1
|
Harrison LM, Churchill ER, Fairweather M, Smithson CH, Chapman T, Bretman A. Ageing effects of social environments in 'non-social' insects. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220463. [PMID: 39463243 PMCID: PMC11513649 DOI: 10.1098/rstb.2022.0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 10/29/2024] Open
Abstract
It is increasingly clear that social environments have profound impacts on the life histories of 'non-social' animals. However, it is not yet well known how species with varying degrees of sociality respond to different social contexts and whether such effects are sex-specific. To survey the extent to which social environments specifically affect lifespan and ageing in non-social species, we performed a systematic literature review, focusing on invertebrates but excluding eusocial insects. We found 80 studies in which lifespan or ageing parameters were measured in relation to changes in same-sex or opposite-sex exposure, group size or cues thereof. Most of the studies focused on manipulations of adults, often reporting sex differences in lifespan following exposure to the opposite sex. Some studies highlighted the impacts of developmental environments or social partner age on lifespan. Several studies explored potential underlying mechanisms, emphasizing that studies on insects could provide excellent opportunities to interrogate the basis of social effects on ageing. We discuss what these studies can tell us about the social environment as a stressor, or trade-offs in resources prompted by different social contexts. We suggest fruitful avenues for further research of social effects across a wider and more diverse range of taxa.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Lauren M. Harrison
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Emily R. Churchill
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Megan Fairweather
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Claire H. Smithson
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
2
|
Samardžija B, Petrović M, Zaharija B, Medija M, Meštrović A, Bradshaw NJ, Filošević Vujnović A, Andretić Waldowski R. Transgenic Drosophila melanogaster Carrying a Human Full-Length DISC1 Construct (UAS- hflDISC1) Showing Effects on Social Interaction Networks. Curr Issues Mol Biol 2024; 46:8526-8549. [PMID: 39194719 DOI: 10.3390/cimb46080502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Disrupted in Schizophrenia 1 (DISC1) is a scaffold protein implicated in major mental illnesses including schizophrenia, with a significant negative impact on social life. To investigate if DISC1 affects social interactions in Drosophila melanogaster, we created transgenic flies with second or third chromosome insertions of the human full-length DISC1 (hflDISC1) gene fused to a UAS promotor (UAS-hflDISC1). Initial characterization of the insertion lines showed unexpected endogenous expression of the DISC1 protein that led to various behavioral and neurochemical phenotypes. Social interaction network (SIN) analysis showed altered social dynamics and organizational structures. This was in agreement with the altered levels of the locomotor activity of individual flies monitored for 24 h. Together with a decreased ability to climb vertical surfaces, the observed phenotypes indicate altered motor functions that could be due to a change in the function of the motor neurons and/or central brain. The changes in social behavior and motor function suggest that the inserted hflDISC1 gene influences nervous system functioning that parallels symptoms of DISC1-related mental diseases in humans. Furthermore, neurochemical analyses of transgenic lines revealed increased levels of hydrogen peroxide and decreased levels of glutathione, indicating an impact of DISC1 on the dynamics of redox regulation, similar to that reported in transgenic mammals. Future studies are needed to address the localization of DISC1 expression and to address how the redox parameter changes correlate with the observed behavioral changes.
Collapse
Affiliation(s)
- Bobana Samardžija
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Milan Petrović
- Faculty of Informatics and Digital Technologies, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Beti Zaharija
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Marta Medija
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Ana Meštrović
- Faculty of Informatics and Digital Technologies, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Nicholas J Bradshaw
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Ana Filošević Vujnović
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Rozi Andretić Waldowski
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| |
Collapse
|
3
|
Stojkovic M, Petrovic M, Capovilla M, Milojevic S, Makevic V, Budimirovic DB, Corscadden L, He S, Protic D. Using a Combination of Novel Research Tools to Understand Social Interaction in the Drosophila melanogaster Model for Fragile X Syndrome. BIOLOGY 2024; 13:432. [PMID: 38927312 PMCID: PMC11200401 DOI: 10.3390/biology13060432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Fragile X syndrome (FXS), the most common monogenic cause of inherited intellectual disability and autism spectrum disorder, is caused by a full mutation (>200 CGG repeats) in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene. Individuals with FXS experience various challenges related to social interaction (SI). Animal models, such as the Drosophila melanogaster model for FXS where the only ortholog of human FMR1 (dFMR1) is mutated, have played a crucial role in the understanding of FXS. The aim of this study was to investigate SI in the dFMR1B55 mutants (the groups of flies of both sexes simultaneously) using the novel Drosophila Shallow Chamber and a Python data processing pipeline based on social network analysis (SNA). In comparison with wild-type flies (w1118), SNA analysis in dFMR1B55 mutants revealed hypoactivity, fewer connections in their networks, longer interaction duration, a lower ability to transmit information efficiently, fewer alternative pathways for information transmission, a higher variability in the number of interactions they achieved, and flies tended to stay near the boundaries of the testing chamber. These observed alterations indicate the presence of characteristic strain-dependent social networks in dFMR1B55 flies, commonly referred to as the group phenotype. Finally, combining novel research tools is a valuable method for SI research in fruit flies.
Collapse
Affiliation(s)
- Maja Stojkovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (S.M.)
| | - Milan Petrovic
- Department of Informatics, University of Rijeka, 51000 Rijeka, Croatia;
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, 51000 Rijeka, Croatia
| | - Maria Capovilla
- UMR7275 CNRS-UCA, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne Sophia Antipolis, France;
| | - Sara Milojevic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (S.M.)
| | - Vedrana Makevic
- Department of Pathophysiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Shuhan He
- Lab of Computer Science, Department of Internal Medicine, Harvard Medical School, Boston, MA 02115, USA;
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (S.M.)
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Rooke R, Krupp JJ, Rasool A, Golemiec M, Stewart M, Schneider J, Levine JD. The gene "degrees of kevin bacon" (dokb) regulates a social network behaviour in Drosophila melanogaster. Nat Commun 2024; 15:3339. [PMID: 38688961 PMCID: PMC11061139 DOI: 10.1038/s41467-024-47499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Social networks are a mathematical representation of interactions among individuals which are prevalent across various animal species. Studies of human populations have shown the breadth of what can spread throughout a social network: obesity, smoking cessation, happiness, drug use and divorce. 'Betweenness centrality' is a key property of social networks that indicates an individual's importance in facilitating communication and cohesion within the network. Heritability of betweenness centrality has been suggested in several species, however the genetic regulation of this property remains enigmatic. Here, we demonstrate that the gene CG14109, referred to as degrees of kevin bacon (dokb), influences betweenness centrality in Drosophila melanogaster. We identify strain-specific alleles of dokb with distinct amino acid sequences and when the dokb allele is exchanged between strains, flies exhibit the betweenness centrality pattern dictated by the donor allele. By inserting a GAL4 reporter into the dokb locus, we confirm that dokb is expressed in the central nervous system. These findings define a novel genetic entry point to study social network structure and thereby establish gene-to-social structure relationships. While dokb sequence homology is exclusive to Diptera, we anticipate that dokb-associated molecular pathways could unveil convergent neural mechanisms of social behaviour that apply in diverse animal species.
Collapse
Affiliation(s)
- Rebecca Rooke
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd. North, Mississauga, ON, L5L 1C6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Joshua J Krupp
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd. North, Mississauga, ON, L5L 1C6, Canada
| | - Amara Rasool
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd. North, Mississauga, ON, L5L 1C6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Mireille Golemiec
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd. North, Mississauga, ON, L5L 1C6, Canada
| | - Megan Stewart
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd. North, Mississauga, ON, L5L 1C6, Canada
| | - Jonathan Schneider
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd. North, Mississauga, ON, L5L 1C6, Canada
| | - Joel D Levine
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd. North, Mississauga, ON, L5L 1C6, Canada.
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada.
| |
Collapse
|
5
|
Zipple MN, Vogt CC, Sheehan MJ. Re-wilding model organisms: Opportunities to test causal mechanisms in social determinants of health and aging. Neurosci Biobehav Rev 2023; 152:105238. [PMID: 37225063 PMCID: PMC10527394 DOI: 10.1016/j.neubiorev.2023.105238] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
Social experiences are strongly associated with individuals' health, aging, and survival in many mammalian taxa, including humans. Despite their role as models of many other physiological and developmental bases of health and aging, biomedical model organisms (particularly lab mice) remain an underutilized tool in resolving outstanding questions regarding social determinants of health and aging, including causality, context-dependence, reversibility, and effective interventions. This status is largely due to the constraints of standard laboratory conditions on animals' social lives. Even when kept in social housing, lab animals rarely experience social and physical environments that approach the richness, variability, and complexity they have evolved to navigate and benefit from. Here we argue that studying biomedical model organisms outside under complex, semi-natural social environments ("re-wilding") allows researchers to capture the methodological benefits of both field studies of wild animals and laboratory studies of model organisms. We review recent efforts to re-wild mice and highlight discoveries that have only been made possible by researchers studying mice under complex, manipulable social environments.
Collapse
Affiliation(s)
- Matthew N Zipple
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| | - Caleb C Vogt
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Michael J Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Saltz JB, Palmer MS, Beaudrot L. Identifying the social context of single- and mixed-species group formation in large African herbivores. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220105. [PMID: 37066657 PMCID: PMC10107273 DOI: 10.1098/rstb.2022.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/08/2023] [Indexed: 04/18/2023] Open
Abstract
Despite continued interest in mixed-species groups, we still lack a unified understanding of how ecological and social processes work across scales to influence group formation. Recent work has revealed ecological correlates of mixed-species group formation, but the mechanisms by which concomitant social dynamics produce these patterns, if at all, is unknown. Here, we use camera trap data for six mammalian grazer species in Serengeti National Park. Building on previous work, we found that ecological variables, and especially forage quality, influenced the chances of species overlap over small spatio-temporal scales (i.e. on the scales of several metres and hours). Migratory species (gazelle, wildebeest and zebra) were more likely to have heterospecific partners available in sites with higher forage quality, but the opposite was true for resident species (buffalo, hartebeest and topi). These findings illuminate the circumstances under which mixed-species group formation is even possible. Next, we found that greater heterospecific availability was associated with an increased probability of mixed-species group formation in gazelle, hartebeest, wildebeest and zebra, but ecological variables did not further shape these patterns. Overall, our results are consistent with a model whereby ecological and social drivers of group formation are species-specific and operate on different spatio-temporal scales. This article is part of the theme issue 'Mixed-species groups and aggregations: shaping ecological and behavioural patterns and processes'.
Collapse
Affiliation(s)
- J. B. Saltz
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - M. S. Palmer
- Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - L. Beaudrot
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
7
|
Wice EW, Saltz JB. Indirect genetic effects for social network structure in Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220075. [PMID: 36802774 PMCID: PMC9939268 DOI: 10.1098/rstb.2022.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/16/2022] [Indexed: 02/21/2023] Open
Abstract
The position an individual holds in a social network is dependent on both its direct and indirect social interactions. Because social network position is dependent on the actions and interactions of conspecifics, it is likely that the genotypic composition of individuals within a social group impacts individuals' network positions. However, we know very little about whether social network positions have a genetic basis, and even less about how the genotypic makeup of a social group impacts network positions and structure. With ample evidence indicating that network positions influence various fitness metrics, studying how direct and indirect genetic effects shape network positions is crucial for furthering our understanding of how the social environment can respond to selection and evolve. Using replicate genotypes of Drosophila melanogaster fruit flies, we created social groups that varied in their genotypic makeup. Social groups were videoed, and networks were generated using motion-tracking software. We found that both an individual's own genotype and the genotypes of conspecifics in its social group affect its position within a social network. These findings provide an early example of how indirect genetic effects and social network theory can be linked, and shed new light on how quantitative genetic variation shapes the structure of social groups. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Eric Wesley Wice
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
8
|
Reznikova Z. Information Theory Opens New Dimensions in Experimental Studies of Animal Behaviour and Communication. Animals (Basel) 2023; 13:ani13071174. [PMID: 37048430 PMCID: PMC10093743 DOI: 10.3390/ani13071174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Over the last 40–50 years, ethology has become increasingly quantitative and computational. However, when analysing animal behavioural sequences, researchers often need help finding an adequate model to assess certain characteristics of these sequences while using a relatively small number of parameters. In this review, I demonstrate that the information theory approaches based on Shannon entropy and Kolmogorov complexity can furnish effective tools to analyse and compare animal natural behaviours. In addition to a comparative analysis of stereotypic behavioural sequences, information theory can provide ideas for particular experiments on sophisticated animal communications. In particular, it has made it possible to discover the existence of a developed symbolic “language” in leader-scouting ant species based on the ability of these ants to transfer abstract information about remote events.
Collapse
|
9
|
Bonnell TR, Vilette C, Henzi SP, Barrett L. Network reaction norms: taking account of network position and plasticity in response to environmental change. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-023-03300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
10
|
Webber QMR, Albery GF, Farine DR, Pinter-Wollman N, Sharma N, Spiegel O, Vander Wal E, Manlove K. Behavioural ecology at the spatial-social interface. Biol Rev Camb Philos Soc 2023; 98:868-886. [PMID: 36691262 DOI: 10.1111/brv.12934] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Spatial and social behaviour are fundamental aspects of an animal's biology, and their social and spatial environments are indelibly linked through mutual causes and shared consequences. We define the 'spatial-social interface' as intersection of social and spatial aspects of individuals' phenotypes and environments. Behavioural variation at the spatial-social interface has implications for ecological and evolutionary processes including pathogen transmission, population dynamics, and the evolution of social systems. We link spatial and social processes through a foundation of shared theory, vocabulary, and methods. We provide examples and future directions for the integration of spatial and social behaviour and environments. We introduce key concepts and approaches that either implicitly or explicitly integrate social and spatial processes, for example, graph theory, density-dependent habitat selection, and niche specialization. Finally, we discuss how movement ecology helps link the spatial-social interface. Our review integrates social and spatial behavioural ecology and identifies testable hypotheses at the spatial-social interface.
Collapse
Affiliation(s)
- Quinn M R Webber
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Gregory F Albery
- Department of Biology, Georgetown University, 37th and O Streets, Washington, DC, 20007, USA.,Wissenschaftskolleg zu Berlin, Wallotstraße 19, 14193, Berlin, Germany.,Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Damien R Farine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitatsstraße 10, 78464, Constance, Germany.,Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nitika Sharma
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eric Vander Wal
- Department of Biology, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, 5200 Old Main Hill, Logan, UT, 84322, USA
| |
Collapse
|
11
|
Playing to the crowd: Using Drosophila to dissect mechanisms underlying plastic male strategies in sperm competition games. ADVANCES IN THE STUDY OF BEHAVIOR 2023. [DOI: 10.1016/bs.asb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
12
|
Bentzur A, Alon S, Shohat-Ophir G. Behavioral Neuroscience in the Era of Genomics: Tools and Lessons for Analyzing High-Dimensional Datasets. Int J Mol Sci 2022; 23:3811. [PMID: 35409169 PMCID: PMC8998543 DOI: 10.3390/ijms23073811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Behavioral neuroscience underwent a technology-driven revolution with the emergence of machine-vision and machine-learning technologies. These technological advances facilitated the generation of high-resolution, high-throughput capture and analysis of complex behaviors. Therefore, behavioral neuroscience is becoming a data-rich field. While behavioral researchers use advanced computational tools to analyze the resulting datasets, the search for robust and standardized analysis tools is still ongoing. At the same time, the field of genomics exploded with a plethora of technologies which enabled the generation of massive datasets. This growth of genomics data drove the emergence of powerful computational approaches to analyze these data. Here, we discuss the composition of a large behavioral dataset, and the differences and similarities between behavioral and genomics data. We then give examples of genomics-related tools that might be of use for behavioral analysis and discuss concepts that might emerge when considering the two fields together.
Collapse
Affiliation(s)
- Assa Bentzur
- The Mina & Everard Goodman Faculty of Life Sciences, Gonda Multidisciplinary Brain Research Center, Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel;
- The Alexander Kofkin Faculty of Engineering, Gonda Multidisciplinary Brain Research Center, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shahar Alon
- The Alexander Kofkin Faculty of Engineering, Gonda Multidisciplinary Brain Research Center, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Galit Shohat-Ophir
- The Mina & Everard Goodman Faculty of Life Sciences, Gonda Multidisciplinary Brain Research Center, Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel;
| |
Collapse
|
13
|
Cook PA, Baker OM, Costello RA, Formica VA, Brodie ED. Group composition of individual personalities alters social network structure in experimental populations of forked fungus beetles. Biol Lett 2022; 18:20210509. [PMID: 35291883 PMCID: PMC8923822 DOI: 10.1098/rsbl.2021.0509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/24/2022] [Indexed: 01/02/2023] Open
Abstract
Social network structure is a critical group character that mediates the flow of information, pathogens and resources among individuals in a population, yet little is known about what shapes social structures. In this study, we experimentally tested whether social network structure depends on the personalities of individual group members. Replicate groups of forked fungus beetles (Bolitotherus cornutus) were engineered to include only members previously assessed as either more social or less social. We found that individuals expressed consistent personalities across social contexts, exhibiting repeatable numbers of interactions and numbers of partners. Groups composed of more social individuals formed networks with higher interaction rates, higher tie density, higher global clustering and shorter average shortest paths than those composed of less social individuals. We highlight group composition of personalities as a source of variance in group traits and a potential mechanism by which networks could evolve.
Collapse
Affiliation(s)
- Phoebe A. Cook
- Department of Biology and Mountain Lake Biological Station, University of Virginia, Charlottesville, VA 22904, USA
| | - Olivia M. Baker
- Department of Biology and Mountain Lake Biological Station, University of Virginia, Charlottesville, VA 22904, USA
| | - Robin A. Costello
- Department of Biology and Mountain Lake Biological Station, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Edmund D. Brodie
- Department of Biology and Mountain Lake Biological Station, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
14
|
Jezovit JA, Alwash N, Levine JD. Using Flies to Understand Social Networks. Front Neural Circuits 2021; 15:755093. [PMID: 34924963 PMCID: PMC8683092 DOI: 10.3389/fncir.2021.755093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
Many animals live in groups and interact with each other, creating an organized collective structure. Social network analysis (SNA) is a statistical tool that aids in revealing and understanding the organized patterns of shared social connections between individuals in groups. Surprisingly, the application of SNA revealed that Drosophila melanogaster, previously considered a solitary organism, displays group dynamics and that the structure of group life is inherited. Although the number of studies investigating Drosophila social networks is currently limited, they address a wide array of questions that have only begun to capture the details of group level behavior in this insect. Here, we aim to review these studies, comparing their respective scopes and the methods used, to draw parallels between them and the broader body of knowledge available. For example, we highlight how despite methodological differences, there are similarities across studies investigating the effects of social isolation on social network dynamics. Finally, this review aims to generate hypotheses and predictions that inspire future research in the emerging field of Drosophila social networks.
Collapse
Affiliation(s)
- Jacob A. Jezovit
- Department of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Nawar Alwash
- Department of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Joel D. Levine
- Department of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- International Research Centre for Neurointelligence, University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Scott AM, Dworkin I, Dukas R. Evolution of sociability by artificial selection. Evolution 2021; 76:541-553. [PMID: 34605553 DOI: 10.1111/evo.14370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 01/09/2023]
Abstract
There has been extensive research on the ecology and evolution of social life in animals that live in groups. Less attention, however, has been devoted to apparently solitary species, even though recent research indicates that they also possess complex social behaviors. To address this knowledge gap, we artificially selected on sociability, defined as the tendency to engage in nonaggressive activities with others, in fruit flies. Our goal was to quantify the factors that determine the level of sociability and the traits correlated with this feature. After 25 generations of selection, the high-sociability lineages showed sociability scores about 50% higher than did the low-sociability lineages. Experiments using the evolved lineages indicated that there were no differences in mating success between flies from the low and high lineages. Both males and females from the low lineages, however, were more aggressive than males and females from the high lineages. Finally, the evolved lineages maintained their sociability scores after 10 generations of relaxed selection, suggesting no costs to maintaining low and high sociability, at least under our settings. Sociability is a complex trait, which we currently assess through genomic work on the evolved lineages.
Collapse
Affiliation(s)
- Andrew M Scott
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Ian Dworkin
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Reuven Dukas
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
16
|
Moosmann M, Cuenca-Cambronero M, De Lisle S, Greenway R, Hudson CM, Lürig MD, Matthews B. On the evolution of trophic position. Ecol Lett 2021; 24:2549-2562. [PMID: 34553481 PMCID: PMC9290349 DOI: 10.1111/ele.13888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/24/2021] [Accepted: 08/26/2021] [Indexed: 01/05/2023]
Abstract
The trophic structure of food webs is primarily determined by the variation in trophic position among species and individuals. Temporal dynamics of food web structure are central to our understanding of energy and nutrient fluxes in changing environments, but little is known about how evolutionary processes shape trophic position variation in natural populations. We propose that trophic position, whose expression depends on both environmental and genetic determinants of the diet variation in individual consumers, is a quantitative trait that can evolve via natural selection. Such evolution can occur either when trophic position is correlated with other heritable morphological and behavioural traits under selection, or when trophic position is a target of selection, which is possible if the fitness effects of prey items are heterogeneously distributed along food chains. Recognising trophic position as an evolving trait, whose expression depends on the food web context, provides an important conceptual link between behavioural foraging theory and food web dynamics, and a useful starting point for the integration of ecological and evolutionary studies of trophic position.
Collapse
Affiliation(s)
- Marvin Moosmann
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland.,Department of Aquatic Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Maria Cuenca-Cambronero
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland.,Department of Aquatic Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | - Ryan Greenway
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland
| | - Cameron M Hudson
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland.,Department of Aquatic Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | - Blake Matthews
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland
| |
Collapse
|
17
|
Firth JA, Sheldon BC. The long reach of family ties. Science 2021; 373:274-275. [PMID: 34437137 DOI: 10.1126/science.abj5234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Josh A Firth
- Department of Zoology, University of Oxford, Oxford, UK.
| | - Ben C Sheldon
- Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|