1
|
Zhou C, Zhou J. Light-Induced Topological Phase Transition with Tunable Layer Hall Effect in Axion Antiferromagnets. NANO LETTERS 2024. [PMID: 38848333 DOI: 10.1021/acs.nanolett.4c01415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The intricate interplay between light and matter provides effective tools for manipulating topological phenomena. Here, we theoretically propose and computationally show that circularly polarized light holds the potential to transform the axion insulating phase into a quantum anomalous Hall state in MnBi2Te4 thin films, featuring tunable Chern numbers (ranging up to ±2). In particular, we reveal the spatial rearrangement of the hidden layer-resolved anomalous Hall effect under light-driven Floquet engineering. Notably, upon Bi2Te3 layer intercalation, the anomalous Hall conductance predominantly localizes in the nonmagnetic Bi2Te3 layers that hold zero Berry curvature in the intact state, suggesting a significant magnetic proximity effect. Additionally, we estimate variations in the magneto-optical Kerr effect, giving a contactless method for detecting topological transitions. Our work not only presents a strategy to investigate emergent topological phases but also sheds light on the possible applications of the layer Hall effect in topological antiferromagnetic spintronics.
Collapse
Affiliation(s)
- Cong Zhou
- Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jian Zhou
- Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
2
|
Li S, Gong M, Li YH, Jiang H, Xie XC. High spin axion insulator. Nat Commun 2024; 15:4250. [PMID: 38762497 PMCID: PMC11102527 DOI: 10.1038/s41467-024-48542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
Axion insulators possess a quantized axion field θ = π protected by combined lattice and time-reversal symmetry, holding great potential for device applications in layertronics and quantum computing. Here, we propose a high-spin axion insulator (HSAI) defined in large spin-s representation, which maintains the same inherent symmetry but possesses a notable axion field θ = (s + 1/2)2π. Such distinct axion field is confirmed independently by the direct calculation of the axion term using hybrid Wannier functions, layer-resolved Chern numbers, as well as the topological magneto-electric effect. We show that the guaranteed gapless quasi-particle excitation is absent at the boundary of the HSAI despite its integer surface Chern number, hinting an unusual quantum anomaly violating the conventional bulk-boundary correspondence. Furthermore, we ascertain that the axion field θ can be precisely tuned through an external magnetic field, enabling the manipulation of bonded transport properties. The HSAI proposed here can be experimentally verified in ultra-cold atoms by the quantized non-reciprocal conductance or topological magnetoelectric response. Our work enriches the understanding of axion insulators in condensed matter physics, paving the way for future device applications.
Collapse
Affiliation(s)
- Shuai Li
- School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
- Institute for Advanced Study, Soochow University, Suzhou, 215006, China
| | - Ming Gong
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Yu-Hang Li
- School of Physics, Nankai University, Tianjin, 300071, China.
| | - Hua Jiang
- Institute for Advanced Study, Soochow University, Suzhou, 215006, China.
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, 200433, China.
- Interdisciplinary Center for Theoretical Physics and Information Sciences (ICTPIS), Fudan University, Shanghai, 200433, China.
| | - X C Xie
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, 200433, China
- Interdisciplinary Center for Theoretical Physics and Information Sciences (ICTPIS), Fudan University, Shanghai, 200433, China
- Hefei National Laboratory, Hefei, 230088, China
| |
Collapse
|
3
|
Tang J, Cheng R. Lossless Spin-Orbit Torque in Antiferromagnetic Topological Insulator MnBi_{2}Te_{4}. PHYSICAL REVIEW LETTERS 2024; 132:136701. [PMID: 38613287 DOI: 10.1103/physrevlett.132.136701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/22/2023] [Accepted: 02/23/2024] [Indexed: 04/14/2024]
Abstract
We formulate and quantify the spin-orbit torque (SOT) in intrinsic antiferromagnetic topological insulator MnBi_{2}Te_{4} of a few septuple-layer thick in charge-neutral condition, which exhibits pronounced layer-resolved characteristics and even-odd contrast. Contrary to traditional current-induced torques, our SOT is not accompanied by Ohm's currents, thus being devoid of Joule heating. We study the SOT-induced magnetic resonances, where in the tri-septuple-layer case we identify a peculiar exchange mode that is blind to microwaves but can be exclusively driven by the predicted SOT. As an inverse effect, the dynamical magnetic moments generate a pure adiabatic current, which occurs concomitantly with the SOT and gives rise to an overall reactance for the MnBi_{2}Te_{4}, enabling a lossless conversion of electric power into magnetic dynamics.
Collapse
Affiliation(s)
- Junyu Tang
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Ran Cheng
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
- Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, USA
| |
Collapse
|
4
|
Mei R, Zhao YF, Wang C, Ren Y, Xiao D, Chang CZ, Liu CX. Electrically Controlled Anomalous Hall Effect and Orbital Magnetization in Topological Magnet MnBi_{2}Te_{4}. PHYSICAL REVIEW LETTERS 2024; 132:066604. [PMID: 38394580 DOI: 10.1103/physrevlett.132.066604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/22/2023] [Indexed: 02/25/2024]
Abstract
We propose an intrinsic mechanism to understand the even-odd effect, namely, opposite signs of anomalous Hall resistance and different shapes of hysteresis loops for even and odd septuple layers (SLs), of MBE-grown MnBi_{2}Te_{4} thin films with electron doping. The nonzero hysteresis loops in the anomalous Hall effect and magnetic circular dichroism for even-SLs MnBi_{2}Te_{4} films originate from two different antiferromagnetic (AFM) configurations with different zeroth Landau level energies of surface states. The complex form of the anomalous Hall hysteresis loop can be understood from two magnetic transitions, a transition between two AFM states followed by a second transition to the ferromagnetic state. Our model also clarifies the relationship and distinction between axion parameter and magnetoelectric coefficient, and shows an even-odd oscillation behavior of magnetoelectric coefficients in MnBi_{2}Te_{4} films.
Collapse
Affiliation(s)
- Ruobing Mei
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yi-Fan Zhao
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Chong Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Yafei Ren
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Di Xiao
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Cui-Zu Chang
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Chao-Xing Liu
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
5
|
Chen R, Sun HP, Gu M, Hua CB, Liu Q, Lu HZ, Xie XC. Layer Hall effect induced by hidden Berry curvature in antiferromagnetic insulators. Natl Sci Rev 2024; 11:nwac140. [PMID: 38264341 PMCID: PMC10804226 DOI: 10.1093/nsr/nwac140] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/25/2024] Open
Abstract
The layer Hall effect describes electrons spontaneously deflected to opposite sides at different layers, which has been experimentally reported in the MnBi2Te4 thin films under perpendicular electric fields. Here, we reveal a universal origin of the layer Hall effect in terms of the so-called hidden Berry curvature, as well as material design principles. Hence, it gives rise to zero Berry curvature in momentum space but non-zero layer-locked hidden Berry curvature in real space. We show that, compared to that of a trivial insulator, the layer Hall effect is significantly enhanced in antiferromagnetic topological insulators. Our universal picture provides a paradigm for revealing the hidden physics as a result of the interplay between the global and local symmetries, and can be generalized in various scenarios.
Collapse
Affiliation(s)
- Rui Chen
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| | - Hai-Peng Sun
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Institute for Theoretical Physics and Astrophysics, University of Würzburg, Würzburg 97074, Germany
| | - Mingqiang Gu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chun-Bo Hua
- School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning 437100, China
| | - Qihang Liu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hai-Zhou Lu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
| | - X C Xie
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Li S, Liu T, Liu C, Wang Y, Lu HZ, Xie XC. Progress on the antiferromagnetic topological insulator MnBi 2Te 4. Natl Sci Rev 2024; 11:nwac296. [PMID: 38213528 PMCID: PMC10776361 DOI: 10.1093/nsr/nwac296] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 01/13/2024] Open
Abstract
Topological materials, which feature robust surface and/or edge states, have now been a research focus in condensed matter physics. They represent a new class of materials exhibiting nontrivial topological phases, and provide a platform for exploring exotic transport phenomena, such as the quantum anomalous Hall effect and the quantum spin Hall effect. Recently, magnetic topological materials have attracted considerable interests due to the possibility to study the interplay between topological and magnetic orders. In particular, the quantum anomalous Hall and axion insulator phases can be realized in topological insulators with magnetic order. MnBi2Te4, as the first intrinsic antiferromagnetic topological insulator discovered, allows the examination of existing theoretical predictions; it has been extensively studied, and many new discoveries have been made. Here we review the progress made on MnBi2Te4 from both experimental and theoretical aspects. The bulk crystal and magnetic structures are surveyed first, followed by a review of theoretical calculations and experimental probes on the band structure and surface states, and a discussion of various exotic phases that can be realized in MnBi2Te4. The properties of MnBi2Te4 thin films and the corresponding transport studies are then reviewed, with an emphasis on the edge state transport. Possible future research directions in this field are also discussed.
Collapse
Affiliation(s)
- Shuai Li
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
- Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| | - Tianyu Liu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
- Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| | - Chang Liu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
| | - Yayu Wang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
- Hefei National Laboratory, Hefei 230088, China
| | - Hai-Zhou Lu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
- Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| | - X C Xie
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
7
|
Wan Y, Li J, Liu Q. Topological magnetoelectric response in ferromagnetic axion insulators. Natl Sci Rev 2024; 11:nwac138. [PMID: 38264342 PMCID: PMC10804227 DOI: 10.1093/nsr/nwac138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2024] Open
Abstract
The topological magnetoelectric effect (TME) is a hallmark response of the topological field theory, which provides a paradigm shift in the study of emergent topological phenomena. However, its direct observation is yet to be realized due to the demanding magnetic configuration required to gap all surface states. Here, we theoretically propose that axion insulators with a simple ferromagnetic configuration, such as the MnBi2Te4/(Bi2Te3)n family, provide an ideal playground to realize the TME. In the designed triangular prism geometry, all the surface states are magnetically gapped. Under a vertical electric field, the surface Hall currents give rise to a nearly half-quantized orbital moment, accompanied by a gapless chiral hinge mode circulating in parallel. Thus, the orbital magnetization from the two topological origins can be easily distinguished by reversing the electric field. Our work paves the way for direct observation of the TME in realistic axion-insulator materials.
Collapse
Affiliation(s)
- Yuhao Wan
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiayu Li
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology, Shenzhen 518055, China
| | - Qihang Liu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory for Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
8
|
Zhuo D, Yan ZJ, Sun ZT, Zhou LJ, Zhao YF, Zhang R, Mei R, Yi H, Wang K, Chan MHW, Liu CX, Law KT, Chang CZ. Axion insulator state in hundred-nanometer-thick magnetic topological insulator sandwich heterostructures. Nat Commun 2023; 14:7596. [PMID: 37989754 PMCID: PMC10663498 DOI: 10.1038/s41467-023-43474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
An axion insulator is a three-dimensional (3D) topological insulator (TI), in which the bulk maintains the time-reversal symmetry or inversion symmetry but the surface states are gapped by surface magnetization. The axion insulator state has been observed in molecular beam epitaxy (MBE)-grown magnetically doped TI sandwiches and exfoliated intrinsic magnetic TI MnBi2Te4 flakes with an even number layer. All these samples have a thickness of ~ 10 nm, near the 2D-to-3D boundary. The coupling between the top and bottom surface states in thin samples may hinder the observation of quantized topological magnetoelectric response. Here, we employ MBE to synthesize magnetic TI sandwich heterostructures and find that the axion insulator state persists in a 3D sample with a thickness of ~ 106 nm. Our transport results show that the axion insulator state starts to emerge when the thickness of the middle undoped TI layer is greater than ~ 3 nm. The 3D hundred-nanometer-thick axion insulator provides a promising platform for the exploration of the topological magnetoelectric effect and other emergent magnetic topological states, such as the high-order TI phase.
Collapse
Affiliation(s)
- Deyi Zhuo
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zi-Jie Yan
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zi-Ting Sun
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, 999077, Hong Kong, China
| | - Ling-Jie Zhou
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yi-Fan Zhao
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ruoxi Zhang
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ruobing Mei
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hemian Yi
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ke Wang
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Moses H W Chan
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Chao-Xing Liu
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - K T Law
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, 999077, Hong Kong, China.
| | - Cui-Zu Chang
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
9
|
Liu Y, Li J, Liu Q. Chern-Insulator Phase in Antiferromagnets. NANO LETTERS 2023; 23:8650-8656. [PMID: 37704584 DOI: 10.1021/acs.nanolett.3c02489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The long-sought Chern insulators that manifest a quantum anomalous Hall effect are typically considered to occur in ferromagnets. Here, we theoretically predict the realizabilities of Chern insulators in antiferromagnets, in which the magnetic sublattices are connected by symmetry operators enforcing zero net magnetic moment. Our symmetry analysis provides comprehensive magnetic layer point groups that allow antiferromagnetic (AFM) Chern insulators, revealing that an in-plane magnetic configuration is required. Followed by first-principles calculations, such design principles naturally lead to two categories of material candidates, exemplified by monolayer RbCr4S8 and bilayer Mn3Sn with collinear and noncollinear AFM orders, respectively. We further show that the Chern number could be tuned by slight ferromagnetic canting as an effective pivot. Our work elucidates the nature of the Chern-insulator phase in AFM systems, paving a new avenue for designing quantum anomalous Hall insulators with the integration of nondissipative transport and the promising advantages of the AFM order.
Collapse
Affiliation(s)
- Yuntian Liu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Jiayu Li
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Qihang Liu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Guangdong Provincial Key Laboratory for Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
10
|
Gong M, Liu H, Jiang H, Chen CZ, Xie XC. Half-quantized helical hinge currents in axion insulators. Natl Sci Rev 2023; 10:nwad025. [PMID: 37565212 PMCID: PMC10411682 DOI: 10.1093/nsr/nwad025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/19/2022] [Accepted: 12/08/2022] [Indexed: 08/12/2023] Open
Abstract
Fractional quantization can emerge in noncorrelated systems due to the parity anomaly, while its condensed matter realization is a challenging problem. We propose that in axion insulators (AIs), parity anomaly manifests a unique fractional boundary excitation: the half-quantized helical hinge currents. These helical hinge currents microscopically originate from the lateral Goos-Hänchen (GH) shift of massless side-surface Dirac electrons that are totally reflected from the hinges. Meanwhile, due to the presence of the massive top and bottom surfaces of the AI, the helical current induced by the GH shift is half-quantized. The semiclassical wave packet analysis uncovers that the hinge current has a topological origin and its half quantization is robust to parameter variations. Lastly, we propose an experimentally feasible six-terminal device to identify the half-quantized hinge channels by measuring the nonreciprocal conductances. Our results advance the realization of the half-quantization and topological magnetoelectric responses in AIs.
Collapse
Affiliation(s)
- Ming Gong
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Haiwen Liu
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Hua Jiang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- Institute for Advanced Study, Soochow University, Suzhou 215006, China
| | - Chui-Zhen Chen
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- Institute for Advanced Study, Soochow University, Suzhou 215006, China
| | - X-C Xie
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Li Y, Liu C, Wang Y, Lian Z, Li S, Li H, Wu Y, Lu HZ, Zhang J, Wang Y. Giant nonlocal edge conduction in the axion insulator state of MnBi 2Te 4. Sci Bull (Beijing) 2023:S2095-9273(23)00318-3. [PMID: 37268443 DOI: 10.1016/j.scib.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 06/04/2023]
Abstract
The recently discovered antiferromagnetic (AFM) topological insulator (TI) MnBi2Te4 represents a versatile material platform for exploring exotic topological quantum phenomena in nanoscale devices. It has been proposed that even-septuple-layer (even-SL) MnBi2Te4 can host helical hinge currents with unique nonlocal behavior, but experimental confirmation is still lacking. In this work, we report transport studies of exfoliated MnBi2Te4 flakes with varied thicknesses down to the few-nanometer regime. We observe giant nonlocal transport signals in even-SL devices when the system is in the axion insulator state but vanishingly small nonlocal signal in the odd-SL devices at the same magnetic field range. In conjunction with theoretical calculations, we demonstrate that the nonlocal transport is via the helical edge currents mainly distributed at the hinges between the side and top/bottom surfaces. The helical edge currents in the axion insulator state may find unique applications in topological quantum devices.
Collapse
Affiliation(s)
- Yaoxin Li
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Chang Liu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Beijing Academy of Quantum Information Sciences, Beijing 100193, China; Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China; Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Yongchao Wang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zichen Lian
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Shuai Li
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China; Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China; International Quantum Academy, Shenzhen 518048, China
| | - Hao Li
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yang Wu
- Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Tsinghua University, Beijing 100084, China; College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hai-Zhou Lu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China; Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China; International Quantum Academy, Shenzhen 518048, China.
| | - Jinsong Zhang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Hefei National Laboratory, Hefei 230088, China.
| | - Yayu Wang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Frontier Science Center for Quantum Information, Beijing 100084, China; Hefei National Laboratory, Hefei 230088, China.
| |
Collapse
|
12
|
Majchrzak PE, Liu Y, Volckaert K, Biswas D, Sahoo C, Puntel D, Bronsch W, Tuniz M, Cilento F, Pan XC, Liu Q, Chen YP, Ulstrup S. Van der Waals Engineering of Ultrafast Carrier Dynamics in Magnetic Heterostructures. NANO LETTERS 2023; 23:414-421. [PMID: 36607246 DOI: 10.1021/acs.nanolett.2c03075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Heterostructures composed of the intrinsic magnetic topological insulator MnBi2Te4 and its nonmagnetic counterpart Bi2Te3 host distinct surface electronic band structures depending on the stacking order and exposed termination. Here, we probe the ultrafast dynamical response of MnBi2Te4 and MnBi4Te7 following near-infrared optical excitation using time- and angle-resolved photoemission spectroscopy and disentangle surface from bulk dynamics based on density functional theory slab calculations of the surface-projected electronic structure. We gain access to the out-of-equilibrium charge carrier populations of both MnBi2Te4 and Bi2Te3 surface terminations of MnBi4Te7, revealing an instantaneous occupation of states associated with the Bi2Te3 surface layer followed by carrier extraction into the adjacent MnBi2Te4 layers with a laser fluence-tunable delay of up to 350 fs. The ensuing thermal relaxation processes are driven by phonon scattering with significantly slower relaxation times in the magnetic MnBi2Te4 septuple layers. The observed competition between interlayer charge transfer and intralayer phonon scattering demonstrates a method to control ultrafast charge transfer processes in MnBi2Te4-based van der Waals compounds.
Collapse
Affiliation(s)
- Paulina Ewa Majchrzak
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Yuntian Liu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology, Shenzhen 518055, China
| | - Klara Volckaert
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Deepnarayan Biswas
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Chakradhar Sahoo
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Denny Puntel
- Dipartimento di Fisica, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Wibke Bronsch
- Elettra - Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Italy
| | - Manuel Tuniz
- Dipartimento di Fisica, Università degli Studi di Trieste, 34127 Trieste, Italy
| | | | - Xing-Chen Pan
- Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Qihang Liu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong P Chen
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Department of Physics and Astronomy, School of Electrical and Computer Engineering, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
| | - Søren Ulstrup
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Lin W, Feng Y, Wang Y, Zhu J, Lian Z, Zhang H, Li H, Wu Y, Liu C, Wang Y, Zhang J, Wang Y, Chen CZ, Zhou X, Shen J. Direct visualization of edge state in even-layer MnBi 2Te 4 at zero magnetic field. Nat Commun 2022; 13:7714. [PMID: 36513662 PMCID: PMC9747779 DOI: 10.1038/s41467-022-35482-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Being the first intrinsic antiferromagnetic (AFM) topological insulator (TI), MnBi2Te4 is argued to be a topological axion state in its even-layer form due to the antiparallel magnetization between the top and bottom layers. Here we combine both transport and scanning microwave impedance microscopy (sMIM) to investigate such axion state in atomically thin MnBi2Te4 with even-layer thickness at zero magnetic field. While transport measurements show a zero Hall plateau signaturing the axion state, sMIM uncovers an unexpected edge state raising questions regarding the nature of the "axion state". Based on our model calculation, we propose that the edge state of even-layer MnBi2Te4 at zero field is derived from gapped helical edge states of the quantum spin Hall effect with time-reversal-symmetry breaking, when a crossover from a three-dimensional TI MnBi2Te4 to a two-dimensional TI occurs. Our finding thus signifies the richness of topological phases in MnB2Te4 that has yet to be fully explored.
Collapse
Affiliation(s)
- Weiyan Lin
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, China
| | - Yang Feng
- Department of Physics, Fudan University, Shanghai, China
| | - Yongchao Wang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
- Beijing Innovation Center for Future Chips, Tsinghua University, Beijing, China
| | - Jinjiang Zhu
- Department of Physics, Fudan University, Shanghai, China
| | - Zichen Lian
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
| | - Huanyu Zhang
- Department of Physics, Fudan University, Shanghai, China
| | - Hao Li
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Tsinghua University, Beijing, China
| | - Yang Wu
- Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Tsinghua University, Beijing, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Chang Liu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
- Beijing Academy of Quantum Information Science, Beijing, China
| | - Yihua Wang
- Department of Physics, Fudan University, Shanghai, China
- Shanghai Research Center for Quantum Sciences, Shanghai, China
| | - Jinsong Zhang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
- Frontier Science Center for Quantum Information, Beijing, China
| | - Yayu Wang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
- Frontier Science Center for Quantum Information, Beijing, China
| | - Chui-Zhen Chen
- School of Physical Science and Technology, Soochow University, Suzhou, China
- Institute for Advanced Study, Soochow University, Suzhou, China
| | - Xiaodong Zhou
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
- Shanghai Qi Zhi Institute, Shanghai, China.
| | - Jian Shen
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, China.
- Department of Physics, Fudan University, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
- Shanghai Qi Zhi Institute, Shanghai, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, China.
| |
Collapse
|
14
|
Feng Y, Zhu J, Lin W, Lian Z, Wang Y, Li H, Yao H, He Q, Pan Y, Wu Y, Zhang J, Wang Y, Zhou X, Shen J, Wang Y. Helical Luttinger Liquid on the Edge of a Two-Dimensional Topological Antiferromagnet. NANO LETTERS 2022; 22:7606-7614. [PMID: 36123350 DOI: 10.1021/acs.nanolett.2c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A boundary helical Luttinger liquid (HLL) with broken bulk time-reversal symmetry belongs to a unique topological class that may occur in antiferromagnets (AFM). Here, we search for signatures of HLL on the edge of a recently discovered topological AFM, MnBi2Te4 even-layer. Using a scanning superconducting quantum interference device, we directly image helical edge current in the AFM ground state appearing at its charge neutral point. Such a helical edge state accompanies an insulating bulk which is topologically distinct from the ferromagnetic Chern insulator phase, as revealed in a magnetic field driven quantum phase transition. The edge conductance of the AFM order follows a power law as a function of temperature and source-drain bias which serves as strong evidence for HLL. Such HLL scaling is robust at finite fields below the quantum critical point. The observed HLL in a layered AFM semiconductor represents a highly tunable topological matter compatible with future spintronics and quantum computation.
Collapse
Affiliation(s)
- Yang Feng
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai200433, People's Republic of China
| | - Jinjiang Zhu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai200433, People's Republic of China
| | - Weiyan Lin
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai200433, People's Republic of China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai200433, People's Republic of China
| | - Zichen Lian
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, People's Republic of China
| | - Yongchao Wang
- Beijing Innovation Center for Future Chips, Tsinghua University, Beijing100084, People's Republic of China
| | - Hao Li
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Tsinghua University, Beijing100084, People's Republic of China
| | - Hongxu Yao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai200433, People's Republic of China
| | - Qiushi He
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai200433, People's Republic of China
| | - Yinping Pan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai200433, People's Republic of China
| | - Yang Wu
- Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Tsinghua University, Beijing100084, People's Republic of China
- Department of Mechanical Engineering, Tsinghua University, Beijing100084, People's Republic of China
| | - Jinsong Zhang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, People's Republic of China
- Frontier Science Center for Quantum Information, Beijing100084, People's Republic of China
| | - Yayu Wang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, People's Republic of China
- Frontier Science Center for Quantum Information, Beijing100084, People's Republic of China
| | - Xiaodong Zhou
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai200433, People's Republic of China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai200433, People's Republic of China
- Shanghai Qi Zhi Institute, Shanghai200232, People's Republic of China
| | - Jian Shen
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai200433, People's Republic of China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai200433, People's Republic of China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai200433, People's Republic of China
- Shanghai Qi Zhi Institute, Shanghai200232, People's Republic of China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing210093, People's Republic of China
- Shanghai Research Center for Quantum Sciences, Shanghai201315, People's Republic of China
| | - Yihua Wang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai200433, People's Republic of China
- Shanghai Research Center for Quantum Sciences, Shanghai201315, People's Republic of China
| |
Collapse
|
15
|
Xu HK, Gu M, Fei F, Gu YS, Liu D, Yu QY, Xue SS, Ning XH, Chen B, Xie H, Zhu Z, Guan D, Wang S, Li Y, Liu C, Liu Q, Song F, Zheng H, Jia J. Observation of Magnetism-Induced Topological Edge State in Antiferromagnetic Topological Insulator MnBi 4Te 7. ACS NANO 2022; 16:9810-9818. [PMID: 35695549 DOI: 10.1021/acsnano.2c03622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Breaking time reversal symmetry in a topological insulator may lead to quantum anomalous Hall effect and axion insulator phase. MnBi4Te7 is a recently discovered antiferromagnetic topological insulator with TN ∼ 12.5 K, which is composed of an alternatively stacked magnetic layer (MnBi2Te4) and nonmagnetic layer (Bi2Te3). By means of scanning tunneling spectroscopy, we clearly observe the electronic state present at a step edge of a magnetic MnBi2Te4 layer but absent at nonmagnetic Bi2Te3 layers at 4.5 K. Furthermore, we find that as the temperature rises above TN the edge state vanishes, while the point defect induced state persists upon an increase in temperature. These results confirm the observation of magnetism-induced edge states. Our analysis based on an axion insulator theory reveals that the nontrivial topological nature of the observed edge state.
Collapse
Affiliation(s)
- Hao-Ke Xu
- School of Physics and Astronomy, Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Gu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fucong Fei
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and College of Physics, Nanjing University, Nanjing 210093, China
| | - Yi-Sheng Gu
- School of Physics and Astronomy, Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dang Liu
- School of Physics and Astronomy, Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiao-Yan Yu
- School of Physics and Astronomy, Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sha-Sha Xue
- School of Physics and Astronomy, Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu-Hui Ning
- School of Physics and Astronomy, Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and College of Physics, Nanjing University, Nanjing 210093, China
| | - Hangkai Xie
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and College of Physics, Nanjing University, Nanjing 210093, China
| | - Zhen Zhu
- School of Physics and Astronomy, Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dandan Guan
- School of Physics and Astronomy, Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiyong Wang
- School of Physics and Astronomy, Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaoyi Li
- School of Physics and Astronomy, Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Canhua Liu
- School of Physics and Astronomy, Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qihang Liu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fengqi Song
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and College of Physics, Nanjing University, Nanjing 210093, China
| | - Hao Zheng
- School of Physics and Astronomy, Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinfeng Jia
- School of Physics and Astronomy, Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
He QL, Hughes TL, Armitage NP, Tokura Y, Wang KL. Topological spintronics and magnetoelectronics. NATURE MATERIALS 2022; 21:15-23. [PMID: 34949869 DOI: 10.1038/s41563-021-01138-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/21/2021] [Indexed: 05/08/2023]
Abstract
Topological electronic materials, such as topological insulators, are distinct from trivial materials in the topology of their electronic band structures that lead to robust, unconventional topological states, which could bring revolutionary developments in electronics. This Perspective summarizes developments of topological insulators in various electronic applications including spintronics and magnetoelectronics. We group and analyse several important phenomena in spintronics using topological insulators, including spin-orbit torque, the magnetic proximity effect, interplay between antiferromagnetism and topology, and the formation of topological spin textures. We also outline recent developments in magnetoelectronics such as the axion insulator and the topological magnetoelectric effect observed using different topological insulators.
Collapse
Affiliation(s)
- Qing Lin He
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China.
| | - Taylor L Hughes
- Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - N Peter Armitage
- Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD, USA
| | - Yoshinori Tokura
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
- Tokyo College, University of Tokyo, Tokyo, Japan
| | - Kang L Wang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA.
- Center of Quantum Sciences and Engineering, University of California, Los Angeles, CA, USA.
| |
Collapse
|