1
|
Dong W, Sheng J, Cui JZM, Zhao H, Wong STC. Systems immunology insights into brain metastasis. Trends Immunol 2024; 45:903-916. [PMID: 39443266 DOI: 10.1016/j.it.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Brain metastasis poses formidable clinical challenges due to its intricate interactions with the brain's unique immune environment, often resulting in poor prognoses. This review delves into systems immunology's role in uncovering the dynamic interplay between metastatic cancer cells and brain immunity. Leveraging spatial and single-cell technologies, along with advanced computational modeling, systems immunology offers unprecedented insights into mechanisms of immune evasion and tumor proliferation. Recent studies highlight potential immunotherapeutic targets, suggesting strategies to boost antitumor immunity and counteract cancer cell evasion in the brain. Despite substantial progress, challenges persist, particularly in accurately simulating human conditions. This review underscores the need for interdisciplinary collaboration to harness systems immunology's full potential, aiming to dramatically improve outcomes for patients with brain metastasis.
Collapse
Affiliation(s)
- Wenjuan Dong
- Department of Systems Medicine and Bioengineering and T. T. and W. F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX 77030, USA
| | - Jianting Sheng
- Department of Systems Medicine and Bioengineering and T. T. and W. F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX 77030, USA
| | - Johnny Z M Cui
- Department of Systems Medicine and Bioengineering and T. T. and W. F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX 77030, USA
| | - Hong Zhao
- Department of Systems Medicine and Bioengineering and T. T. and W. F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX 77030, USA.
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering and T. T. and W. F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Romero-Reyes J, Vázquez-Martínez ER, Silva CC, Molina-Hernández A, Díaz NF, Camacho-Arroyo I. Navigating glioblastoma complexity: the interplay of neurotransmitters and chromatin. Mol Biol Rep 2024; 51:912. [PMID: 39153092 PMCID: PMC11330389 DOI: 10.1007/s11033-024-09853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Glioblastoma is the most aggressive brain cancer with an unfavorable prognosis for patient survival. Glioma stem cells, a subpopulation of cancer cells, drive tumor initiation, self-renewal, and resistance to therapy and, together with the microenvironment, play a crucial role in glioblastoma maintenance and progression. Neurotransmitters such as noradrenaline, dopamine, and serotonin have contrasting effects on glioblastoma development, stimulating or inhibiting its progression depending on the cellular context and through their action on glioma stem cells, perhaps changing the epigenetic landscape. Recent studies have revealed that serotonin and dopamine induce chromatin modifications related to transcriptional plasticity in the mammalian brain and possibly in glioblastoma; however, this topic still needs to be explored because of its potential implications for glioblastoma treatment. Also, it is essential to consider that neurotransmitters' effects depend on the tumor's microenvironment since it can significantly influence the response and behavior of cancer cells. This review examines the possible role of neurotransmitters as regulators of glioblastoma development, focusing on their impact on the chromatin of glioma stem cells.
Collapse
Affiliation(s)
- Jessica Romero-Reyes
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| | - Carlos-Camilo Silva
- Chronobiology of Reproduction Research Lab. Biology of Reproduction Research Unit, Carrera de Biología, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City, México
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico City, México
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico City, México.
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México.
| |
Collapse
|
3
|
Perycz M, Dabrowski MJ, Jardanowska-Kotuniak M, Roura AJ, Gielniewski B, Stepniak K, Dramiński M, Ciechomska IA, Kaminska B, Wojtas B. Comprehensive analysis of the REST transcription factor regulatory networks in IDH mutant and IDH wild-type glioma cell lines and tumors. Acta Neuropathol Commun 2024; 12:72. [PMID: 38711090 PMCID: PMC11071216 DOI: 10.1186/s40478-024-01779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
The RE1-silencing transcription factor (REST) acts either as a repressor or activator of transcription depending on the genomic and cellular context. REST is a key player in brain cell differentiation by inducing chromatin modifications, including DNA methylation, in a proximity of its binding sites. Its dysfunction may contribute to oncogenesis. Mutations in IDH1/2 significantly change the epigenome contributing to blockade of cell differentiation and glioma development. We aimed at defining how REST modulates gene activation and repression in the context of the IDH mutation-related phenotype in gliomas. We studied the effects of REST knockdown, genome wide occurrence of REST binding sites, and DNA methylation of REST motifs in IDH wild type and IDH mutant gliomas. We found that REST target genes, REST binding patterns, and TF motif occurrence proximal to REST binding sites differed in IDH wild-type and mutant gliomas. Among differentially expressed REST targets were genes involved in glial cell differentiation and extracellular matrix organization, some of which were differentially methylated at promoters or gene bodies. REST knockdown differently impacted invasion of the parental or IDH1 mutant glioma cells. The canonical REST-repressed gene targets showed significant correlation with the GBM NPC-like cellular state. Interestingly, results of REST or KAISO silencing suggested the interplay between these TFs in regulation of REST-activated and repressed targets. The identified gene regulatory networks and putative REST cooperativity with other TFs, such as KAISO, show distinct REST target regulatory networks in IDH-WT and IDH-MUT gliomas, without concomitant DNA methylation changes. We conclude that REST could be an important therapeutic target in gliomas.
Collapse
Affiliation(s)
- Malgorzata Perycz
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Michal J Dabrowski
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Marta Jardanowska-Kotuniak
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
- Doctoral School of Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Adria-Jaume Roura
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bartlomiej Gielniewski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Stepniak
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Dramiński
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Iwona A Ciechomska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
4
|
Maleszewska M, Wojnicki K, Mieczkowski J, Król SK, Jacek K, Śmiech M, Kocyk M, Ciechomska IA, Bujko M, Siedlecki J, Kotulska K, Grajkowska W, Zawadzka M, Kaminska B. DMRTA2 supports glioma stem-cell mediated neovascularization in glioblastoma. Cell Death Dis 2024; 15:228. [PMID: 38509074 PMCID: PMC10954651 DOI: 10.1038/s41419-024-06603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Glioblastoma (GBM) is the most common and lethal brain tumor in adults. Due to its fast proliferation, diffusive growth and therapy resistance survival times are less than two years for patients with IDH-wildtype GBM. GBM is noted for the considerable cellular heterogeneity, high stemness indices and abundance of the glioma stem-like cells known to support tumor progression, therapeutic resistance and recurrence. Doublesex- and mab-3-related transcription factor a2 (DMRTA2) is involved in maintaining neural progenitor cells (NPC) in the cell cycle and its overexpression suppresses NPC differentiation. Despite the reports showing that primary GBM originates from transformed neural stem/progenitors cells, the role of DMRTA2 in gliomagenesis has not been elucidated so far. Here we show the upregulation of DMRTA2 expression in malignant gliomas. Immunohistochemical staining showed the protein concentrated in small cells with high proliferative potential and cells localized around blood vessels, where it colocalizes with pericyte-specific markers. Knock-down of DMRTA2 in human glioma cells impairs proliferation but not viability of the cells, and affects the formation of the tumor spheres, as evidenced by strong decrease in the number and size of spheres in in vitro cultures. Moreover, the knockdown of DMRTA2 in glioma spheres affects the stabilization of the glioma stem-like cell-dependent tube formation in an in vitro angiogenesis assay. We conclude that DMRTA2 is a new player in gliomagenesis and tumor neovascularization and due to its high expression in malignant gliomas could be a biomarker and potential target for new therapeutic strategies in glioblastoma.
Collapse
Affiliation(s)
- Marta Maleszewska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
- Department of Animal Physiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Kamil Wojnicki
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Mieczkowski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Sylwia K Król
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Karol Jacek
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Śmiech
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Kocyk
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Iwona A Ciechomska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Janusz Siedlecki
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Katarzyna Kotulska
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Wiesława Grajkowska
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Małgorzata Zawadzka
- Laboratory of Neuromuscular Plasticity, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Kiel K, Król SK, Bronisz A, Godlewski J. MiR-128-3p - a gray eminence of the human central nervous system. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102141. [PMID: 38419943 PMCID: PMC10899074 DOI: 10.1016/j.omtn.2024.102141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
MicroRNA-128-3p (miR-128-3p) is a versatile molecule with multiple functions in the physiopathology of the human central nervous system. Perturbations of miR-128-3p, which is enriched in the brain, contribute to a plethora of neurodegenerative disorders, brain injuries, and malignancies, as this miRNA is a crucial regulator of gene expression in the brain, playing an essential role in the maintenance and function of cells stemming from neuronal lineage. However, the differential expression of miR-128-3p in pathologies underscores the importance of the balance between its high and low levels. Significantly, numerous reports pointed to miR-128-3p as one of the most depleted in glioblastoma, implying it is a critical player in the disease's pathogenesis and thus may serve as a therapeutic agent for this most aggressive form of brain tumor. In this review, we summarize the current knowledge of the diverse roles of miR-128-3p. We focus on its involvement in the neurogenesis and pathophysiology of malignant and neurodegenerative diseases. We also highlight the promising potential of miR-128-3p as an antitumor agent for the future therapy of human cancers, including glioblastoma, and as the linchpin of brain development and function, potentially leading to the development of new therapies for neurological conditions.
Collapse
Affiliation(s)
- Klaudia Kiel
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Sylwia Katarzyna Król
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Agnieszka Bronisz
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Jakub Godlewski
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| |
Collapse
|
6
|
Li X, Zeng S, Chen L, Zhang Y, Li X, Zhang B, Su D, Du Q, Zhang J, Wang H, Zhong Z, Zhang J, Li P, Jiang A, Long K, Li M, Ge L. An intronic enhancer of Cebpa regulates adipocyte differentiation and adipose tissue development via long-range loop formation. Cell Prolif 2024; 57:e13552. [PMID: 37905345 PMCID: PMC10905358 DOI: 10.1111/cpr.13552] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 11/02/2023] Open
Abstract
Cebpa is a master transcription factor gene for adipogenesis. However, the mechanisms of enhancer-promoter chromatin interactions controlling Cebpa transcriptional regulation during adipogenic differentiation remain largely unknown. To reveal how the three-dimensional structure of Cebpa changes during adipogenesis, we generated high-resolution chromatin interactions of Cebpa in 3T3-L1 preadipocytes and 3T3-L1 adipocytes using circularized chromosome conformation capture sequencing (4C-seq). We revealed dramatic changes in chromatin interactions and chromatin status at interaction sites during adipogenic differentiation. Based on this, we identified five active enhancers of Cebpa in 3T3-L1 adipocytes through epigenomic data and luciferase reporter assays. Next, epigenetic repression of Cebpa-L1-AD-En2 or -En3 by the dCas9-KRAB system significantly down-regulated Cebpa expression and inhibited adipocyte differentiation. Furthermore, experimental depletion of cohesin decreased the interaction intensity between Cebpa-L1-AD-En2 and the Cebpa promoter and down-regulated Cebpa expression, indicating that long-range chromatin loop formation was mediated by cohesin. Two transcription factors, RXRA and PPARG, synergistically regulate the activity of Cebpa-L1-AD-En2. To test whether Cebpa-L1-AD-En2 plays a role in adipose tissue development, we injected dCas9-KRAB-En2 lentivirus into the inguinal white adipose tissue (iWAT) of mice to suppress the activity of Cebpa-L1-AD-En2. Repression of Cebpa-L1-AD-En2 significantly decreased Cebpa expression and adipocyte size, altered iWAT transcriptome, and affected iWAT development. We identified functional enhancers regulating Cebpa expression and clarified the crucial roles of Cebpa-L1-AD-En2 and Cebpa promoter interaction in adipocyte differentiation and adipose tissue development.
Collapse
Affiliation(s)
- Xiaokai Li
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Sha Zeng
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Li Chen
- Chongqing Academy of Animal SciencesChongqingChina
- National Center of Technology Innovation for PigsChongqingChina
- Key Laboratory of Pig Industry ScienceMinistry of AgricultureChongqingChina
| | - Yu Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Xuemin Li
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Biwei Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Duo Su
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Qinjiao Du
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Haoming Wang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Zhining Zhong
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Jinwei Zhang
- Chongqing Academy of Animal SciencesChongqingChina
- National Center of Technology Innovation for PigsChongqingChina
- Key Laboratory of Pig Industry ScienceMinistry of AgricultureChongqingChina
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine and GeneticsSichuan Jinxin Xi'nan Women's and Children's HospitalChengduChina
| | - Anan Jiang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
- Chongqing Academy of Animal SciencesChongqingChina
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Liangpeng Ge
- Chongqing Academy of Animal SciencesChongqingChina
- National Center of Technology Innovation for PigsChongqingChina
- Key Laboratory of Pig Industry ScienceMinistry of AgricultureChongqingChina
| |
Collapse
|
7
|
Lu C, Wei Y, Abbas M, Agula H, Wang E, Meng Z, Zhang R. Application of Single-Cell Assay for Transposase-Accessible Chromatin with High Throughput Sequencing in Plant Science: Advances, Technical Challenges, and Prospects. Int J Mol Sci 2024; 25:1479. [PMID: 38338756 PMCID: PMC10855595 DOI: 10.3390/ijms25031479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The Single-cell Assay for Transposase-Accessible Chromatin with high throughput sequencing (scATAC-seq) has gained increasing popularity in recent years, allowing for chromatin accessibility to be deciphered and gene regulatory networks (GRNs) to be inferred at single-cell resolution. This cutting-edge technology now enables the genome-wide profiling of chromatin accessibility at the cellular level and the capturing of cell-type-specific cis-regulatory elements (CREs) that are masked by cellular heterogeneity in bulk assays. Additionally, it can also facilitate the identification of rare and new cell types based on differences in chromatin accessibility and the charting of cellular developmental trajectories within lineage-related cell clusters. Due to technical challenges and limitations, the data generated from scATAC-seq exhibit unique features, often characterized by high sparsity and noise, even within the same cell type. To address these challenges, various bioinformatic tools have been developed. Furthermore, the application of scATAC-seq in plant science is still in its infancy, with most research focusing on root tissues and model plant species. In this review, we provide an overview of recent progress in scATAC-seq and its application across various fields. We first conduct scATAC-seq in plant science. Next, we highlight the current challenges of scATAC-seq in plant science and major strategies for cell type annotation. Finally, we outline several future directions to exploit scATAC-seq technologies to address critical challenges in plant science, ranging from plant ENCODE(The Encyclopedia of DNA Elements) project construction to GRN inference, to deepen our understanding of the roles of CREs in plant biology.
Collapse
Affiliation(s)
- Chao Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (Y.W.)
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yunxiao Wei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (Y.W.)
| | - Mubashir Abbas
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (Y.W.)
| | - Hasi Agula
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Edwin Wang
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (Y.W.)
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (Y.W.)
| |
Collapse
|
8
|
Tabnak P, Hasanzade Bashkandi A, Ebrahimnezhad M, Soleimani M. Forkhead box transcription factors (FOXOs and FOXM1) in glioma: from molecular mechanisms to therapeutics. Cancer Cell Int 2023; 23:238. [PMID: 37821870 PMCID: PMC10568859 DOI: 10.1186/s12935-023-03090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Glioma is the most aggressive and malignant type of primary brain tumor, comprises the majority of central nervous system deaths, and is categorized into different subgroups according to its histological characteristics, including astrocytomas, oligodendrogliomas, glioblastoma multiforme (GBM), and mixed tumors. The forkhead box (FOX) transcription factors comprise a collection of proteins that play various roles in numerous complex molecular cascades and have been discovered to be differentially expressed in distinct glioma subtypes. FOXM1 and FOXOs have been recognized as crucial transcription factors in tumor cells, including glioma cells. Accumulating data indicates that FOXM1 acts as an oncogene in various types of cancers, and a significant part of studies has investigated its function in glioma. Although recent studies considered FOXO subgroups as tumor suppressors, there are pieces of evidence that they may have an oncogenic role. This review will discuss the subtle functions of FOXOs and FOXM1 in gliomas, dissecting their regulatory network with other proteins, microRNAs and their role in glioma progression, including stem cell differentiation and therapy resistance/sensitivity, alongside highlighting recent pharmacological progress for modulating their expression.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mohammad Ebrahimnezhad
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Soleimani
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Sun YM, Zhang YM, Shi HL, Yang S, Zhao YL, Liu HJ, Li C, Liu HL, Yang JP, Song J, Sun GZ, Yang JK. Enhancer-driven transcription of MCM8 by E2F4 promotes ATR pathway activation and glioma stem cell characteristics. Hereditas 2023; 160:29. [PMID: 37349788 DOI: 10.1186/s41065-023-00292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Glioma stem cells (GSCs) are responsible for glioma recurrence and drug resistance, yet the mechanisms underlying their maintenance remains unclear. This study aimed to identify enhancer-controlled genes involved in GSCs maintenance and elucidate the mechanisms underlying their regulation. METHODS We analyzed RNA-seq data and H3K27ac ChIP-seq data from GSE119776 to identify differentially expressed genes and enhancers, respectively. Gene Ontology analysis was performed for functional enrichment. Transcription factors were predicted using the Toolkit for Cistrome Data Browser. Prognostic analysis and gene expression correlation was conducted using the Chinese Glioma Genome Atlas (CGGA) data. Two GSC cell lines, GSC-A172 and GSC-U138MG, were isolated from A172 and U138MG cell lines. qRT-PCR was used to detect gene transcription levels. ChIP-qPCR was used to detect H3K27ac of enhancers, and binding of E2F4 to target gene enhancers. Western blot was used to analyze protein levels of p-ATR and γH2AX. Sphere formation, limiting dilution and cell growth assays were used to analyze GSCs growth and self-renewal. RESULTS We found that upregulated genes in GSCs were associated with ataxia-telangiectasia-mutated-and-Rad3-related kinase (ATR) pathway activation, and that seven enhancer-controlled genes related to ATR pathway activation (LIN9, MCM8, CEP72, POLA1, DBF4, NDE1, and CDKN2C) were identified. Expression of these genes corresponded to poor prognosis in glioma patients. E2F4 was identified as a transcription factor that regulates enhancer-controlled genes related to the ATR pathway activation, with MCM8 having the highest hazard ratio among genes positively correlated with E2F4 expression. E2F4 bound to MCM8 enhancers to promote its transcription. Overexpression of MCM8 partially restored the inhibition of GSCs self-renewal, cell growth, and the ATR pathway activation caused by E2F4 knockdown. CONCLUSION Our study demonstrated that E2F4-mediated enhancer activation of MCM8 promotes the ATR pathway activation and GSCs characteristics. These findings offer promising targets for the development of new therapies for gliomas.
Collapse
Affiliation(s)
- Yu-Meng Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yi-Meng Zhang
- Medical Department, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Hai-Liang Shi
- Department of Neurosurgery, Hebei General Hospital, Shijiazhuang, 050000, Hebei, China
| | - Song Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yin-Long Zhao
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Hong-Jiang Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Chen Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Hong-Lei Liu
- Department of Neurosurgery, Shijiazhuang Third Hospital, Shijiazhuang, 050011, Hebei, China
| | - Ji-Peng Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jian Song
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Guo-Zhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jian-Kai Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
10
|
Eisenbarth D, Wang YA. Glioblastoma heterogeneity at single cell resolution. Oncogene 2023; 42:2155-2165. [PMID: 37277603 PMCID: PMC10913075 DOI: 10.1038/s41388-023-02738-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Glioblastoma (GBM) is one of the deadliest types of cancer and highly refractory to chemoradiation and immunotherapy. One of the main reasons for this resistance to therapy lies within the heterogeneity of the tumor and its associated microenvironment. The vast diversity of cell states, composition of cells, and phenotypical characteristics makes it difficult to accurately classify GBM into distinct subtypes and find effective therapies. The advancement of sequencing technologies in recent years has further corroborated the heterogeneity of GBM at the single cell level. Recent studies have only begun to elucidate the different cell states present in GBM and how they correlate with sensitivity to therapy. Furthermore, it has become clear that GBM heterogeneity not only depends on intrinsic factors but also strongly differs between new and recurrent GBM, and treatment naïve and experienced patients. Understanding and connecting the complex cellular network that underlies GBM heterogeneity will be indispensable in finding new ways to tackle this deadly disease. Here, we present an overview of the multiple layers of GBM heterogeneity and discuss novel findings in the age of single cell technologies.
Collapse
Affiliation(s)
- David Eisenbarth
- The Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Y Alan Wang
- The Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
11
|
McCornack C, Woodiwiss T, Hardi A, Yano H, Kim AH. The function of histone methylation and acetylation regulators in GBM pathophysiology. Front Oncol 2023; 13:1144184. [PMID: 37205197 PMCID: PMC10185819 DOI: 10.3389/fonc.2023.1144184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/29/2023] [Indexed: 05/21/2023] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain malignancy and is characterized by a high degree of intra and intertumor cellular heterogeneity, a starkly immunosuppressive tumor microenvironment, and nearly universal recurrence. The application of various genomic approaches has allowed us to understand the core molecular signatures, transcriptional states, and DNA methylation patterns that define GBM. Histone posttranslational modifications (PTMs) have been shown to influence oncogenesis in a variety of malignancies, including other forms of glioma, yet comparatively less effort has been placed on understanding the transcriptional impact and regulation of histone PTMs in the context of GBM. In this review we discuss work that investigates the role of histone acetylating and methylating enzymes in GBM pathogenesis, as well as the effects of targeted inhibition of these enzymes. We then synthesize broader genomic and epigenomic approaches to understand the influence of histone PTMs on chromatin architecture and transcription within GBM and finally, explore the limitations of current research in this field before proposing future directions for this area of research.
Collapse
Affiliation(s)
- Colin McCornack
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, United States
| | - Timothy Woodiwiss
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa, IA, United States
| | - Angela Hardi
- Bernard Becker Medical Library, Washington University School of Medicine, St. Louis, MO, United States
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
12
|
Roura AJ, Szadkowska P, Poleszak K, Dabrowski MJ, Ellert-Miklaszewska A, Wojnicki K, Ciechomska IA, Stepniak K, Kaminska B, Wojtas B. Regulatory networks driving expression of genes critical for glioblastoma are controlled by the transcription factor c-Jun and the pre-existing epigenetic modifications. Clin Epigenetics 2023; 15:29. [PMID: 36850002 PMCID: PMC9972689 DOI: 10.1186/s13148-023-01446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM, WHO grade IV) is an aggressive, primary brain tumor. Despite extensive tumor resection followed by radio- and chemotherapy, life expectancy of GBM patients did not improve over decades. Several studies reported transcription deregulation in GBMs, but regulatory mechanisms driving overexpression of GBM-specific genes remain largely unknown. Transcription in open chromatin regions is directed by transcription factors (TFs) that bind to specific motifs, recruit co-activators/repressors and the transcriptional machinery. Identification of GBM-related TFs-gene regulatory networks may reveal new and targetable mechanisms of gliomagenesis. RESULTS We predicted TFs-regulated networks in GBMs in silico and intersected them with putative TF binding sites identified in the accessible chromatin in human glioma cells and GBM patient samples. The Cancer Genome Atlas and Glioma Atlas datasets (DNA methylation, H3K27 acetylation, transcriptomic profiles) were explored to elucidate TFs-gene regulatory networks and effects of the epigenetic background. In contrast to the majority of tumors, c-Jun expression was higher in GBMs than in normal brain and c-Jun binding sites were found in multiple genes overexpressed in GBMs, including VIM, FOSL2 or UPP1. Binding of c-Jun to the VIM gene promoter was stronger in GBM-derived cells than in cells derived from benign glioma as evidenced by gel shift and supershift assays. Regulatory regions of the majority of c-Jun targets have distinct DNA methylation patterns in GBMs as compared to benign gliomas, suggesting the contribution of DNA methylation to the c-Jun-dependent gene expression. CONCLUSIONS GBM-specific TFs-gene networks identified in GBMs differ from regulatory pathways attributed to benign brain tumors and imply a decisive role of c-Jun in controlling genes that drive glioma growth and invasion as well as a modulatory role of DNA methylation.
Collapse
Affiliation(s)
- Adria-Jaume Roura
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Paulina Szadkowska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Poleszak
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Michal J. Dabrowski
- Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | | | - Kamil Wojnicki
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Iwona A. Ciechomska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Karolina Stepniak
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, ul. Ludwika Pasteura 3, 02-093 Warsaw, Poland
| |
Collapse
|
13
|
Idriss S, Hallal M, El-Kurdi A, Zalzali H, El-Rassi I, Ehli EA, Davis CM, Chung PED, Gendoo DMA, Zacksenhaus E, Saab R, Khoueiry P. A temporal in vivo catalog of chromatin accessibility and expression profiles in pineoblastoma reveals a prevalent role for repressor elements. Genome Res 2023; 33:269-282. [PMID: 36650051 PMCID: PMC10069464 DOI: 10.1101/gr.277037.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Pediatric pineoblastomas (PBs) are rare and aggressive tumors of grade IV histology. Although some oncogenic drivers are characterized, including germline mutations in RB1 and DICER1, the role of epigenetic deregulation and cis-regulatory regions in PB pathogenesis and progression is largely unknown. Here, we generated genome-wide gene expression, chromatin accessibility, and H3K27ac profiles covering key time points of PB initiation and progression from pineal tissues of a mouse model of CCND1-driven PB. We identified PB-specific enhancers and super-enhancers, and found that in some cases, the accessible genome dynamics precede transcriptomic changes, a characteristic that is underexplored in tumor progression. During progression of PB, newly acquired open chromatin regions lacking H3K27ac signal become enriched for repressive state elements and harbor motifs of repressor transcription factors like HINFP, GLI2, and YY1. Copy number variant analysis identified deletion events specific to the tumorigenic stage, affecting, among others, the histone gene cluster and Gas1, the growth arrest specific gene. Gene set enrichment analysis and gene expression signatures positioned the model used here close to human PB samples, showing the potential of our findings for exploring new avenues in PB management and therapy. Overall, this study reports the first temporal and in vivo cis-regulatory, expression, and accessibility maps in PB.
Collapse
Affiliation(s)
- Salam Idriss
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Mohammad Hallal
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.,Biomedical Engineering Program, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Abdullah El-Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.,Pillar Genomics Institute, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Hasan Zalzali
- Department of Pediatric and Adolescent Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.,Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Inaam El-Rassi
- Biomedical Engineering Program, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Christel M Davis
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Philip E D Chung
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Deena M A Gendoo
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, United Kingdom
| | - Eldad Zacksenhaus
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Raya Saab
- Department of Pediatric and Adolescent Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.,Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Pierre Khoueiry
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; .,Pillar Genomics Institute, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
14
|
Defining a Correlative Transcriptional Signature Associated with Bulk Histone H3 Acetylation Levels in Adult Glioblastomas. Cells 2023; 12:cells12030374. [PMID: 36766715 PMCID: PMC9913072 DOI: 10.3390/cells12030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GB) is the most prevalent primary brain cancer and the most aggressive form of glioma because of its poor prognosis and high recurrence. To confirm the importance of epigenetics in glioma, we explored The Cancer Gene Atlas (TCGA) database and we found that several histone/DNA modifications and chromatin remodeling factors were affected at transcriptional and genetic levels in GB compared to lower-grade gliomas. We associated these alterations in our own cohort of study with a significant reduction in the bulk levels of acetylated lysines 9 and 14 of histone H3 in high-grade compared to low-grade tumors. Within GB, we performed an RNA-seq analysis between samples exhibiting the lowest and highest levels of acetylated H3 in the cohort; these results are in general concordance with the transcriptional changes obtained after histone deacetylase (HDAC) inhibition of GB-derived cultures that affected relevant genes in glioma biology and treatment (e.g., A2ML1, CD83, SLC17A7, TNFSF18). Overall, we identified a transcriptional signature linked to histone acetylation that was potentially associated with good prognosis, i.e., high overall survival and low rate of somatic mutations in epigenetically related genes in GB. Our study identifies lysine acetylation as a key defective histone modification in adult high-grade glioma, and offers novel insights regarding the use of HDAC inhibitors in therapy.
Collapse
|
15
|
Identification of candidate enhancers controlling the transcriptome during the formation of interphalangeal joints. Sci Rep 2022; 12:12835. [PMID: 35896673 PMCID: PMC9329285 DOI: 10.1038/s41598-022-16951-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
The formation of the synovial joint begins with the visible emergence of a stripe of densely packed mesenchymal cells located between distal ends of the developing skeletal anlagen called the interzone. Recently the transcriptome of the early synovial joint was reported. Knowledge about enhancers would complement these data and lead to a better understanding of the control of gene transcription at the onset of joint development. Using ChIP-sequencing we have mapped the H3-signatures H3K27ac and H3K4me1 to locate regulatory elements specific for the interzone and adjacent phalange, respectively. This one-stage atlas of candidate enhancers (CEs) was used to map the association between these respective joint tissue specific CEs and biological processes. Subsequently, integrative analysis of transcriptomic data and CEs identified new putative regulatory elements of genes expressed in interzone (e.g., GDF5, BMP2 and DACT2) and phalange (e.g., MATN1, HAPLN1 and SNAI1). We also linked such CEs to genes known as crucial in synovial joint hypermobility and osteoarthritis, as well as phalange malformations. These analyses show that the CE atlas can serve as resource for identifying, and as starting point for experimentally validating, putative disease-causing genomic regulatory regions in patients with synovial joint dysfunctions and/or phalange disorders, and enhancer-controlled synovial joint and phalange formation.
Collapse
|
16
|
Lu J, Xiao Z, Xu M, Li L. New Insights into LINC00346 and its Role in Disease. Front Cell Dev Biol 2022; 9:819785. [PMID: 35096842 PMCID: PMC8794746 DOI: 10.3389/fcell.2021.819785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has shown that long intergenic non-protein-coding RNA 346 (LINC00346) functions as an oncogene in the tumorigenesis of several cancers. The expression level of LINC00346 has been shown to be obviously correlated with prognosis, lymphoma metastasis, histological grade, TNM stage, tumor size and pathologic stage. LINC00346 has been found to regulate specific cellular functions by interacting with several molecules and signaling pathways. In this review, we summarize recent evidence concerning the role of LINC00346 in the occurrence and development of diseases. We also discuss the potential clinical utility of LINC00346, thereby providing new insight into the diagnosis and treatment of diseases. In addition, we further discuss the potential clinical utility of LINC00346 in the diagnosis, prognostication, and treatment of diseases.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaoying Xiao
- Department of Infectious Diseases Shengzhou People' Hospital, Shengzhou Branch, The Fisrt Affiliated Hospital of Zhejiang University, Shengzhou, China
| | - Mengqiu Xu
- Department of Infectious Diseases Shengzhou People' Hospital, Shengzhou Branch, The Fisrt Affiliated Hospital of Zhejiang University, Shengzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Advanced genomics and clinical phenotypes in psoriatic arthritis. Semin Immunol 2021; 58:101665. [PMID: 36307312 DOI: 10.1016/j.smim.2022.101665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psoriatic Arthritis (PsA) is a complex polygenic inflammatory disease showing a variable musculoskeletal involvement in patients with skin psoriasis. PsA coexist in 25-40 % of patients with the dermatological manifestations, but PsA may also predate the appearance of psoriasis. Nonetheless, the immunopathogenesis of psoriasis and PsA manifest significant similarities, with a major role of the individual susceptibility in both cases. Genome wide association studies (GWAS) identified several genes/loci associated with the risk to develop PsA, both dependent and independent of psoriasis. The major challenge is thus represented by the need to translate the identification of functional polymorphisms and other genetics findings into biological mechanisms along with the identification of novel putative drug targets. A functional genomics approach aims to increase GWAS power and recent evidence supports the use of a multilayer process, including eQTL, methylome, chromatin conformation analysis and genome editing to discover novel genes that can be affected by disease-associated variants, such as PsA. The available data have considered PsA as a unique homogeneous clinical entity while the clinical experience supports a wide variability of skin and joint manifestations coexisting in diverse patients with different mechanisms underlying the musculoskeletal and dermatological domains. A better discrimination of the patient features is encouraged by the limited data on functional genomics. We provide herein a review of the latest findings on PsA functional genomics highlighting the exciting developments in the field and how these might lead to a better understanding of gene regulation underpinning disease mechanisms and ultimately refine clinical phenotyping.
Collapse
|
18
|
Grabowicz IE, Wilczyński B, Kamińska B, Roura AJ, Wojtaś B, Dąbrowski MJ. The role of epigenetic modifications, long-range contacts, enhancers and topologically associating domains in the regulation of glioma grade-specific genes. Sci Rep 2021; 11:15668. [PMID: 34341417 PMCID: PMC8329071 DOI: 10.1038/s41598-021-95009-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Genome-wide studies have uncovered specific genetic alterations, transcriptomic patterns and epigenetic profiles associated with different glioma types. We have recently created a unique atlas encompassing genome-wide profiles of open chromatin, histone H3K27ac and H3Kme3 modifications, DNA methylation and transcriptomes of 33 glioma samples of different grades. Here, we intersected genome-wide atlas data with topologically associating domains (TADs) and demonstrated that the chromatin organization and epigenetic landscape of enhancers have a strong impact on genes differentially expressed in WHO low grade versus high grade gliomas. We identified TADs enriched in glioma grade-specific genes and/or epigenetic marks. We found the set of transcription factors, including REST, E2F1 and NFKB1, that are most likely to regulate gene expression in multiple TADs, containing specific glioma-related genes. Moreover, many genes associated with the cell-matrix adhesion Gene Ontology group, in particular 14 PROTOCADHERINs, were found to be regulated by long-range contacts with enhancers. Presented results demonstrate the existence of epigenetic differences associated with chromatin organization driving differential gene expression in gliomas of different malignancy.
Collapse
Affiliation(s)
- Ilona E Grabowicz
- Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland.
| | - Bartek Wilczyński
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Bożena Kamińska
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Adria-Jaume Roura
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Wojtaś
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Michał J Dąbrowski
- Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|