victoria Victoria BC V8P 5C2 Canada
| | - Christian Hils
- Macromolecular Chemistry II University of Bayreuth 95440 Bayreuth Germany
| | - Alex M. Oliver
- Department of Chemistry University of Victoria Victoria BC V8P 5C2 Canada
- School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Andreas Greiner
- Macromolecular Chemistry II University of Bayreuth 95440 Bayreuth Germany
- Bavarian Polymer Institute University of Bayreuth 95440 Bayreuth Germany
| | - Holger Schmalz
- Macromolecular Chemistry II University of Bayreuth 95440 Bayreuth Germany
- Bavarian Polymer Institute University of Bayreuth 95440 Bayreuth Germany
| | - Ian Manners
- Department of Chemistry University of Victoria Victoria BC V8P 5C2 Canada
- Center for Advanced Materials and Related Technology (CAMTEC) University of Victoria 3800 Finnerty Rd Victoria BC V8P 5C2 Canada
| |
Collapse
|
27
|
Zhang C, Lin J, Wang L, Gao L. 2D Liquid-Crystallization-Driven Self-Assembly of Rod-Coil Block Copolymers: Living Growth and Self-Similarity. J Phys Chem Lett 2022; 13:6215-6222. [PMID: 35770907 DOI: 10.1021/acs.jpclett.2c01570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid-crystallization-driven self-assembly (LCDSA) is an emerging methodology, which has been employed to construct controllable 1D nanostructures. However, 2D nanostructures via living LCDSA are rarely reported, and the complicated growth kinetics are not well-known. Herein, we perform Brownian dynamics (BD) simulations to investigate the 2D living growth of disklike micelles via LCDSA of rod-coil block copolymers. The 2D seeded-growth behavior is achieved by incorporating the unimers onto the edges of disklike seeds with smectic-like liquid-crystalline (LC) cores. The fluidity of such LC-like micellar cores is conducive to the chain adjustments of rod blocks during the 2D living growth process. The apparent growth rate and unique self-similarity kinetics are governed by the interplay between the variations in the growth rate coefficient and the reactive sites at the micelle edges. This work provides an in-depth understanding of the 2D living growth of micelles and guidance to construct well-defined 2D hierarchical nanostructures.
Collapse
Affiliation(s)
- Chengyan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
28
|
Choi I, Kang SY, Yang S, Yun N, Choi TL. Fabrication of Semiconducting Nanoribbons with Tunable Length and Width via Crystallization-Driven Self-Assembly of a Homopolymer Prepared by Cyclopolymerization Using Grubbs Catalyst. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Inho Choi
- LG Chem Ltd Research and Development, 188, Munji-ro, Yuseong-gu, Daejeon 34122, Korea
| | - Sung-Yun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sanghee Yang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Namkyu Yun
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
29
|
Rajak A, Das A. Crystallization-Driven Controlled Two-Dimensional (2D) Assemblies from Chromophore-Appended Poly(L-lactide)s: Highly Efficient Energy Transfer on a 2D Surface. Angew Chem Int Ed Engl 2022; 61:e202116572. [PMID: 35137517 DOI: 10.1002/anie.202116572] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 12/12/2022]
Abstract
A rational approach towards precision two-dimensional (2D) assemblies by crystallization-driven self-assembly (CDSA) of poly(L-lactides) (PLLAs), end-capped with dipolar dyes like merocyanine (MC) or naphthalene monoimide (NMI) and hydrophobic pyrene (PY) or benzene (Bn) is described. PLLA chains crystallize into diamond-shaped platelets in isopropanol, which forces the terminal dyes to assemble into a 2D array on the platelet surface by either dipolar interactions or π-stacking and exhibit tunable emission. Dipolar dyes play a critical role in imparting colloidal stability and structural uniformity to the 2D crystals, which is partly compromised for hydrophobic ones. Co-crystallization between NMI- and PY-labeled PLLAs yields similar diamond-shaped co-platelets with highly efficient (≈80 %) Förster Resonance Energy Transfer on the 2D surface. Further, the "living" CDSA method confers enlarged, segmented block co-platelets using one of the homopolymers as "seed" and the other as "unimer".
Collapse
Affiliation(s)
- Aritra Rajak
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
30
|
Insua I, Bergueiro J, Méndez-Ardoy A, Lostalé-Seijo I, Montenegro J. Bottom-up supramolecular assembly in two dimensions. Chem Sci 2022; 13:3057-3068. [PMID: 35414883 PMCID: PMC8926289 DOI: 10.1039/d1sc05667k] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/19/2022] [Indexed: 01/17/2023] Open
Abstract
The self-assembly of molecules in two dimensions (2D) is gathering attention from all disciplines across the chemical sciences. Attracted by the interesting properties of two-dimensional inorganic analogues, monomers of different chemical natures are being explored for the assembly of dynamic 2D systems. Although many important discoveries have been already achieved, great challenges are still to be addressed in this field. Hierarchical multicomponent assembly, directional non-covalent growth and internal structural control are a just a few of the examples that will be discussed in this perspective about the exciting present and the bright future of two-dimensional supramolecular assemblies. The self-assembly of molecules in two dimensions (2D) is gathering attention from all disciplines across the chemical sciences. This perspective discusses the main strategies to direct the supramolecular self-assembly of organic monomers in 2D.![]()
Collapse
Affiliation(s)
- Ignacio Insua
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Julian Bergueiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Alejandro Méndez-Ardoy
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| |
Collapse
|
31
|
Kwon Y, Ma H, Kim KT. Self-Assembly of Stereoblock Copolymers Driven by the Chain Folding of Discrete Poly( d-lactic acid- b- l-lactic acid) via Intramolecular Stereocomplexation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yongbeom Kwon
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hyunji Ma
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Kyoung Taek Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
32
|
Lin D, Liu J, Zhang H, Qian Y, Yang H, Liu L, Ren A, Zhao Y, Yu X, Wei Y, Hu S, Li L, Li S, Sheng C, Zhang W, Chen S, Shen J, Liu H, Feng Q, Wang S, Xie L, Huang W. Gridization-Driven Mesoscale Self-Assembly of Conjugated Nanopolymers into Luminescence-Anisotropic Photonic Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109399. [PMID: 35023217 DOI: 10.1002/adma.202109399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Organic semiconducting emitters integrated with butterfly-mimetic photonic crystals (PhCs) are fascinating for dramatic advantages over light outcoupling efficiency and multifunctional strain sensors, as well as the key step toward electrically pumped lasers. Herein, an unprecedentedly direct mesoscale self-assembly into 1D PhCs is reported through a covalently gridization-driven approach of wide-bandgap conjugated polymers. A simple solvent-casting procedure allows for in situ self-assembly of the state-of-the-art conjugated nanopolymer, poly{[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]grid}-co-{[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]grid} (PODPFG), into well-defined multilayer architectures with an excellent toughness (30-40 J m-3 ). This ordered meso-architecture shows a typical Bragg-Snell diffraction behavior to testify the PhC nature, along with a high effective refractive index (1.80-1.88) and optical transmittance (85-87%). The PhC films also exhibit an angle-dependent blue/green photoluminescence switching, an electroluminescence efficiency enhancement by 150-250%, and an amplified spontaneous emission enhancement with ultralow waveguide loss coefficient (2.60 cm-1 ). Gridization of organic semiconductors offers promising opportunities for cross-scale morphology-directed molecular design in multifunctional organic mechatronics and intelligences.
Collapse
Affiliation(s)
- Dongqing Lin
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jin'an Liu
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - He Zhang
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yue Qian
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Hao Yang
- State Key Laboratory of Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lihui Liu
- State Key Laboratory of Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Ang Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yongsheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiang Yu
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Ying Wei
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Shu Hu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lianjie Li
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Shifeng Li
- College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China
| | - Chuanxiang Sheng
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenhua Zhang
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shufen Chen
- State Key Laboratory of Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jianping Shen
- College of Electronic and Optical Engineering, Nanjing University of Post and Telecommunications, Nanjing, 210023, China
| | - Huifang Liu
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Quanyou Feng
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Shasha Wang
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Linghai Xie
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wei Huang
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
33
|
Rajak A, Das A. Crystallization‐Driven Controlled Two‐Dimensional (2D) Assemblies from Chromophore‐Appended Poly(L‐lactide)s: Highly Efficient Energy Transfer on a 2D Surface. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aritra Rajak
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science (IACS) 2A & 2B Raja S. C. Mullick Road Jadavpur Kolkata-700032 India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science (IACS) 2A & 2B Raja S. C. Mullick Road Jadavpur Kolkata-700032 India
| |
Collapse
|
34
|
|
35
|
Su Y, Jiang Y, Liu L, Xie Y, Chen S, Wang Y, O’Reilly RK, Tong Z. Hydrogen-Bond-Regulated Platelet Micelles by Crystallization-Driven Self-Assembly and Templated Growth for Poly(ε-Caprolactone) Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yawei Su
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yikun Jiang
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liping Liu
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yujie Xie
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Shichang Chen
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yongjun Wang
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rachel K. O’Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Zaizai Tong
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
36
|
Harniman RL, Pearce S, Manners I. Exploring the "Living" Growth of Block Copolymer Nanofibers from Surface-Confined Seeds by In Situ Solution-Phase Atomic Force Microscopy. J Am Chem Soc 2022; 144:951-962. [PMID: 34985896 DOI: 10.1021/jacs.1c11209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Living crystallization-driven self-assembly of polymeric and molecular amphiphiles is of growing interest as a seeded growth route to uniform 1D, 2D, and more complex micellar nanoparticles with controlled dimensions and a range of potential applications. Although most studies have been performed using colloidally stable seeds in bulk solution, growth of block copolymer (BCP) nanofibers from seeds confined to a surface is attracting increased attention. Herein, we have used atomic force microscopy (AFM) to undertake detailed studies of the growth of BCP nanofibers from immobilized seeds located on a Si surface. Through initial ex situ AFM studies and in situ AFM video analysis in solution, we determined that growth occurred in four stages, whereby an initial surface-bound growth regime transitions to surface-limited growth. As the nanofiber length increases, surface influence is diminished as the newly grown micelle segment is no longer bound to the Si substrate. Finally, a surface-independent regime occurs where nanofiber growth continues into bulk solution. In addition to the anticipated nanofiber elongation, our studies revealed occasional examples of AFM tip-induced core fragmentation. In these cases, the termini of the newly formed fragments were also active to further growth. Furthermore, unidirectional growth was detected in cases where the seed was oriented at a significant angle with respect to the surface, thereby restricting unimer access to one terminus.
Collapse
Affiliation(s)
- Robert L Harniman
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Samuel Pearce
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.,Bristol Centre for Functional Nanomaterials, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
37
|
Hu S, Yan J, Yang G, Ma C, Yin J. Self-Assembled Polymeric Materials: Design, Morphology, and Functional-Oriented Applications. Macromol Rapid Commun 2021; 43:e2100791. [PMID: 34967061 DOI: 10.1002/marc.202100791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Indexed: 11/10/2022]
Abstract
This Review focuses on the current research advances of the synthesis of various amphiphilic block copolymers (ABCs), such as conventional ABCs and newly-presented polyprodrug amphiphiles (PPAs), and the development of corresponding self-assemblies in selective solvents driven by the intermolecular interactions, like noncovalent hydrophobic interactions, π-π interactions, and hydrogen bonds, between ABCs or preformed small polymeric nanoparticles. The design of these assemblies is systematically introduced, and the diverse examples concerning the unique assembly structures along with the fast development of their exclusive properties and various applications in different fields were discussed. Possible perspectives on the existential challenges and glorious future were elucidated finally. We hope this review will provide a convenient way for readers to motivate more evolutional innovative concepts and methods to design next generation of novel polymeric nanoassemblies, and fill the gap between material design and practical applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shoukui Hu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China
| | - Jinhao Yan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China
| | - Guangwei Yang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China
| | - Chao Ma
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China
| | - Jun Yin
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China
| |
Collapse
|
38
|
MacFarlane LR, Li X, Faul CFJ, Manners I. Efficient and Controlled Seeded Growth of Poly(3-hexylthiophene) Block Copolymer Nanofibers through Suppression of Homogeneous Nucleation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liam R. MacFarlane
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Xiaoyu Li
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Charl F. J. Faul
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victorias, 3800 Finnerty Rd, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
39
|
Ma J, Lu G, Huang X, Feng C. π-Conjugated-polymer-based nanofibers through living crystallization-driven self-assembly: preparation, properties and applications. Chem Commun (Camb) 2021; 57:13259-13274. [PMID: 34816824 DOI: 10.1039/d1cc04825b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
π-Conjugated-polymer-based nanofibers (CPNFs) of controlled length, composition and morphology are promising for a broad range of emerging applications in optoelectronics, biomedicine and catalysis, owing to the morphological merits of fiber-like nanostructures and structural attributes of π-conjugated polymers. Living crystallization-driven self-assembly (CDSA) of π-conjugated-polymer-containing block copolymers (BCPs) has emerged as an efficient strategy to prepare CPNFs with precise dimensional and structural controllability by taking advantage of the crystallinity of π-conjugated polymers. In this review, recent advances in the generation of CPNFs have been highlighted. The influence of the structure of π-conjugated-polymer-containing BCPs and experimental conditions on the CDSA behaviors, especially seeded growth and self-seeding processes of living CDSA, has been discussed in detail, aiming to provide an in-depth overview of living CDSA of π-conjugated-polymer-containing BCPs. In addition, the properties of CPNFs as well as their potential applications have been illustrated. Finally, we put forward the current challenges and research directions in the field of CPNFs.
Collapse
Affiliation(s)
- Junyu Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| |
Collapse
|
40
|
Kwon Y, Kim KT. Crystallization-Driven Self-Assembly of Block Copolymers Having Monodisperse Poly(lactic acid)s with Defined Stereochemical Sequences. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yongbeom Kwon
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Kyoung Taek Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
41
|
Song S, Zhou H, Hicks G, Jiang J, Zhang Y, Manners I, Winnik MA. An Amphiphilic Corona-Forming Block Promotes Formation of a Variety of 2D Platelets via Crystallization-Driven Block Copolymer Self-Assembly. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shaofei Song
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hang Zhou
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Garion Hicks
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jingjie Jiang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Yefeng Zhang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|