1
|
Septianto RD, Romagosa AP, Dong Y, Matsuoka H, Ideue T, Majima Y, Iwasa Y. Gate-Controlled Potassium Intercalation and Superconductivity in Molybdenum Disulfide. NANO LETTERS 2024; 24:13790-13795. [PMID: 39432260 DOI: 10.1021/acs.nanolett.4c04134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Intercalation of guest ions into a van der Waals (vdW) gap in layered materials is a powerful route to create novel material phases and functionalities. Ionic gating is a technique to control the motions and configuration of ions for both intercalation and surface electrostatic doping. The advance of ionic gating enables the in situ probe of dynamics of ion diffusion, carrier doping, and transport properties. Here we performed in situ resistivity and Raman experiments on the potassium ion (K+) intercalation of single-crystal MoS2 and constructed a temperature-carrier density phase diagram. The K+-intercalation induces a structural transition from the prismatically coordinated phase to the octahedrally coordinated phase, where anisotropic three-dimensional superconductivity and a possible charge density wave state were observed. The present ionic gating offers a comprehensive view of the intercalated phases and proves that the electrostatically induced superconductivity is distinct from that in the intercalated phase.
Collapse
Affiliation(s)
- Ricky Dwi Septianto
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Alec Paul Romagosa
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Yu Dong
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hideki Matsuoka
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan
| | - Toshiya Ideue
- Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan
| | - Yutaka Majima
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Yoshihiro Iwasa
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Zou X, Bai Y, Dai Y, Huang B, Niu C. Robust second-order topological insulator in 2D van der Waals magnet CrI 3. MATERIALS HORIZONS 2024. [PMID: 39377101 DOI: 10.1039/d4mh00620h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
CrI3 offers an intriguing platform for exploring fundamental physics and the innovative design of spintronics devices in two-dimensional (2D) magnets, and moreover has been instrumental in the study of topological physics. However, the 2D CrI3 monolayer and bilayers have long been thought to be topologically trivial. Here we uncover a hidden facet of the band topology of 2D CrI3 by showing that both the CrI3 monolayer and bilayers are second-order topological insulators (SOTIs) with a nonzero second Stiefel-Whitney number w2 = 1. Furthermore, the topologically nontrivial nature can be explicitly confirmed via the emergence of floating edge states and in-gap corner states. Remarkably, in contrast to most known magnetic topological states, we put forward that the SOTIs in 2D CrI3 monolayer and bilayers are highly robust against magnetic transitions, which remain intact under both ferromagnetic and antiferromagnetic configurations. These interesting predictions not only provide a comprehensive understanding of the band topology of 2D CrI3 but also offer a favorable platform to realize magnetic SOTIs for spintronics applications.
Collapse
Affiliation(s)
- Xiaorong Zou
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Yingxi Bai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Chengwang Niu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| |
Collapse
|
3
|
Cai N, Liu Y. Skyrmions Subtractor Based on Dzyaloshinskii-Moriya Interaction Gate. J Phys Chem Lett 2024; 15:7775-7781. [PMID: 39047264 DOI: 10.1021/acs.jpclett.4c01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Skyrmions are increasingly favored in developing various spintronic devices as efficient information carriers. The proposed voltage-controlled Dzyaloshinskii-Moriya interaction (VCDM) offers an additional means to manipulate the movement of skyrmions. In this study, we investigated how the skyrmions behave when passing through the VCDM gate in ferromagnetic nanotracks driven by current. Our findings suggest that reducing the strength of the Dzyaloshinskii-Moriya interaction (DMI) can more effectively block skyrmions, while increasing the DMI strength can more effectively attract them. This indicates that the motion behavior of skyrmions can be controlled by changing the shape of the VCDM gate, thereby demonstrating the effectiveness of VCDM gates in controlling skyrmion motion. Due to the ability of VCDM gates to block skyrmions, we have designed a robust subtractor based on skyrmions. These results provide valuable insights for the development of future skyrmion-based devices using the DMI method.
Collapse
Affiliation(s)
- Na Cai
- College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yan Liu
- College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| |
Collapse
|
4
|
Liu J, Gao X, Shi K, Zhang M, Wu J, Ukleev V, Radu F, Ji Y, Deng Z, Wei L, Hong Y, Hu S, Xiao W, Li L, Zhang Q, Wang Z, Wang L, Gan Y, Chen K, Liao Z. Hundred-Fold Enhancement in the Anomalous Hall Effect Induced by Hydrogenation. NANO LETTERS 2024; 24:1351-1359. [PMID: 38251855 DOI: 10.1021/acs.nanolett.3c04368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The anomalous Hall effect (AHE) is one of the most fascinating transport properties in condensed matter physics. However, the AHE magnitude, which mainly depends on net spin polarization and band topology, is generally small in oxides and thus limits potential applications. Here, we demonstrate a giant enhancement of AHE in a LaCoO3-induced 5d itinerant ferromagnet SrIrO3 by hydrogenation. The anomalous Hall resistivity and anomalous Hall angle, which are two of the most critical parameters in AHE-based devices, are found to increase to 62.2 μΩ·cm and 3%, respectively, showing an unprecedentedly large enhancement ratio of ∼10000%. Theoretical analysis suggests the key roles of Berry curvature in enhancing AHE. Furthermore, the hydrogenation concomitantly induces the significant elevation of Curie temperature from 75 to 160 K and 40-fold reinforcement of coercivity. Such giant regulation and very large AHE magnitude observed in SrIrO3 could pave the path for 5d oxide devices.
Collapse
Affiliation(s)
- Junhua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Xiaofei Gao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Ke Shi
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei 230031, China
| | - Minjie Zhang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei 230031, China
| | - Jiating Wu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei 230031, China
| | - Victor Ukleev
- Helmholtz-Zentrum-Berlin für Materialien und Energie, Albert-Einstein-Straße 15, Berlin 12489, Germany
| | - Florin Radu
- Helmholtz-Zentrum-Berlin für Materialien und Energie, Albert-Einstein-Straße 15, Berlin 12489, Germany
| | - Yaoyao Ji
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Zhixiong Deng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Long Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yuhao Hong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Shilin Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Wen Xiao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Lin Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhaosheng Wang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei 230031, China
| | - Lingfei Wang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yulin Gan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Kai Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Zhaoliang Liao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Zou X, Li R, Chen Z, Dai Y, Huang B, Niu C. Engineering Gapless Edge States from Antiferromagnetic Chern Homobilayer. NANO LETTERS 2024; 24:450-457. [PMID: 38112315 DOI: 10.1021/acs.nanolett.3c04304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
We put forward that stacked Chern insulators with opposite chiralities offer a strategy to achieve gapless helical edge states in two dimensions. We employ the square lattice as an example and elucidate that the gapless chiral and helical edge states emerge in the monolayer and antiferromagnetically stacked bilayer, characterized by Chern number C = - 1 and spin Chern number C S = - 1 , respectively. Particularly, for a topological phase transition to the normal insulator in the stacked bilayer, a band gap closing and reopening procedure takes place accompanied by helical edge states disappearing, where the Chern insulating phase in the monolayer vanishes at the same time. Moreover, EuO is revealed as a suitable candidate for material realization. This work is not only valuable to the research of the quantum anomalous Hall effect but also offers a favorable platform to realize magnetic topologically insulating materials for spintronics applications.
Collapse
Affiliation(s)
- Xiaorong Zou
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Runhan Li
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Zhiqi Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Chengwang Niu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
6
|
Miao W, Zhen W, Tan C, Wang J, Nie Y, Wang H, Wang L, Niu Q, Tian M. Nonreciprocal Antisymmetric Magnetoresistance and Unconventional Hall Effect in a Two-Dimensional Ferromagnet. ACS NANO 2023; 17:25449-25458. [PMID: 38051216 DOI: 10.1021/acsnano.3c08954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Two-dimensional (2D) ferromagnets with high Curie temperatures provide a rich platform for exploring the exotic phenomena of 2D magnetism and the potential of spintronic devices. As a prototypical 2D ferromagnet, Fe5-xGeTe2 has recently been reported to possess a high Curie temperature with Tc ∼ 310 K, making it a promising candidate for advancing 2D nanoelectromechanical systems. However, due to its intricate magnetic ground state and magnetic domains, a thorough study of the transport behavior related to its lattice and domain structures is still lacking. Here, we report a nonreciprocal antisymmetric magnetoresistance in Fe5-xGeTe2 nanoflakes observed under an external magnetic field between 85-120 K. Through a detailed examination of its temperature, field orientation, and sample thickness dependence, we trace its origin to an additional electric field induced by the domain structure. This differs from the previously reported antisymmetric magnetoresistance due to thickness inhomogeneity. Notably, at lower temperatures, we observed an unconventional Hall effect (UHE), which can be attributed to the Dzyaloshinskii-Moriya interaction (DMI) resulting from the non-coplanar magnetic moment structure. The pronounced influence of sample thickness on magneto-transport properties underscores the competition between magnetic anisotropy and DMI in Fe5-xGeTe2 flakes with varying thicknesses. Our findings provide a deeper understanding of the magneto-transport behavior of the exotic magnetic structure in 2D ferromagnetic materials, which may benefit future spintronic device applications.
Collapse
Affiliation(s)
- Weiting Miao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Weili Zhen
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Cheng Tan
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Jie Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yong Nie
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Hengning Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Lan Wang
- Lab of Low Dimensional Magnetism and Spintronic Devices, School of Physics, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Qun Niu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Mingliang Tian
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, Anhui, China
| |
Collapse
|
7
|
Tan C, Liao JH, Zheng G, Algarni M, Lin JY, Ma X, Mayes ELH, Field MR, Albarakati S, Panahandeh-Fard M, Alzahrani S, Wang G, Yang Y, Culcer D, Partridge J, Tian M, Xiang B, Zhao YJ, Wang L. Room-Temperature Magnetic Phase Transition in an Electrically Tuned van der Waals Ferromagnet. PHYSICAL REVIEW LETTERS 2023; 131:166703. [PMID: 37925723 DOI: 10.1103/physrevlett.131.166703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/10/2023] [Accepted: 09/06/2023] [Indexed: 11/07/2023]
Abstract
Finding tunable van der Waals (vdW) ferromagnets that operate at above room temperature is an important research focus in physics and materials science. Most vdW magnets are only intrinsically magnetic far below room temperature and magnetism with square-shaped hysteresis at room temperature has yet to be observed. Here, we report magnetism in a quasi-2D magnet Cr_{1.2}Te_{2} observed at room temperature (290 K). This magnetism was tuned via a protonic gate with an electron doping concentration up to 3.8×10^{21} cm^{-3}. We observed nonmonotonic evolutions in both coercivity and anomalous Hall resistivity. Under increased electron doping, the coercivities and anomalous Hall effects (AHEs) vanished, indicating a doping-induced magnetic phase transition. This occurred up to room temperature. DFT calculations showed the formation of an antiferromagnetic (AFM) phase caused by the intercalation of protons which induced significant electron doping in the Cr_{1.2}Te_{2}. The tunability of the magnetic properties and phase in room temperature magnetic vdW Cr_{1.2}Te_{2} is a significant step towards practical spintronic devices.
Collapse
Affiliation(s)
- Cheng Tan
- Lab of Low Dimensional Magnetism and Spintronic Devices, School of Physics, Hefei University of Technology, Hefei, Anhui 230009, China
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Ji-Hai Liao
- Department of Physics, South China University of Technology, Guangzhou 510640, China
| | - Guolin Zheng
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences (CAS), Hefei, Anhui 230031, China
| | - Meri Algarni
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
- Physics Department, Faculty of Science, Al-Baha University, Alaqiq 65779, Saudi Arabia
| | - Jia-Yi Lin
- Department of Physics, South China University of Technology, Guangzhou 510640, China
| | - Xiang Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science & Engineering, CAS Key Lab of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Edwin L H Mayes
- RMIT Microscopy & Microanalysis Facility, RMIT University, Melbourne, Victoria 3000, Australia
| | - Matthew R Field
- RMIT Microscopy & Microanalysis Facility, RMIT University, Melbourne, Victoria 3000, Australia
| | - Sultan Albarakati
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
- Physics Department, Faculty of Science and Arts, University of Jeddah, P.O. Box 80200, 21589 Khulais, Saudi Arabia
| | - Majid Panahandeh-Fard
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Saleh Alzahrani
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Guopeng Wang
- Department of Physics, School of Physics and Materials Science, Anhui University, Hefei, Anhui 230601, China
| | - Yuanjun Yang
- Lab of Low Dimensional Magnetism and Spintronic Devices, School of Physics, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Dimitrie Culcer
- School of Physics and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, UNSW Node, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - James Partridge
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Mingliang Tian
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences (CAS), Hefei, Anhui 230031, China
- Department of Physics, School of Physics and Materials Science, Anhui University, Hefei, Anhui 230601, China
| | - Bin Xiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science & Engineering, CAS Key Lab of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu-Jun Zhao
- Department of Physics, South China University of Technology, Guangzhou 510640, China
| | - Lan Wang
- Lab of Low Dimensional Magnetism and Spintronic Devices, School of Physics, Hefei University of Technology, Hefei, Anhui 230009, China
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
8
|
Wang H, Wen Y, Zeng H, Xiong Z, Tu Y, Zhu H, Cheng R, Yin L, Jiang J, Zhai B, Liu C, Shan C, He J. 2D Ferroic Materials for Nonvolatile Memory Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305044. [PMID: 37486859 DOI: 10.1002/adma.202305044] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The emerging nonvolatile memory technologies based on ferroic materials are promising for producing high-speed, low-power, and high-density memory in the field of integrated circuits. Long-range ferroic orders observed in 2D materials have triggered extensive research interest in 2D magnets, 2D ferroelectrics, 2D multiferroics, and their device applications. Devices based on 2D ferroic materials and heterostructures with an atomically smooth interface and ultrathin thickness have exhibited impressive properties and significant potential for developing advanced nonvolatile memory. In this context, a systematic review of emergent 2D ferroic materials is conducted here, emphasizing their recent research on nonvolatile memory applications, with a view to proposing brighter prospects for 2D magnetic materials, 2D ferroelectric materials, 2D multiferroic materials, and their relevant devices.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Hui Zeng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Ziren Xiong
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yangyuan Tu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Hao Zhu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Lei Yin
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jian Jiang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Baoxing Zhai
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Chuansheng Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Hubei Luojia Laboratory, Wuhan, 430079, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
9
|
Yang F, Hu P, Yang FF, Chen B, Yin F, Sun R, Hao K, Zhu F, Wang K, Yin Z. Emerging Enhancement and Regulation Strategies for Ferromagnetic 2D Transition Metal Dichalcogenides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300952. [PMID: 37178366 PMCID: PMC10375142 DOI: 10.1002/advs.202300952] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/18/2023] [Indexed: 05/15/2023]
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDs) present promising applications in various fields such as electronics, optoelectronics, memory devices, batteries, superconductors, and hydrogen evolution reactions due to their regulable energy band structures and unique properties. For emerging spintronics applications, materials with excellent room-temperature ferromagnetism are required. Although most transition metal compounds do not possess room-temperature ferromagnetism on their own, they are widely modified by researchers using the emerging strategies to engineer or modulate their intrinsic properties. This paper reviews recent enhancement approaches to induce magnetism in 2D TMDs, mainly using doping, vacancy defects, composite of heterostructures, phase modulation, and adsorption, and also by electron irradiation induction, O plasma treatment, etc. On this basis, the produced effects of these methods for the introduction of magnetism into 2D TMDs are compressively summarized and constructively discussed. For perspective, research on magnetic doping techniques for 2D TMDs materials should be directed toward more reliable and efficient directions, such as exploring advanced design strategies to combine dilute magnetic semiconductors, antiferromagnetic semiconductors, and superconductors to develop new types of heterojunctions; and advancing experimentation strategies to fabricate the designed materials and enable their functionalities with simultaneously pursuing the upscalable growth methods for high-quality monolayers to multilayers.
Collapse
Affiliation(s)
- Fan Yang
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ping Hu
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fairy Fan Yang
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Bo Chen
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fei Yin
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ruiyan Sun
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ke Hao
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fei Zhu
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kuaishe Wang
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
10
|
Xue F, Zhang C, Ma Y, Wen Y, He X, Yu B, Zhang X. Integrated Memory Devices Based on 2D Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201880. [PMID: 35557021 DOI: 10.1002/adma.202201880] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/07/2022] [Indexed: 06/15/2023]
Abstract
With the advent of the Internet of Things and big data, massive data must be rapidly processed and stored within a short timeframe. This imposes stringent requirements on memory hardware implementation in terms of operation speed, energy consumption, and integration density. To fulfill these demands, 2D materials, which are excellent electronic building blocks, provide numerous possibilities for developing advanced memory device arrays with high performance, smart computing architectures, and desirable downscaling. Over the past few years, 2D-material-based memory-device arrays with different working mechanisms, including defects, filaments, charges, ferroelectricity, and spins, have been increasingly developed. These arrays can be used to implement brain-inspired computing or sensing with extraordinary performance, architectures, and functionalities. Here, recent research into integrated, state-of-the-art memory devices made from 2D materials, as well as their implications for brain-inspired computing are surveyed. The existing challenges at the array level are discussed, and the scope for future research is presented.
Collapse
Affiliation(s)
- Fei Xue
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310020, P. R. China
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311200, P. R. China
| | - Chenhui Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Yinchang Ma
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Yan Wen
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Xin He
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Bin Yu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310020, P. R. China
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311200, P. R. China
| | - Xixiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Huang P, Cantoni M, Magrez A, Carbone F, Rønnow HM. Electric field writing and erasing of skyrmions in magnetoelectric Cu 2OSeO 3 with an ultralow energy barrier. NANOSCALE 2022; 14:16655-16660. [PMID: 36330779 DOI: 10.1039/d2nr04399h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Skyrmions are chiral magnetic textures with non-trivial topology, and due to their unique properties they are widely considered as promising information carriers in novel magnetic storage applications. While electric field writing/erasing and manipulation of skyrmions have been recently achieved, quantitative insights into the energetics of those phenomena remain scarce. Here, we report our in situ electric field writing/erasing of skyrmions in magnetoelectric helimagnet Cu2OSeO3 utilizing real-space and real-time Lorentz transmission electron macroscopy. Through the quantitavie analysis on our massive video data, we obtained a linear dependence of the number of skyrmions on the amplitude of the applied electric field, from which a local energy barried to write/erase skyrmions is estimated to be per skyrmion. Such an ultralow energy barrier implies the potential of precise control of skyrmions in future spintronics applications.
Collapse
Affiliation(s)
- Ping Huang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, , CN-710049 Xi'an, China.
- Laboratory for Quantum Magnetism (LQM), Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marco Cantoni
- Centre Interdisciplinaire de Microscopie Électronique (CIME), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Arnaud Magrez
- Crystal Growth Facility, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Fabrizio Carbone
- Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Henrik M Rønnow
- Laboratory for Quantum Magnetism (LQM), Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Spontaneous generation and active manipulation of real-space optical vortices. Nature 2022; 611:48-54. [PMID: 36224392 DOI: 10.1038/s41586-022-05229-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
Optical vortices are beams of light that carry orbital angular momentum1, which represents an extra degree of freedom that can be generated and manipulated for photonic applications2-8. Unlike vortices in other physical entities, the generation of optical vortices requires structural singularities9-12, but this affects their quasiparticle nature and hampers the possibility of altering their dynamics or making them interacting13-17. Here we report a platform that allows the spontaneous generation and active manipulation of an optical vortex-antivortex pair using an external field. An aluminium/silicon dioxide/nickel/silicon dioxide multilayer structure realizes a gradient-thickness optical cavity, where the magneto-optic effects of the nickel layer affect the transition between a trivial and a non-trivial topological phase. Rather than a structural singularity, the vortex-antivortex pairs present in the light reflected by our device are generated through mathematical singularities in the generalized parameter space of the top and bottom silicon dioxide layers, which can be mapped onto real space and exhibit polarization-dependent and topology-dependent dynamics driven by external magnetic fields. We expect that the field-induced engineering of optical vortices that we report will facilitate the study of topological photonic interactions and inspire further efforts to bestow quasiparticle-like properties to various topological photonic textures such as toroidal vortices, polarization and vortex knots, and optical skyrmions.
Collapse
|
13
|
Husremović S, Groschner CK, Inzani K, Craig IM, Bustillo KC, Ercius P, Kazmierczak NP, Syndikus J, Van Winkle M, Aloni S, Taniguchi T, Watanabe K, Griffin SM, Bediako DK. Hard Ferromagnetism Down to the Thinnest Limit of Iron-Intercalated Tantalum Disulfide. J Am Chem Soc 2022; 144:12167-12176. [PMID: 35732002 DOI: 10.1021/jacs.2c02885] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-dimensional (2D) magnetic crystals hold promise for miniaturized and ultralow power electronic devices that exploit spin manipulation. In these materials, large, controllable magnetocrystalline anisotropy (MCA) is a prerequisite for the stabilization and manipulation of long-range magnetic order. In known 2D magnetic crystals, relatively weak MCA typically results in soft ferromagnetism. Here, we demonstrate that ferromagnetic order persists down to the thinnest limit of FexTaS2 (Fe-intercalated bilayer 2H-TaS2) with giant coercivities up to 3 T. We prepare Fe-intercalated TaS2 by chemical intercalation of van der Waals-layered 2H-TaS2 crystals and perform variable-temperature transport, transmission electron microscopy, and confocal Raman spectroscopy measurements to shed new light on the coupled effects of dimensionality, degree of intercalation, and intercalant order/disorder on the hard ferromagnetic behavior of FexTaS2. More generally, we show that chemical intercalation gives access to a rich synthetic parameter space for low-dimensional magnets, in which magnetic properties can be tailored by the choice of the host material and intercalant identity/amount, in addition to the manifold distinctive degrees of freedom available in atomically thin, van der Waals crystals.
Collapse
Affiliation(s)
- Samra Husremović
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Catherine K Groschner
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Katherine Inzani
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Isaac M Craig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Karen C Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nathanael P Kazmierczak
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jacob Syndikus
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Madeline Van Winkle
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Shaul Aloni
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Takashi Taniguchi
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Sinéad M Griffin
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - D Kwabena Bediako
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Xie LS, Husremović S, Gonzalez O, Craig IM, Bediako DK. Structure and Magnetism of Iron- and Chromium-Intercalated Niobium and Tantalum Disulfides. J Am Chem Soc 2022; 144:9525-9542. [PMID: 35584537 DOI: 10.1021/jacs.1c12975] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transition metal dichalcogenides (TMDs) intercalated with spin-bearing transition metal centers are a diverse class of magnetic materials where the spin density and ordering behavior can be varied by the choice of host lattice, intercalant identity, level of intercalation, and intercalant disorder. Each of these degrees of freedom alters the interplay between several key magnetic interactions to produce disparate collective electronic and magnetic phases. The array of magnetic and electronic behavior typified by these systems renders them distinctive platforms for realizing tunable magnetism in solid-state materials and promising candidates for spin-based electronic devices. This Perspective provides an overview of the rich magnetism displayed by transition metal-intercalated TMDs by considering Fe- and Cr-intercalated NbS2 and TaS2. These four exemplars of this large family of materials exhibit a wide range of magnetic properties, including sharp switching of magnetic states, current-driven magnetic switching, and chiral spin textures. An understanding of the fundamental origins of the resultant magnetic/electronic phases in these materials is discussed in the context of composition, bonding, electronic structure, and magnetic anisotropy in each case study.
Collapse
Affiliation(s)
- Lilia S Xie
- Department of Chemistry, University of California, Berkeley, California 97420, United States
| | - Samra Husremović
- Department of Chemistry, University of California, Berkeley, California 97420, United States
| | - Oscar Gonzalez
- Department of Chemistry, University of California, Berkeley, California 97420, United States
| | - Isaac M Craig
- Department of Chemistry, University of California, Berkeley, California 97420, United States
| | - D Kwabena Bediako
- Department of Chemistry, University of California, Berkeley, California 97420, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|