1
|
Colas K, Bindl D, Suga H. Selection of Nucleotide-Encoded Mass Libraries of Macrocyclic Peptides for Inaccessible Drug Targets. Chem Rev 2024; 124:12213-12241. [PMID: 39451037 DOI: 10.1021/acs.chemrev.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Technological advances and breakthrough developments in the pharmaceutical field are knocking at the door of the "undruggable" fortress with increasing insistence. Notably, the 21st century has seen the emergence of macrocyclic compounds, among which cyclic peptides are of particular interest. This new class of potential drug candidates occupies the vast chemical space between classic small-molecule drugs and larger protein-based therapeutics, such as antibodies. As research advances toward clinical targets that have long been considered inaccessible, macrocyclic peptides are well-suited to tackle these challenges in a post-rule of 5 pharmaceutical landscape. Facilitating their discovery is an arsenal of high-throughput screening methods that exploit massive randomized libraries of genetically encoded compounds. These techniques benefit from the incorporation of non-natural moieties, such as non- proteinogenic amino acids or stabilizing hydrocarbon staples. Exploiting these features for the strategic architectural design of macrocyclic peptides has the potential to tackle challenging targets such as protein-protein interactions, which have long resisted research efforts. This Review summarizes the basic principles and recent developments of the main high-throughput techniques for the discovery of macrocyclic peptides and focuses on their specific deployment for targeting undruggable space. A particular focus is placed on the development of new design guidelines and principles for the cyclization and structural stabilization of cyclic peptides and the resulting success stories achieved against well-known inaccessible drug targets.
Collapse
Affiliation(s)
- Kilian Colas
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daniel Bindl
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Dunkelmann DL, Chin JW. Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming. Chem Rev 2024; 124:11008-11062. [PMID: 39235427 PMCID: PMC11467909 DOI: 10.1021/acs.chemrev.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Over the past 16 years, genetic code expansion and reprogramming in living organisms has been transformed by advances that leverage the unique properties of pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs. Here we summarize the discovery of the pyrrolysine system and describe the unique properties of PylRS/tRNAPyl pairs that provide a foundation for their transformational role in genetic code expansion and reprogramming. We describe the development of genetic code expansion, from E. coli to all domains of life, using PylRS/tRNAPyl pairs, and the development of systems that biosynthesize and incorporate ncAAs using pyl systems. We review applications that have been uniquely enabled by the development of PylRS/tRNAPyl pairs for incorporating new noncanonical amino acids (ncAAs), and strategies for engineering PylRS/tRNAPyl pairs to add noncanonical monomers, beyond α-L-amino acids, to the genetic code of living organisms. We review rapid progress in the discovery and scalable generation of mutually orthogonal PylRS/tRNAPyl pairs that can be directed to incorporate diverse ncAAs in response to diverse codons, and we review strategies for incorporating multiple distinct ncAAs into proteins using mutually orthogonal PylRS/tRNAPyl pairs. Finally, we review recent advances in the encoded cellular synthesis of noncanonical polymers and macrocycles and discuss future developments for PylRS/tRNAPyl pairs.
Collapse
Affiliation(s)
- Daniel L. Dunkelmann
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
- Max
Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jason W. Chin
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
| |
Collapse
|
3
|
Koch NG, Budisa N. Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion. Chem Rev 2024; 124:9580-9608. [PMID: 38953775 PMCID: PMC11363022 DOI: 10.1021/acs.chemrev.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Over 20 years ago, the pyrrolysine encoding translation system was discovered in specific archaea. Our Review provides an overview of how the once obscure pyrrolysyl-tRNA synthetase (PylRS) tRNA pair, originally responsible for accurately translating enzymes crucial in methanogenic metabolic pathways, laid the foundation for the burgeoning field of genetic code expansion. Our primary focus is the discussion of how to successfully engineer the PylRS to recognize new substrates and exhibit higher in vivo activity. We have compiled a comprehensive list of ncAAs incorporable with the PylRS system. Additionally, we also summarize recent successful applications of the PylRS system in creating innovative therapeutic solutions, such as new antibody-drug conjugates, advancements in vaccine modalities, and the potential production of new antimicrobials.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Department
of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Nediljko Budisa
- Biocatalysis
Group, Institute of Chemistry, Technische
Universität Berlin, 10623 Berlin, Germany
- Chemical
Synthetic Biology Chair, Department of Chemistry, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| |
Collapse
|
4
|
Chen A, Zhang XD, Đelmaš AĐ, Weitz DA, Milcic K. Systems and Methods for Continuous Evolution of Enzymes. Chemistry 2024; 30:e202400880. [PMID: 38780896 DOI: 10.1002/chem.202400880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Directed evolution generates novel biomolecules with desired functions by iteratively diversifying the genetic sequence of wildtype biomolecules, relaying the genetic information to the molecule with function, and selecting the variants that progresses towards the properties of interest. While traditional directed evolution consumes significant labor and time for each step, continuous evolution seeks to automate all steps so directed evolution can proceed with minimum human intervention and dramatically shortened time. A major application of continuous evolution is the generation of novel enzymes, which catalyze reactions under conditions that are not favorable to their wildtype counterparts, or on altered substrates. The challenge to continuously evolve enzymes lies in automating sufficient, unbiased gene diversification, providing selection for a wide array of reaction types, and linking the genetic information to the phenotypic function. Over years of development, continuous evolution has accumulated versatile strategies to address these challenges, enabling its use as a general tool for enzyme engineering. As the capability of continuous evolution continues to expand, its impact will increase across various industries. In this review, we summarize the working mechanisms of recently developed continuous evolution strategies, discuss examples of their applications focusing on enzyme evolution, and point out their limitations and future directions.
Collapse
Affiliation(s)
- Anqi Chen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138, USA E-mail: Dr David A. Weitz: E-mail: Dr. Karla Milcic
| | - Xinge Diana Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138, USA E-mail: Dr David A. Weitz: E-mail: Dr. Karla Milcic
| | | | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138, USA E-mail: Dr David A. Weitz: E-mail: Dr. Karla Milcic
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA, 02115, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Karla Milcic
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138, USA E-mail: Dr David A. Weitz: E-mail: Dr. Karla Milcic
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia
| |
Collapse
|
5
|
Krahn N, Zhang J, Melnikov SV, Tharp JM, Villa A, Patel A, Howard R, Gabir H, Patel T, Stetefeld J, Puglisi J, Söll D. tRNA shape is an identity element for an archaeal pyrrolysyl-tRNA synthetase from the human gut. Nucleic Acids Res 2024; 52:513-524. [PMID: 38100361 PMCID: PMC10810272 DOI: 10.1093/nar/gkad1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Protein translation is orchestrated through tRNA aminoacylation and ribosomal elongation. Among the highly conserved structure of tRNAs, they have distinguishing features which promote interaction with their cognate aminoacyl tRNA synthetase (aaRS). These key features are referred to as identity elements. In our study, we investigated the tRNA:aaRS pair that installs the 22nd amino acid, pyrrolysine (tRNAPyl:PylRS). Pyrrolysyl-tRNA synthetases (PylRSs) are naturally encoded in some archaeal and bacterial genomes to acylate tRNAPyl with pyrrolysine. Their large amino acid binding pocket and poor recognition of the tRNA anticodon have been instrumental in incorporating >200 noncanonical amino acids. PylRS enzymes can be divided into three classes based on their genomic structure. Two classes contain both an N-terminal and C-terminal domain, however the third class (ΔpylSn) lacks the N-terminal domain. In this study we explored the tRNA identity elements for a ΔpylSn tRNAPyl from Candidatus Methanomethylophilus alvus which drives the orthogonality seen with its cognate PylRS (MaPylRS). From aminoacylation and translation assays we identified five key elements in ΔpylSn tRNAPyl necessary for MaPylRS activity. The absence of a base (position 8) and a G-U wobble pair (G28:U42) were found to affect the high-resolution structure of the tRNA, while molecular dynamic simulations led us to acknowledge the rigidity imparted from the G-C base pairs (G3:C70 and G5:C68).
Collapse
Affiliation(s)
- Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Jingji Zhang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jeffery M Tharp
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Alessandra Villa
- PDC-Center for High Performance Computing, KTH-Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Armaan Patel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE-171 65, Sweden
| | - Haben Gabir
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Trushar R Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB T1K 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Joseph Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
6
|
Surbek M, Van de Steene T, Sachslehner AP, Golabi B, Griss J, Eyckerman S, Gevaert K, Eckhart L. Cornification of keratinocytes is associated with differential changes in the catalytic activity and the immunoreactivity of transglutaminase-1. Sci Rep 2023; 13:21550. [PMID: 38057394 PMCID: PMC10700374 DOI: 10.1038/s41598-023-48856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Transglutaminase 1 (TGM1) plays an essential role in skin barrier formation by cross-linking proteins in differentiated keratinocytes. Here, we established a protocol for the antibody-dependent detection of TGM1 protein and the parallel detection of TGM activity. TGM1 immunoreactivity initially increased and co-localized with membrane-associated TGM activity during keratinocyte differentiation. TGM activity persisted upon further differentiation of keratinocytes, whereas TGM1 immunoreactivity was lost under standard assay conditions. Pretreatment of tissue sections with the proteases trypsin or proteinase K enabled immunodetection of TGM1 in cornified keratinocytes, indicating that removal of other proteins was a prerequisite for TGM1 immunolabeling after cornification. The increase of TGM activity and subsequent loss of TGM1 immunoreactivity could be replicated in HEK293T cells transfected with TGM1, suggesting that protein cross-linking mediated by TGM1 itself may lead to reduced recognition of TGM1 by antibodies. To screen for proteins potentially regulating TGM1, we performed Virotrap experiments and identified the CAPNS1 subunit of calpain as an interaction partner of TGM1. Treatment of keratinocytes and TGM1-transfected HEK293T cells with chemical inhibitors of calpain suppressed transglutamination. Our findings suggest that calpain contributes to the control of TGM1-mediated transglutamination and proteins cross-linked by transglutamination mask epitopes of TGM1.
Collapse
Affiliation(s)
- Marta Surbek
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Tessa Van de Steene
- VIB Center for Medical Biotechnology Center, VIB, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology Center, VIB, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology Center, VIB, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Ting WW, Ng IS. Tunable T7 Promoter Orthogonality on T7RNAP for cis-Aconitate Decarboxylase Evolution via Base Editor and Screening from Itaconic Acid Biosensor. ACS Synth Biol 2023; 12:3020-3029. [PMID: 37750409 PMCID: PMC10595973 DOI: 10.1021/acssynbio.3c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Indexed: 09/27/2023]
Abstract
The deaminase-fused T7 RNA polymerase (T7RNAP) presents a promising toolkit for in vivo target-specific enzyme evolution, offering the unique advantage of simultaneous DNA modification and screening. Previous studies have reported the mutation efficiency of base editors relying on different resources. In contrast, the mechanism underlying the T7RNAP/T7 system is well-understood. Therefore, this study aimed to establish a new platform, termed dT7-Muta, by tuning the binding efficiency between T7RNAP and the T7 promoter for gene mutagenesis. The strategy for proof-of-concept involves alterations in the fluorescence distribution through dT7-Muta and screening of the mutants via flow cytometry. The cis-aconitate decarboxylase from Aspergillus terreus (AtCadA) was evolved and screened via an itaconate-induced biosensor as proof-of-function of enzyme evolution. First, the degenerated codons were designed within the binding and initial region of T7 promoters (dT7s), including upstream (U), central (C), and downstream (D) regions. Three strength variants of dT7 promoter from each design, i.e., strong (S), medium (M), and weak (W), were used for evaluation. Mutation using dT7s of varying strength resulted in a broader fluorescence distribution in sfGFP mutants from the promoters CW and DS. On the other hand, broader fluorescence distribution was observed in the AtCadA mutants from the original promoter T7, UW, and DS, with the highest fluorescence and itaconic acid titer at 860 a.u. and 0.51 g/L, respectively. The present platform introduces a novel aspect of the deaminase-based mutagenesis, emphasizing the potential of altering the binding efficiency between T7RNAP and the T7 promoter for further efforts in enzyme evolution.
Collapse
Affiliation(s)
- Wan-Wen Ting
- Department of Chemical
Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - I-Son Ng
- Department of Chemical
Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
8
|
Chen L, Xin X, Zhang Y, Li S, Zhao X, Li S, Xu Z. Advances in Biosynthesis of Non-Canonical Amino Acids (ncAAs) and the Methods of ncAAs Incorporation into Proteins. Molecules 2023; 28:6745. [PMID: 37764520 PMCID: PMC10534643 DOI: 10.3390/molecules28186745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The functional pool of canonical amino acids (cAAs) has been enriched through the emergence of non-canonical amino acids (ncAAs). NcAAs play a crucial role in the production of various pharmaceuticals. The biosynthesis of ncAAs has emerged as an alternative to traditional chemical synthesis due to its environmental friendliness and high efficiency. The breakthrough genetic code expansion (GCE) technique developed in recent years has allowed the incorporation of ncAAs into target proteins, giving them special functions and biological activities. The biosynthesis of ncAAs and their incorporation into target proteins within a single microbe has become an enticing application of such molecules. Based on that, in this study, we first review the biosynthesis methods for ncAAs and analyze the difficulties related to biosynthesis. We then summarize the GCE methods and analyze their advantages and disadvantages. Further, we review the application progress of ncAAs and anticipate the challenges and future development directions of ncAAs.
Collapse
Affiliation(s)
- Liang Chen
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China; (X.X.); (Y.Z.); (S.L.); (X.Z.); (S.L.); (Z.X.)
| | | | | | | | | | | | | |
Collapse
|
9
|
Gong X, Zhang H, Shen Y, Fu X. Update of the Pyrrolysyl-tRNA Synthetase/tRNA Pyl Pair and Derivatives for Genetic Code Expansion. J Bacteriol 2023; 205:e0038522. [PMID: 36695595 PMCID: PMC9945579 DOI: 10.1128/jb.00385-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The cotranslational incorporation of pyrrolysine (Pyl), the 22nd proteinogenic amino acid, into proteins in response to the UAG stop codon represents an outstanding example of natural genetic code expansion. Genetic encoding of Pyl is conducted by the pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA, tRNAPyl. Owing to the high tolerance of PylRS toward diverse amino acid substrates and great orthogonality in various model organisms, the PylRS/tRNAPyl-derived pairs are ideal for genetic code expansion to insert noncanonical amino acids (ncAAs) into proteins of interest. Since the discovery of cellular components involved in the biosynthesis and genetic encoding of Pyl, synthetic biologists have been enthusiastic about engineering PylRS/tRNAPyl-derived pairs to rewrite the genetic code of living cells. Recently, considerable progress has been made in understanding the molecular phylogeny, biochemical properties, and structural features of the PylRS/tRNAPyl pair, guiding its further engineering and optimization. In this review, we cover the basic and updated knowledge of the PylRS/tRNAPyl pair's unique characteristics that make it an outstanding tool for reprogramming the genetic code. In addition, we summarize the recent efforts to create efficient and (mutually) orthogonal PylRS/tRNAPyl-derived pairs for incorporation of diverse ncAAs by genome mining, rational design, and advanced directed evolution methods.
Collapse
Affiliation(s)
- Xuemei Gong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Haolin Zhang
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Yue Shen
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
- BGI Research-Changzhou, BGI, Changzhou, China
| | - Xian Fu
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
- BGI Research-Changzhou, BGI, Changzhou, China
| |
Collapse
|
10
|
Que-Salinas U, Martinez-Peon D, Reyes-Figueroa AD, Ibarra I, Scheckhuber CQ. On the Prediction of In Vitro Arginine Glycation of Short Peptides Using Artificial Neural Networks. SENSORS (BASEL, SWITZERLAND) 2022; 22:5237. [PMID: 35890916 PMCID: PMC9324327 DOI: 10.3390/s22145237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
One of the hallmarks of diabetes is an increased modification of cellular proteins. The most prominent type of modification stems from the reaction of methylglyoxal with arginine and lysine residues, leading to structural and functional impairments of target proteins. For lysine glycation, several algorithms allow a prediction of occurrence; thus, making it possible to pinpoint likely targets. However, according to our knowledge, no approaches have been published for predicting the likelihood of arginine glycation. There are indications that arginine and not lysine is the most prominent target for the toxic dialdehyde. One of the reasons why there is no arginine glycation predictor is the limited availability of quantitative data. Here, we used a recently published high-quality dataset of arginine modification probabilities to employ an artificial neural network strategy. Despite the limited data availability, our results achieve an accuracy of about 75% of correctly predicting the exact value of the glycation probability of an arginine-containing peptide without setting thresholds upon whether it is decided if a given arginine is modified or not. This contribution suggests a solution for predicting arginine glycation of short peptides.
Collapse
Affiliation(s)
- Ulices Que-Salinas
- Centro de Ciencias de la Tierra, Universidad Veracruzana, Xalapa 91090, VER, Mexico;
| | - Dulce Martinez-Peon
- Department of Electrical and Electronic Engineering, National Technological Institute of Mexico/IT, Monterrey 67170, NL, Mexico;
| | - Angel D. Reyes-Figueroa
- Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, Mexico City 03940, DF, Mexico;
- Centro de Investigación en Matemáticas Unidad Monterrey, Parque de Investigación e Innovación Tecnológica (PIIT), Av. Alianza Centro No. 502, Apodaca 66628, NL, Mexico
| | - Ivonne Ibarra
- Independent Researcher, Monterrey 66620, NL, Mexico;
| | - Christian Quintus Scheckhuber
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico
| |
Collapse
|
11
|
Huang C, Wang C, Luo Y. Research progress of pathway and genome evolution in microbes. Synth Syst Biotechnol 2022; 7:648-656. [PMID: 35224232 PMCID: PMC8857405 DOI: 10.1016/j.synbio.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Microbes can produce valuable natural products widely applied in medicine, food and other important fields. Nevertheless, it is usually challenging to achieve ideal industrial yields due to low production rate and poor toxicity tolerance. Evolution is a constant mutation and adaptation process used to improve strain performance. Generally speaking, the synthesis of natural products in microbes is often intricate, involving multiple enzymes or multiple pathways. Individual evolution of a certain enzyme often fails to achieve the desired results, and may lead to new rate-limiting nodes that affect the growth of microbes. Therefore, it is inevitable to evolve the biosynthetic pathways or the whole genome. Here, we reviewed the pathway-level evolution including multi-enzyme evolution, regulatory elements engineering, and computer-aided engineering, as well as the genome-level evolution based on several tools, such as genome shuffling and CRISPR/Cas systems. Finally, we also discussed the major challenges faced by in vivo evolution strategies and proposed some potential solutions.
Collapse
Affiliation(s)
- Chaoqun Huang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Chang Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yunzi Luo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen, 518071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
- Corresponding author. Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
12
|
Miller CA, Ho JML, Bennett MR. Strategies for Improving Small-Molecule Biosensors in Bacteria. BIOSENSORS 2022; 12:bios12020064. [PMID: 35200325 PMCID: PMC8869690 DOI: 10.3390/bios12020064] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 05/03/2023]
Abstract
In recent years, small-molecule biosensors have become increasingly important in synthetic biology and biochemistry, with numerous new applications continuing to be developed throughout the field. For many biosensors, however, their utility is hindered by poor functionality. Here, we review the known types of mechanisms of biosensors within bacterial cells, and the types of approaches for optimizing different biosensor functional parameters. Discussed approaches for improving biosensor functionality include methods of directly engineering biosensor genes, considerations for choosing genetic reporters, approaches for tuning gene expression, and strategies for incorporating additional genetic modules.
Collapse
Affiliation(s)
- Corwin A. Miller
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
| | - Joanne M. L. Ho
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
| | - Matthew R. Bennett
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
- Department of Bioengineering, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA
- Correspondence:
| |
Collapse
|